

Effects of MoS_2 on mechanical and tribological properties of NiCr based alloys^①

XIONG Dang-sheng(熊党生)¹, PENG Chao-qun(彭超群)², LIU Jin-long(刘金龙)¹
 1. College of Mechanical Engineering, China University of Mining and Technology,

Xuzhou 221008, P. R. China;

2. State Key Lab for Powder Metallurgy, Central South University of Technology,
 Changsha 410083, P. R. China

Abstract: Ni-Cr based alloys with a wide temperature range self-lubrication were made by hot-pressing the mixture powder of alloyed Ni-Cr powder, elemental Mo, Al, Ti and B powders and MoS_2 powder. The mechanical and tribological properties of these alloys when rubbing with Al_2O_3 ceramics and W18Cr4V high speed steel were measured in the temperature range of 20~700 °C, and the mechanisms of self-lubrication and wear resistance were studied. The results showed that the alloy containing 10% MoS_2 has the best combination of mechanical properties, antifriction and wear resistance. Over a wide temperature range from 20 °C to 700 °C, when rubbing with Al_2O_3 , its friction coefficient and wear rate are $0.19 \sim 0.3$ and $(1.1 \sim 1.5) \times 10^{-14} \text{ m}^3/(\text{N} \cdot \text{m})$, respectively; when rubbing with the high speed steel, those values are $0.18 \sim 0.26$ and $(0.6 \sim 3.2) \times 10^{-15} \text{ m}^3/(\text{N} \cdot \text{m})$, respectively.

Key words: Ni-Cr based alloys; molybdenum disulfide; self-lubrication; tribological properties **Document code:** A

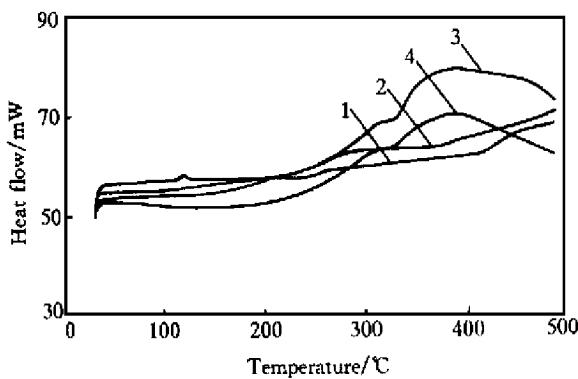
1 INTRODUCTION

With the rapid development of industries and advanced technologies, more and more mechanical devices are required to work in high temperature environments, for example, the turbine engines used in aviation and electrical industries, the radiator sealing systems of the automobile engines, and the mechanical devices in the atomic reactors. The conventional grease lubricating systems used in the high temperature environments no longer satisfy the present requirements, so it is urgent to develop materials with excellent self-lubrication from the room temperature to about 1 000 °C. Sliney et al prepared several solid high temperature self-lubricating materials^[1~4], three typical materials among which are PS101 (30% Ni-Cr, 30% Ag, 25% CaF, 15% Glass), PS200 (80% Ni-Cr-Cr₃C₂, 10% Ag, 10% BaF₂/CaF₂), and PS300 (80% Ni-Cr-Cr₂O₃, 10% Ag, 10% BaF₂/CaF₂). They show excellent antifriction and wear resistance over a wide temperature range. Pertson et al studied the antifriction behaviors of oxide films and applied the antifriction principle of the autogenic oxide films to the development of high temperature self-lubricating alloys^[5~10]. Because the oxide films form at relatively high temperature and play the roles of self-lubrication, they cannot lubricate the lubricating pairs effectively at room temperature. The S-bearing Ni-based alloys usually have self-lubrication over a wide temperature range^[11~13], but their high temperature wear resistance and comprehensive mechanical prop-

erties need to be further improved. The authors utilize the synergistic antifriction effects of oxides and sulfides to make self-lubricating Ni-Cr base alloys, and examine the mechanical properties and tribological behaviors of the Ni-Cr based alloys containing strengthening elements Mo, Al, Ti and B and lubricating MoS_2 in the temperature range from 20 °C to 700 °C.

2 EXPERIMENTAL

2.1 Material preparation


After fully mixing the alloyed Ni-20Cr powder with 0%, 2%, 4%, 6%, 10%, 15% or 20% MoS_2 powder and Mo, Al, Ti and B powders, the mixture was cold pressed into $d 45 \text{ mm} \times 15 \text{ mm}$ disks. Disks containing different contents of MoS_2 were loaded in a graphite mould and separated by graphite slices each other. The samples were prepared by vacuum hot pressing in an FVPHP-R-10 vacuum hot presser. The hot-pressing conditions are as follows: pressure 8.5 MPa, temperature 1 250 °C, heating rate 20 °C/min, holding time 20 min, argon protection after degassing to 10^{-5} Pa .

2.2 Property measurements

The antifriction and wear resistance tests were carried out in a MG-200 high temperature tribometer. The dimensions of the specimens are $d 5 \text{ mm} \times 15 \text{ mm}$, the wearing pairs are Al_2O_3 disks (dimension $d 52 \text{ mm} \times 8 \text{ mm}$, roughness $\text{Ra} = 2.0 \mu\text{m}$, hardness

① Foundation item: Project 59571062 supported by the National Natural Science Foundation of China

Received date: Jun. 23, 1999; accepted date: Oct. 11, 1999

Fig.4 DSC curves of mixed powders after different times of ball milling
1—0 h; 2—4 h; 3—10 h; 4—10 h

tunity to diffuse to other side at a low temperature, stimulated by the crystal defects.

The most important interfacial reaction in Al-SiC system is $\text{Al} + \text{SiC} \rightarrow \text{Al}_4\text{C}_3 + \text{Si}$. Since Al_4C_3 is a brittle phase and has poor anticorrosion property, this reaction is often regarded harmful^[9]. There are two reasons for the low level of interface reaction in our high-energy ball milling experiment. First, this reaction need a temperature as high as $650 \sim 700$ °C^[5, 10], however, the experimental temperature was not high enough for the reaction. Second, the solubility of Al_4C_3 in the Al matrix is quite small, in terms of the theory of chemical reaction balance, in order to produce more Al_4C_3 , more Si should be removed or dissolved into the Al matrix. Since Al-30Si powders contain a large amount of Si, it is difficult for the reaction to proceed rightward. In other words, the reaction has been retarded due to both thermodynamics and kinetics.

As the hardness of SiC_p is far higher than that of Al-30Si alloy powder, after ball milling for a long time, some of SiC particles were pressed into alloy powder, which brings two advantages to MMC fabrication process. First, it can ease the wearability of the mould and improve shaping ability of the mixed powders. Second, since the wettability between the same type of materials is better than that of different one, it can promote sintering process to attain stronger bonding. In fact, some researchers have used high-energy ball milling to fabricate Al/ SiC_p composites^[11]. Considering the equipment condition and the cost, high-energy ball milling can serve as an effective reinforcement pre-treatment method in the fabrication of MMC.

5 CONCLUSIONS

1) Through high-energy ball milling, both Al-

30Si alloy powders and their microstructure are obviously refined.

2) After high-energy ball milling, close-contacted interface is formed between the alloy powders and SiC_p without interfacial reaction. No reaction but relaxation of the powder can be detected by DSC.

ACKNOWLEDGEMENT

Most experimental work of this paper was finished in Metal Physics Institute, Technical University Berlin, German. The authors would like to express heartfelt thanks to professor H.J. Fecht for his help.

REFERENCES

- [1] Zhou J, Duszczyk J and Korevaar B M. Microstructural features and final mechanical properties of the iron modified Al-20Si-3Cu-1Mg alloy processed from atomised powder [J]. *J Mater Sci*, 1991, 26: 3041.
- [2] Ward P J and Atkinson H V. Semisolid processing of novel MMCs based on hypereutectic aluminium-silicon alloys [J]. *Acta Mater*, 1996, 44(5): 1717.
- [3] Gupta M and Lavernia E J. Effect of processing on the microstructure variation and heat-treatment response of a hypereutectic Al-Si alloy [J]. *J Mater Process Technol*, 1995, 54: 261.
- [4] Loyd D J. Particle reinforced aluminium and magnesium matrix composites [J]. *Inter Mater Rev*, 1994, 39: 1.
- [5] Wang W, Ajersch F and Lofvander J P A. Si phase nucleation on SiC particulate reinforcement hypereutectic Al-Si alloy matrix [J]. *Mater Sci Eng*, 1994, A187: 65.
- [6] Lindroos V K and Talvite M J. Recent advances in metal matrix composites [J]. *J Mater Process Tech*, 1995, 53: 273.
- [7] Wang B, Janowski G M and Patterson B R. SiC particle cracking in powder metallurgy processed aluminium matrix composite materials [J]. *Metall Mater Trans*, 1995, 26A: 2457.
- [8] LI Yuan-yuan, ZHANG Da-tong, XIA Wei, et al. Properties of a high silicon aluminium alloy powder prepared by high pressure water atomization [J]. *Acta Metall Sin*, (in Chinese), 1998, 34: 95.
- [9] Ferro A C and Derby B. Wetting behavior in the Al-Si/ SiC system: interface reaction and solubility effects [J]. *Acta Metall Mater*, 1995, 43: 3601.
- [10] Viala J C, Fortier P and Boutier J. Stable and metastable phase equilibria in the chemical interaction between aluminium and silicon carbides [J]. *J Mater Sci*, 1990, 25: 1842.
- [11] Nobel B, Trowsdale A J and Harris S J. Low temperature interface reaction in aluminium-silicon carbide particulate composites produced by mechanical alloying [J]. *J Mater Sci*, 1997, 32: 5969.

(Edited by LONG Huai-zhong)

Hv1055) and as-quenched high speed steel disks (dimension d 45 mm \times 10 mm, hardness HRC63). The upper pin specimen is fixed while the lower disk specimen rotates, and the pin slides on the disk and wears a scar of d 33 mm. The load is 98 N, and the sliding rate is 0.8 m/s. Before tests, the pin and disk surfaces were polished with 400 # emery paper and cleaned with acetone. The sliding distance at each test temperature is 2.5 km, and the friction force was recorded with an X-Y continuous recorder. The average value of friction coefficient is taken as the friction coefficient at certain temperature and load. A balance with a precision of 0.1 mg was used to weigh the wearing mass loss. The structure of wear scars and debris were analysed by X-ray diffractometry, and the morphologies of the wear scars were observed by optic microscopy.

3 RESULTS

3.1 Effect of MoS_2 addition on physical and mechanical properties

The variations of density, hardness and bending strength with MoS_2 addition are presented in Fig.1. It can be seen that the density decreases with MoS_2 addition and the decreasing tendency is approximately linear. The change of hardness with MoS_2 is not violent and does not show obvious regularity. The bending strength decreases with increasing MoS_2 addition.

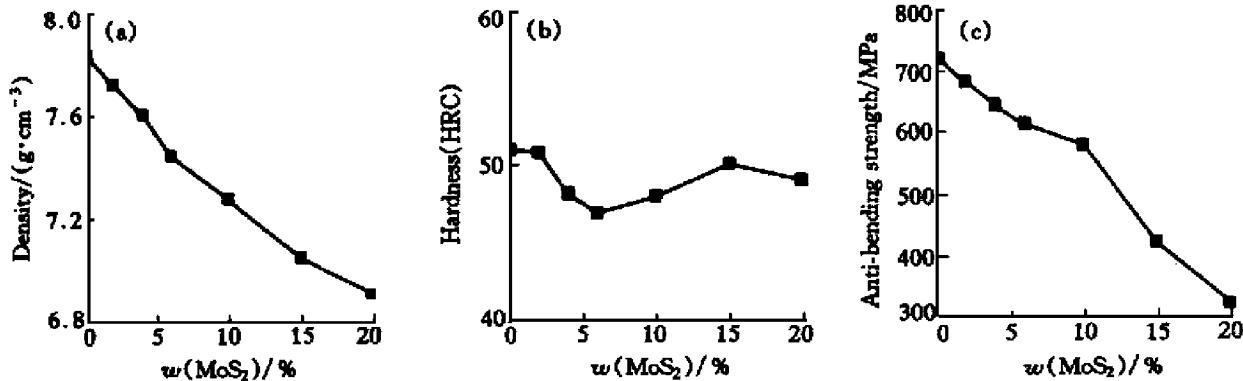


Fig.1 Variations of density, hardness and bending strength with MoS_2 addition for Ni-Cr based alloys

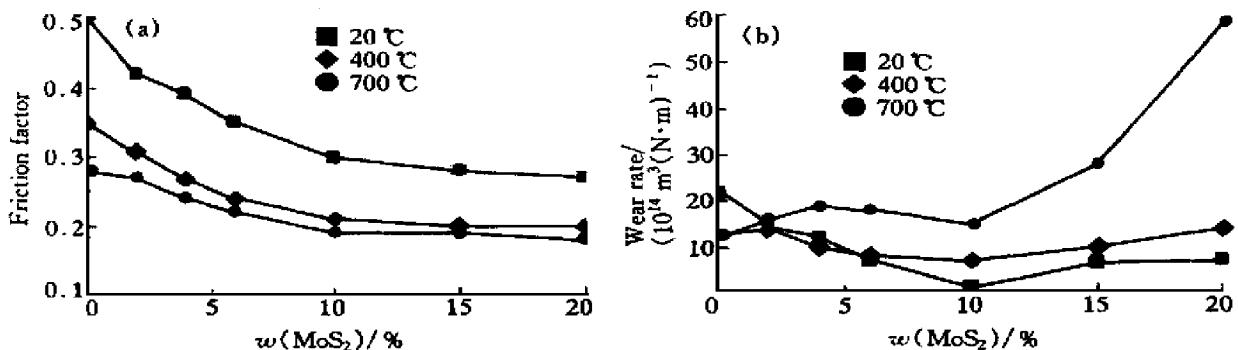


Fig.2 Variations of friction coefficient and wear rate with MoS_2 addition for Ni-Cr based alloys rubbing with Al_2O_3

The curve can be divided into two linear segments: the slope when the MoS_2 addition is below 10 % is larger than that when the MoS_2 addition is over 10 %, which shows that the decrease of the bending strength is more notable when the MoS_2 addition exceeds 10 %.

3.2 Effects of MoS_2 addition on antifriction and wear resistance

The variations of the coefficient and wear rate with MoS_2 addition when rubbing with Al_2O_3 is presented in Fig.2. It can be seen that at the three test temperatures the friction coefficient shows a decreasing tendency with MoS_2 addition, and the decrease magnitude from 0 % to 10 % MoS_2 is larger than that from 10 % to 20 % MoS_2 . At 20 °C and 400 °C, the wear rate shows a decreasing tendency with MoS_2 addition in the range from 0 % to 10 %, but increases slightly instead when the MoS_2 addition increases further. At 700 °C, the wear rate basically shows an increasing tendency except at 10 % MoS_2 , and especially the change of the wear rate is very fast at 10 % ~ 20 % MoS_2 addition. Considering the combination of the mechanical and the tribological properties, the alloy containing 10 % MoS_2 is the best.

3.3 Effects of temperature and wearing pairs on tribological properties

Fig.3 shows the variations of friction coefficient

and wear rate with temperature for the NiCr alloy containing 10 % MoS₂ rubbing with Al₂O₃ and high-speed steel. It can be seen that the friction coefficient decreases with increasing temperature for both rubbing pairs. When rubbing with the high-speed steel, the wear rate shows a decreasing tendency with temperature, whereas when rubbing with the Al₂O₃, it increases rapidly with temperature. In summary, the wear rate for the alloy/ Al₂O₃ rubbing pair is larger than that for the alloy/ high-speed steel rubbing pair by 1 ~ 2 orders of magnitude.

4 DISCUSSION

Fig. 4 shows the wearing surface morphologies of the NiCr-10 % MoS₂ alloy. It is clear that when rubbing with the high-speed steel, there forms on the wearing surface a bright glaze layer whose surface is covered with micro-cracks and there occurs peeling off of the glaze layer. This indicates that the wearing mechanisms can find expressions in the formation, propagation, fatigue rupture and peeling off of the glaze oxide films. When rubbing with Al₂O₃ under the same conditions, there does not form a glaze layer and the wearing surface is covered with grooves caused by abrasive wear and scratches. Therefore the wear

rate for the alloy/ Al₂O₃ rubbing pair is larger than that for the alloy/ high-speed steel by about 2 orders of magnitude.

Fig. 5 shows the XRD patterns of the NiCr-10 % MoS₂ alloy before and after rubbing with the high-speed steel and the wear debris. It can be seen from Fig. 5(a) that the alloy is mainly composed of Ni(Cr, Mo, Al, Ti) solid solution, Ni₃Al, Ni₃(Al, Ti), Cr_xS_y, MoS₂ and Mo₂S₃, and no elemental Mo, Al and Ti phases are found, which shows that the alloying is full in the preparation of the alloys. After wearing at 600 °C, the phase constituents of the surface layer comprise amounts of CrO, NiO and some transferred oxide Fe₂O₃ besides the Ni-based solid solution, Ni₃Al and a little residual MoS₂ and Mo₂S₃, while those of the debris mainly include the Ni-based solid solution, Ni₃Al, NiO and Fe₂O₃ phases. No S-Cr and S-Mo compounds are detected while there appear MoO₃ and Cr₂MoO₆, x NiO • MoO₃ • y H₂O. The comparison of Figs. 5(b) with (c) indicates that the surface layer is mainly composed of CrO, and the content of Fe₂O₃ is far higher than that in the debris, while the content of NiO in the debris is far higher than that in the wear track. When rubbing with the high-speed steel, the wear surface layer of high-speed steel is mainly composed of FeCr₂O₄,

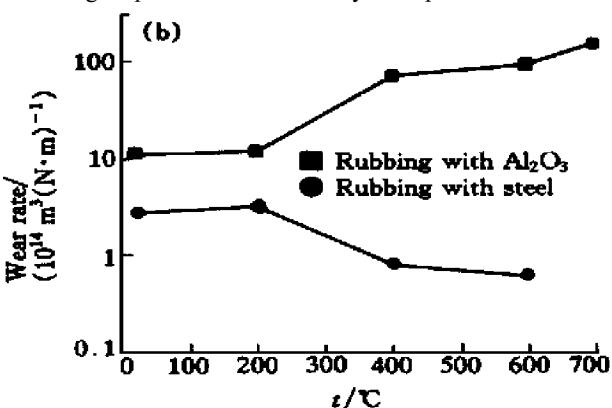
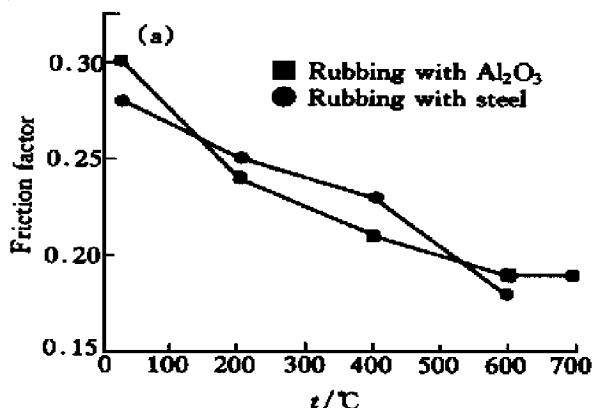



Fig. 3 Variations of friction coefficient and wear rate with temperature

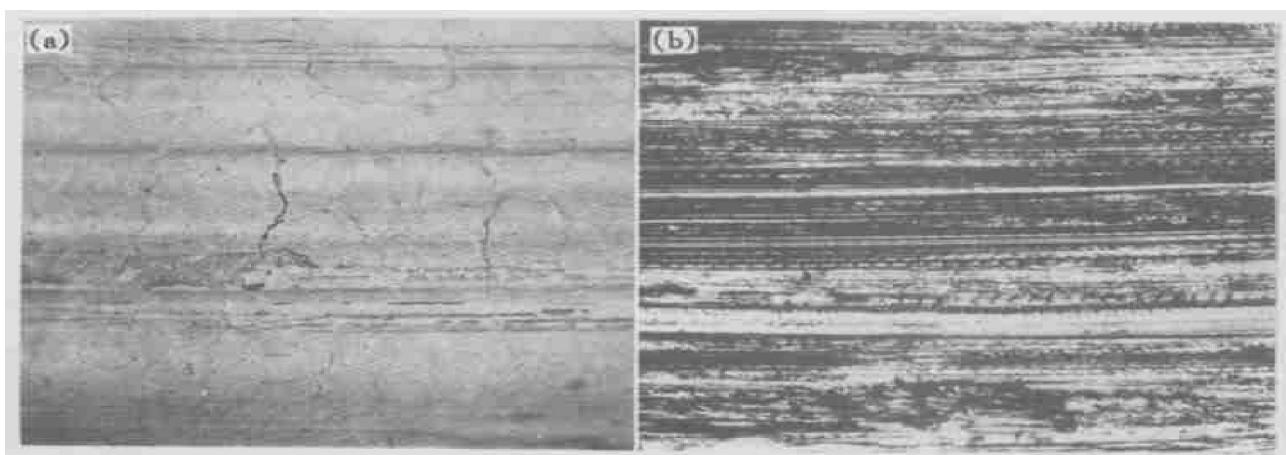


Fig. 4 Wear scars of NiCr-10 % MoS₂ alloy at 600 °C
(a) — Rubbing with high-speed steel; (b) — Rubbing with Al₂O₃

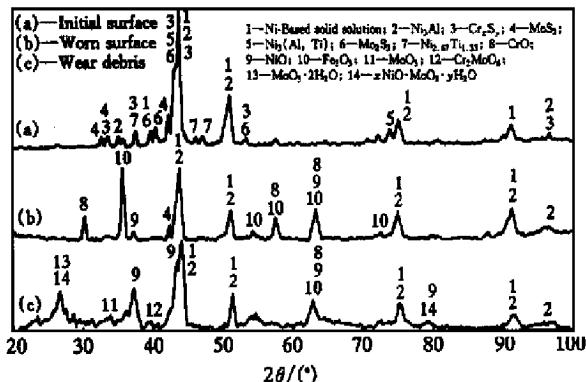


Fig. 5 XRD patterns of NiCr 10% MoS_2 alloy before and after wearing at 600 °C and debris

α Fe and Fe_2O_3 , and no Ni bearing oxides are detected, which shows that there occurs selective transfer in the friction process. When rubbing with the Al_2O_3 ceramics, the phase constituents of the surface layer are the same as those of the matrix, and no oxides are detected; the phase constituents of the debris are the same as those when rubbing with the high-speed steel excluding Fe_2O_3 .

The additions of Mo, Al, Ti and B elements play the role of solution strengthening, and the formation of Ni_3Al and $\text{Ni}_3(\text{Al}, \text{Ti})$ further enhance the hardness and strength. Compared with the Ni-Cr-Mo-B- MoS_2 alloy^[13], the additions of Al and Ti increase the strength, and the content of MoS_2 with good lubrication is raised from 4% to 10%. In the low temperature range (<300 °C), it is the sulfides (Cr_xS_y , MoS_2 and Mo_2S_3) that play the role of lubrication. When rubbing with Al_2O_3 at high temperature, the transferred oxides and the residual sulfides play the role of lubrication cooperatively. When rubbing with the high-speed steel at high temperatures, there forms a bright glaze layer of oxides on the rubbing surface. The synergistic effect of the oxides in the glaze layer, the residual sulfides and the oxides in the debris contributes to the further reduction of the friction coefficient.

5 CONCLUSIONS

1) Ni-Cr-Mo-Al-Ti-B- MoS_2 self-lubricating alloys with different contents of MoS_2 were prepared by P/M hot pressing. When the addition of MoS_2 is 10%, the alloy has the best combination of mechanical and tribological properties.

2) At temperatures below 300 °C, the sulfides play the main role of lubrication in the friction process; at higher temperatures, the synergistic effect of oxides and sulfides leads to the further reduction of

the friction coefficient.

3) When rubbing with Al_2O_3 at high temperatures, the abrasive wear is dominant. When rubbing with the high-speed steel, a glaze layer was formed on the wear surface of alloys, and there are cracks, fatigue rupture and peeling off on the glaze layer.

REFERENCES

- [1] Dellacorte C and Sliney H E. Tribological properties of PM212: A high temperature self-lubricating powder metallurgy composite [J]. *Lubr Eng*, 1991, 47(4): 298~303.
- [2] Sliney H E. Wide temperature spectrum self-lubricating coatings prepared by plasma spraying [J]. *Thin Solid Films*, 1979, 64: 217~221.
- [3] Dellacorte C and Sliney H E. Composition optimization of self-lubricating chromium carbide-based composite coatings for use to 760 °C [J]. *ASLE Trans*, 1987, 30(1): 77~83.
- [4] Dellacorte C and Laskowske J A. Tribological evaluation of PS300: A new chrome oxide-based solid lubricant coating sliding against Al_2O_3 from 20 °C to 650 °C [J]. *Tribology Transactions*, 1997, 40(1): 163~167.
- [5] Peterson M B, LI Shizhuo and Murray S F. Wear resisting oxide films for 900 °C [J]. *J Mater Sci Technol*, 1997, 13: 99~106.
- [6] LI Shizhuo, JIANG Xiaoxia, YIN Fucheng, et al. Development of high-temperature self-lubricating alloys [J]. *Progress of Mater Sci*, (in Chinese), 1989, 3(6): 481~486.
- [7] XIONG Dangsheng and LI Shizhuo. Lubrication behavior of iron rhenate in relation to matching pairs at elevated temperatures [J]. *Lubrication Science*, 1999, 11(2): 197~206.
- [8] XIONG Dangsheng, LI Shizhuo, JIANG Xiaoxia, et al. Self lubricating behavior of Fe-Re binary alloys [J]. *Trans Nonferrous Met Soc China*, 1995, 5(2): 93~97.
- [9] XIONG Dangsheng. Lubricating behavior of copper rhenate at elevated temperature [J]. *Trans Nonferrous Met Soc China*, 1997, 7(4): 43~46.
- [10] XIONG Dangsheng, LI Shizhuo and JIANG Xiaoxia. Tribological properties of Fe-Re alloys at high temperature [J]. *Progress in Natural Science*, 1997, 7(1): 81~87.
- [11] LIU Jizhu, OUYANG Ming-an, MA Li, et al. Development of several S-containing Ni-based high temperature self-lubricating alloys [J]. *Tribology Transactions*, (in Chinese), 1993, 13(3): 193~200.
- [12] WANG Ying, WANG Jing-bo, WANG Junran, et al. Development of S-containing Ni-based alloys and their high temperature tribological properties [J]. *Tribology Transactions*, (in Chinese), 1996, 16(4): 289~297.
- [13] XIONG Dangsheng, PENG Chaoqun and HUANG Qizhong. Development of MoS_2 -containing Ni-Cr based alloys and their high-temperature tribological properties [J]. *Trans Nonferrous Met Soc China*, 1998, 8(2): 226~229.

(Edited by PENG Chaoqun)