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BB e rR R . BRI 80 A, EEHET N
100 mm/min, FEARE TAMFEEA 2 mm, @SE
4 7.5 L/min. SEEGIS, BT R IR 9K
DR | [EORP o = R Rl S L YR 72 = vl T
AP ARG HARME ST AT /N |, DUER
WEAE SR A Ao B AR AN R AR AR AL, AN ARAE T
PRI T2 R A e .

T 1 [FRFE NSA IORC L SR %2
Table 1 Mixing ratio and coating density of NSA for different

samples
Mass ratio of TiO,  Surface coating density of
Sample No. 5
and GNSs NSA/(mg-cm™)

0 0 0

1 2:0 2

2* 2:1 3£0.31
3" 2:2 4£0.17
4" 2:3 5+0.19
5" 2:5 7+0.13

1.2 MEEER
12)5, XA TESCAN VEGA 11 LMV Bl HF

(@

BB AT RO A AW S Hr, A 1SIS300 7Y
RETECFT XRF-400 B! X 42758 66 il o prdst Js 4k
(ITCE K855 « K D/max—2500 PC #Y X 5L AT 5%
YHRAEEAT XRD 408, #HMA Cu, BARIEEN
4 (°)/min, FHFETEFE Y 10°~90° . A 7E 40 kV FT 34 mA
T, {00023 H1 {10 10} B B LETERE i ((0°~360°) F
SERRIIR. K SANS XYA105C 75 g ik s AL x5
JEHSRAE IR T AT R R BN, R 1.5
mm/min. HHRELWE 1(b)~(d)Fir. KA V-1000
Y5 Ak 24 DGR B b R AT A B, e A
0.5 N, Jn#EF a1 H 20 s,

2 GRS

2.1 JIAEXT GNSs/AZ31 4 &R EINEIEIEE
SR HIR I

TR B

T AHEIRRE P RAEAE C, T R TIRE R NSA
HBR T GNSs FMBEAE S BRITER, MO RS &
RSk R R P A B IA S R . R 2 iR
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6
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Fig. 1 Tensile test specimens figure of TIG welding joint: (a) Dimension of tensile specimens (unit: mm); (b) Positions of tensile

specimens in weldments

F 2 AN[A GNSs M B GNSs/AZ31 B35 A8k 10 70 5 540 i [ s R

Table 2 Chemical compositions and solid solubility of all samples in different contents of GNSs

Sample Actual chemical composition, w/% Solid solubility, x/% Grain size/
No. Mg Al Zn C Others Al Zn Mn Total pm
0 96.35 2.11 1.12 0 0.42 242 0.43 0.14 2.99 33.5+4.36
¥ 96.47 2.13 1.09 0 0.31 2.39 0.38 0.12 2.89 35.6+£2.21
2* 96.52 2.00 0.55 0.35 0.22 2.69 0.50 0.19 3.38 27.5£1.61
3" 96.04 2.10 0.60 0.51 0.37 2.97 0.56 0.17 3.70 23.4+1.26
4* 95.18 2.02 0.90 1.41 0.49 3.63 0.71 0.17 4.51 19.8+1.38
5 97.22 1.77 0.23 0.61 0.17 3.49 0.64 0.20 433 23.1£2.08
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Fig. 2 XRD patterns of GNSs/AZ31 magnesium alloy

composite joints with different content of GNSs

Mg Mg
© Point 4 @ Point B
Element  w/% x/% Element  w/% x/%
Mg 97.14 97.41 C 40.77 58.22
0 Al 286 259 O Mg 5923 4178
h L/CI h L/Cl
A L D L
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Energy/keV Energy/keV
(e) |Ms ) H IMe
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B3 A GNSs MBI GNSs/AZ31 4k 11 SEM {241 EDS J-#745 51
Fig. 3 SEM images((a), (b)) and EDS spectra((c)—(f)) of GNSs/AZ31 magnesium alloy composite joints with different content of

GNSs: (a), (¢), (d) Sample 3*; (b), (e), (f) Sample 4"
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Fig.4 SEM images of GNSs/AZ31 magnesium alloy composite joints with different amount of GNSs: (a) Sample 1%; (b) Sample 2%;

(c) Sample 3 (c) Sample 4”; (d Sample 5% (f) Evaluation law of grain size with increased GNSs
p p

Welding pool
(€))

\'-@goni flow
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B 5 GNSs fEG TG IRIERT . IR B AR AR SR 5 it bR ) 3 A A s e
Fig. 5 Distribution mechanism of GNSs in welding pool before ((a)), during ((b), (c)) and after ((d)) NSA-TIG
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Max: 3.055
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Fig. 6 Pole figures of Mg joints((al), (a2)) and 1.41% GNSs/Mg composites joints((bl), (b2)): (al), (b1) Basal {0002}; (a2), (b2)

Prism {1010}
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Fig. 7 Microhardness(a) and UTS values(b) of joints with different mass fractions of GNSs

8 F KL DTS SEM 1%

Fig. 8 SEM images of tensile fracture surfaces of GNSs/AZ31 magnesium composite materials enchanced by different mass

fractions of GNSs: (a) 0% (b) 1% () 2% (d) 3% (e) 4%, ® 5*
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TIG welded joints properties of
graphene strengthened magnesium alloy

XIE Xiong, SHEN Jun, HU You-dian, ZHANG Tao, XIE Fu-xing

(State Key Laboratory of Mechanical Transmission, College of Material Science and Engineering,

Chongqing University, Chongqing 400044, China)

Abstract: The graphene nanosheets/AZ31 magnesium alloy composite joints were fabricated by introducing graphene
nanosheets into magnesium alloy through activating flux tungsten inert gas welding. The effects of graphene addition
amount on microstructure and properties of composite joints were studied. The results show that graphene nanosheets
evenly disperse in magnesium alloy matrix due to the combined effect of Marangoni convection and electromagnetic
forces. The uniformly dispersed graphene nanosheets refine matrix crystals and enhance mechanical property of the
composite joints. The minimum grain size (about 19.8 um) and optimum of mechanical properties of sample 4" is
obtained. The ultra-tensile strength and microhardness of the composite joints reach to 198 MPa and 68.9HV, about
190.4% and 130% of those of the joints without graphene nanosheets, respectively. Simultaneously, the toughness is also
the best. Therefore, the grapheme nanosheets/AZ31 magnesium alloy composite joints with the best performance can be
obtained when graphene addition amount is about 1.41%.

Key words: graphene nanaosheet; AZ31 magnesium alloy; activating flux tungsten inert gas welding; microstructure;

mechanical property
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