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Data perturbation analysis of a linear model
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Abstract : The linear model features were carefully studied in the cases of data perturbation and mean shift perturbation .
Some important features were also proved mathe matically . The results show that the mean shift perturbation is equivalent
to the data perturbation, that is, adding a parameter to an observation equation means that this set of data is deleted from
the data set. The estimate of this parameter is its predicted residual in fact .
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1 INTRODUCTION

As one of the most important basic models , linear model has been great widely used in each and every field.

Studies on it are more and more deep and detailed. Rao totally analyzed its parameter’s estimates and developed

[1:2]  Qeber introduced the model parameter’ s selecting method®). A great contri-

[4.5]

linear model estimation theory
bution in this field was also made by Chen and Wang . And some others also did some research works'®!. In
addition many specialists in geodesy also made a big contribution to develop the theory and its applications in sur-
veying data processing . Koch worked on the Bayes estimation of variance component[7~9] . Zhou studied its ro
bust features and robust estimation, Chen developed this theory and used it for deformation data processing and
defor mation analysis[lo] . The authors studied its statistic features and influential features (1! 713!

Statistic diagnostics theory is just one important branch of them . It takes the linear model as the object to
be studied, and takes the relationships between the data and model, data and model parameter, parameter and
model , as the main content to follow . The theory describes carefully the internal relationship bet ween data and

model , data and parameter. It becomes a very effective tool for data analysis and model analysis . It is also very
practical for information getting from surveying data. Many scholars have been deeply studying the model 47,

[12.13.151 In this paper some features of a lin-

The authors have been also doing some research works in this field
ear model are studied in the cases of data perturbation. Work done is in the field of data analysis and model anal-
ysis theory . Some most important conclusions are proved theoretically . The results presented here are the basic

theory of surveying data processing and analysis .
2 PERTURBATION MODEL AND ESTI MATING

There is a linear model as follows :

Y= X8+ ¢ e~ N0, & o1 (1)
nx1 nxp pxl nx1
Divide ( X, Y) intotwosets ( X;, ¥;) and ( X(J), Y(J)); Xjand Yjare k dimensional vectors ; X(J)
w
and Y(J) are n- k dimensional vectors. 2= f)]) , where @(J) and «; being the diagonal matrix .
In correspondence with the formula above , Eqn.(1) could be written as
Y X & & w! 0
\ (D] _| x(n| | & I P 2
Yy Xy g g 0 w;
2.1 Perturbation model of data deletion
After deleting the data subset ( X;, Y;), Eqn.(2) becomes into
Y(J) = X(J) 5+ &()) &(J) » N0, @ @ '(])) (3)
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Writing Ié, 'é( J) as the least square parameter estimation of Eqns .(1) and (3) respectively, and the sum
of residuals squares are written as RSS and RSS( J) respectively . Then the following formulas would be tenable

B(7) =B- N'XIo(1- ] e 4
- g oCL-Jy ey (4
A A

RSS= RSS(J) +e; @ (I- J)) e (5)
where

A

B=N"'X"oyv;

N= XT oX;

Jy= X;N ' Xjo;
A A A

And there are some features in Eqn.(5) as follows:

RSS~ @ X(n- p) (6)
RSS(J) = @ X(n- p- k) (7
efeyI- Jp) e~ @b (8)

Here , Eqns .(7) and (8) are dependant each other, at the same time
RSS(]) _, n- p-k k

RSS 2 2 &
RSS- RSS(]) __*7 *Ak n- p- k (10)
RSS n- p 20 2
RSS - RSS(]) 72%7(1- Ir)'llf\fr,n- p- k|
RSS(J)  RSS(J) k FCk,m-p- 8 (n

Eqns .(4) , (5),(8),(9) and (10) are proved next .
Prove [ Eqn.(4) would be proved as :
From Eqns.(1) and (3) the least square estimator of the model parameter Sare

B=N"'X" oy (12)
BN =N X"(]) @) Y(]) (13)
where

N(J) = X"(]) @(]) X(])
N =0 XD () X(T) + XjopX - XjeX ]!

=N'+N'Xj(@;'- XN "X} ' X;N' (14)
X'(J) @) Y(]) = X" Y- Xjey, (15)
Bring Eqns .(14) and (15) into (13) , we have
By =B+ NEX(@p - XJN'IXJT)'IQJ' NUXp(op (@it - XNTUXD TGN X9

(16)
where Il\/] is the estimator of Y with Eqn.(1) , that is Il\/]: X,N'1 X' ov.
Because
(I- A '=T+(I+ A4 "A (17)
is tenable .
Therefore
B() :§+ NXj(ept - XN XD Y- NUXTe(I- XN XTe) Y,
=B- N 'Xjo(I-]) ‘¢ (18)

Thus Eqn.(4) has been proved.
Prove II  Eqn.(5) would be proved as:

From the definition, it is known

A A

RSS=( Y- XB) " 2 Y- XB) (19)

Put Eqn.(4) into that above, we get
B A 1 T -1 B N A
RSS=(Y- XB(J)- XN Xj(@ - X3V X)) e) £

A A

(Y- XB(J)- XN '"Xj(o;'- ;N " X)) e (20)
Bring it into blocks , let
(@j'- XxN'X) '=B
we have

A 1T A -1 Ty

| e(J)- X(]J) N XjBe ©(J) 0] e(J)- X(J) N X;Be
RSS = A 0 o A (21)
ey ] ey

where 2( J) is the residual vector of Y(J) with Eqn.(3), 2] is the residual vector of Y; with Eqn.(1) . So
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we have
RsS="2"(]) @(J)e(]) - e'(J) «(J) X(J) N"' XjBe;- eBX,N"' X'(]) @(])e(]) +
e]BX;N ' X"(]J) @(J) X(J) N"' X]Be, + e] @e, (22)
From the linear model theory, it is well known
X' @ e =0 (23)
RSS(J) =e'(J) «(])e(]) (24)
X'(J) @(]) X(J) = N- Xj X, (25)
Put Eqns .(23) , (24) and (25) into (22) , we get
RSS= RSS(J) + e}BX;N"' X}w (@' - X;N"' X}) Be, + e} e, (26)
RSS= RSS(J) + el( @ - BX;N'XIw)e, (27)
Because of
(@~ BYN'Xjop) = op+( @)’ - ;N X))~ XN Xjo
= o(I+(I- X\N'"Xjo) ;N ' Xjo) = o)( I- J)) ' (28)

Put Eqn.(28) into (27) , Eqn.(5) is obtained.
Prove III Eqn.(8) would be proved as:
From the theorem of the distribution of a quadratic form, if the two formulas are tenable

At SN T
e (I- Jp) 'ey=Y QY (29)
(g @hi-g 0! (30)
Then Eqn.(8) is tenable yet. The next step is to prove Eqns .(29) and (30) tenable . Suppose , a matrix
D=(d,, d, - dy) (31)
where dij(i=1,2, ..., k) is a vector of n-dimensional , its (n- k+ i)this 1, others are 0, and
X,=D'X, Y,=D"Y,
’é]:DT’é’ m}1:DTQ-1 (32)
SO
eT(w'- ;N XD 'e, = YT Q"D D" ' D- D'XN"' X" D) "' D" Qv (33)
where Q= 1- XN ' X" o, compared with Eqn.(29) , we have
Q= QTD( D' 2 ' D- D'XN" ! X" D) ! DTQ: QTD( DTQQ—I D) ! DTQ (34)
(0 o2 = QTD( DTQQ—I D ! DTQQ—I QTD( DTQQ—I D ! DTQQ—I
:QTD(DTQQ—ID)—IDTQ—IZQIQ—I (35)
Eqns .(29) and (30) are tenable. So Eqn .(8) is proved.
Prove IV Eqns.(7) and (8) are independent
Because of
RSS(J) = RSS- Y'QY=Y'(Q' 2Q- Q)Y (36)
Therefore
(Q'9Q- Q) 2'Q=020"0-09'9 (37)
Q o Q- QTD( DTQQ—I D) ! DTQQ—I QTD( DTQQ—I D) ! DTQ: Q (38)
Q' 200'Q=(0Q"'0=0'Q2=(QQ D D' Q' D 'D'o=9 (39)

So Eqn.(37) equals to zero, Eqns .(7) and (8) are independent. And Eqns .(9) and (10) are tenable .

2.2 Perturbation model of mean shift
Change the model, Eqn.(1) , into a model of mean shift
Y(J) l X(J) % ﬁ +i &(J)
Y, X; I &
Let ﬁa, Y be the estimators of the parameters £, ¥. The residual square sum can be written as RSS,. The

(40)

normal equation is

T A T
N X | B, X" oy (41)
-
oXy e Ly “rY;y
N Xlo ' NN Xjep(I- J) PN - N Xjep(I- )t et (42)
o X, @ -(I-Jp XN (I-Jp 't
The solutions are
A
—(I1-Jp 'Y (43)

_A 15T, A
=B N XToN (44)
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That is

A _ A o1 T _ 1/\

B.=B- N Xjor(I- Jp ¢ (45)
ComB\aring\ the formula above with Eqn.(4) , we know

B.=B(J) (46)

The residual square sum is

Y(D) - X(DB T @n ol Y1) - x(1) 8,
S I PR 0 ol | Y- XBe- ¥ 4P
where
Y- XB- Y=Y - X+ XN XTo Y- Y=0,- (I- JpV="2,- =0 (48)
Therefore
Rss, =| Y(]) - X()) B, "C o)l Y(D - x()) B
=L y(p- x(nBp TCoeml y(ny - x(n Bl = Rss(7) (49)

Following the discussion above we could conclude that the model of data deletion and the model of mean
shift are completely equivalent . Adding a mean shift parameter to an observational equation is equivalent to elim-
inate this observational equation, the estimator of the mean shift parameter is really the predicted residual of it .

3 CONCLUSIONS

From the perturbation analysis of a linear model some important conclusions could be gotten :

1) In the case that a linear model with a perturbation of data deletion, its estimators of parameters and
residuals have the relations with those no perturbation, which are Eqns .(4) and (5) , and have the statistic fea-
tures expressed by Eqns .(6) to (11) . Eqns.(7) and (8) are independent .

2) In the case that a linear model with a perturbation of mean shift, from Eqns.(46) and (49) we know
that it is completely equivalent to that of the model of data deletion, that is, adding a mean shift parameter to an
observational equation is equivalent to eliminate this observational equation, the estimator of the mean shift pa-
rameter is really the predicted residual of it .
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