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Abstract: Started (rom Lthe more general (unctional model and based on the work of Koch K R (1986) and QU Zr qiang
(1989), marginal likelihood function of variance and covariance components is derived and is identical with the orthogonal

complement likelihood function. Minimum norm quadratic unibiased estimator (MINQUE) is developed, which expands

the formula by Rao C R (1973).

Tt is proved that Helmert type estimation, MINQUE, BQU E( Best quadratic unibiased

estimation) and maximum likelihood estimation are identical with one another. Besides, a universal formula for accuracy

evalution is presented. Through these work, a universal theory of variance and covariance components is established.
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1 INTRODUCTION

The study of variance estimation is one of the
most important fields on geodesy and mathematical
statistics. The variance component estimation based
on the likelihood principle and minimum norm princi-
ple has been derived, using the functional models of
condition adjustment with unknown parameter and

.21 the unknown

parameter adjustment However,
parameters in the models are functionally indepen-
dent, therefore they cannot be applied to conditions in
which dependent parameters are involved. To im-
prove this case, Yu'’! has given a universal formula of
maximum likelihood estimation of variance and co-
variance components under the general functional
model. The aim of this paper is trying to establish a
universal theory of estimation and accuracy evaluation

of variance and covariance components.

2 MARGINAL LIKELIHOOD AND ORTHOGO-
NAL COMPLEMENT LIKELIHOOD

Considering the more general functional model

AV]+ Bx]—f 0 (la)

x fx—o (1b)
R(A):c, R{(By=u, R(C)=:s (1c)
where - f= AL+ BX°+ A°; - f°= CX°+ C°; L]

is the observation vector; X°, A° and B° are the vec
tors of approximative values of parameters and known

V and X are the
respectively; A, B

coefficient matrices, respectively;
. O

correction vectors of L and X°,

and C are known coefficient matrices. Assume

L~ N(W,. D) (2)

where My is expectation of L; D is covariance ma

trix of L; D= 64Q, Q is cofactor matrix of L.
Suppose that B and C from (1) are
B=[B,, 2]7 C=[C,. (]

3
X= [x1, , U= Wi+ s (3)

and C; is an 1nvertible matrix of order s , then Eqn.
(1) can be rewritten as

AV BE - f=0 (4)

€., [ 1

B=B,- B,C:'C, f=f- B.C: ' f..

If the observations are considered to be divided

w here
into m groups, denoted as Ly, L,, .-, L,, accord
ing to heterogeneous types and/or different preci
sions, Eqn.(4a) can be written as

A] V1+ Az Vz+ eert A,,l V,,l+ .B.%]-f_‘: 0 (5)
where A= [Ai, As - A,], V=[ Vi, V3,
e Vi1

If L; and L; are correlated (i, j = 1, 2, .-,
m ) , and improper initial unit weights are assigned to
every subvector of observations, then, the variance
matrix of observation vector L should be

2 2 2
011 %5 01> 0512 Q1 %1
2 2 >
D 0>1 Op12 0» Op 02,9,
2 2 2
Qm 1 001 m QmZ 002"1 Qm m 00"1
. S (6)
where g= m(m+ 1)/2, the definition of the no-

tations Qi and 0?( i=1, 2,
[ 3], from which we have the probability density
function of £:

L(f. xi. 0)= [ 1/[(2T[)§det(N(l{l)1/2]] .
PXP{ (£~ Bxy)'/ 2
N\ (£~ Bxy)) (7)

.-, ) can be found in
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" ~ a'a= I- B(R"RB) 'R’ (16)
w here N{m = ZN{Li OLZa N(Li = AQLA T . a
- G-= . (17)
The usual approach is equivalent to let the func B'N,,

tion L(£, xi, 0%) to be maximum, so we can solve
X1 and @%. The maximum likelihood estimates of OLZ
are blased and its results are different from those of
any other methods, because we have not taken care of
the loss in degrees of freedom from the estimates of

the unknown parameters x;. In order to solve the

problem, we firstly obtain the maximum likelihood
estimates of the unknown parameters x; from (7):
2= Ny'B'N.E (8)
where Nj,= .BTN;(llB_.
As
(Bx - B%) N (£~ B =0 (9)
we have

(£- -Bx) au (ﬁ .B.X'])

(ﬁ -Bxl) aa (ﬁ Bxl)
(x1= 21) "Ny(x1- %)
substituting ( 10) into (7) leads to

Lt x1, &= 1l 2m2det< N2
(ﬁ Bt)) '

(10)

N (f- lhh)l

exp| —

expl — _2L(x1— JACI)T NZ/)I(xl— X))
(11)

} about x;, we have

f Lﬁ X1, )dx1

Integrating Eqn. (
L(L )= f

(2T[) 2 [detN(mdet N/,/,] 2
Liermg]

exp| — (12)
where
M= N;al N(:(LIBNZ/) IBTN;(LI ( 13)
Eqn. (12} applies the foﬂow ing formula
f f exp{— =~ (x,— &))"
Nyy(x1- xl)] dx
n L4
= (2T 2 detV 2 (14)

The likelihood function L(£, 07} does not de

pend on the unknown parameters x1, but on the pa
rameter O3(i = 1, 2, .., q)only. Therefore L(L,

07} is called the marginal likelihood function.

From [ 3], we have the orthogonal complement
likelihood function
1
Li(£, ) = — 1
(27 2 det( aV,.a) 2
exp| — '2LﬁT (IT( aN(m(IT)7 : at

(15)
Now, we prove that Eqns. (12) and (15) are
identical to each other, choosing a in ( 15) satisfies

It is evident that aB= 0, R( a) = ¢— w1, and that
maximum likelihood estimation based on L (£, 0%)
Is invariant, although a may have different choices.

These can be proved similarly to [ 4]. From [3], we

get
det GG" = det(Ny) *det( B" B)~ (18)
we can still obtain
detN det( GGy = det( GN,.G")
= det( AV, a") det( Nyy)
(19)
From ( 18) and (19), we have
det N detNydet( BT B) ™' = det( aV,a")
(20)
From appendix A in [5], we have
a'(aV,a") a= N. - Ny BNy BN,
=M (21)
Substituting (20) and (21) into ( 15) leads to
Li(£. ) =
1 .
(2m 2 [detNWdet Nydet(B" B) ]2
expl = L Mﬁl (22)

Comparing (22) and ( 12), we get that the marginal
likelihood function is identical with the orthogonal
complement likelihood function.

3 MINIMUM NORM QUADRATIC UNIBIASED
ESTIMATOR (MINQUE)

Considering the model

E(f) = Bx, (23a)
4§ q
- _Z]',ofzva, = Z]', CHH (23h)
/= /=
where H; (1= 1, 2, .., ¢g) are complex matrices.

Because NV, is a symmetrical matrix, there must exist

a complex matrix H; satisfying
"R
VA
N, = HJHJT (j=1,2, - q) (23¢)
Assume that random vectors &, &, .- E,/ are

independent and normally distributed, 1. e.
&~ N (0, 9L,)
Eqn. (23) can be written as
H1€1+ H2€2+ ceet H(/€/+ Bx, - ﬁ: 0
(25)
£ in (5a) and (25) has the same expectation and the
covariance matrices and is mnormally distributed,
therefore £ in (5a) and in (25) is identified

Now,

(24)

let’ s estimate the linear function
C= q 0%4. 0 0%4. ~--(1A-0%1 = a0
where

(26)
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e: [ 017 027 ) 0(1] (27) >tr< QOT) (41)
a= [ a, Q, - O(I]T (28) Therefore £7 Quf is the minimum norm quadratic

Naturally, we choose the quadratic form of ob-

servation function

e= £ of (29)
to estimate ¢, where Q' = Q. By choosing Q, we
let ®satisfy the follow ing properties:

(D Invariant property. For any X, we have

(£- BXo)' Q(f£- BXo) = £' Qf (30)
Eqn. (30} holds if and only if

QR =0 (31)

@) Unibiased property. According to the defr
nition of unbiased estimation, we have

q
E(£" of) = Zou W) = D0k (32
i=1
therefore Eqn. (32) holds for any 012(] =1, 2, .
q) if only Q satisfies
G = tr( QVy) (33)
@ Minimum norm property. If &, &, ... };1

are all known, then the estimator of ®= a' 0 is

188 @8&  aBE e e,

n s "
where
g: ( Flra ga M) g:[/‘)T
B CIR o P d,
A= di .
dldg[nllla n2127 ) nqu]

T .
Now, let £ Qf estimate ©,
condition of invariance, we have

£ ¢ = EH" oHE (35)

taking care of the

where
H=1[H, H, -, H]
The principle of minimum norm is
IHT OH - All? = min (36)
i e.
WH" H - All?= t( QX OT) - ir A
= min (37)

where T= HH' = ZHH

q
ZNaj .
i=1
Eqn. (37) can be rewritten as

tr( OT)? = min (38)
q

Let Q= 2,AQ (39)

i=1

MoNMo and My = T '- T '«
B(B"T'B)'B"T'; andlet ¢ = Q- Q. Itis
evident that Qy satisfies (31). In order to let £y
satisfy (33), we can obtain the following condition:

Y MoNLMoNg) A = g

i=1
=12 =g 40
we can prove that ift Q@ B= 0, then tr( @N,) = 0(j
= 1,2 --q). So
r( ) = u[( Q+ ) T1°
= tr( Q1)+ t( 9T)2

where Q =

unibiased estimate of a' 0

Let

S = [Sij]qxq, Sij = tl"( M()N(H'M()N(,j'),

d= (di, dy - d,)".

di= VIA"MiN.M,AV,

A= (M Ny oo M)
Eqn. (40) can be rewritten as

SA= a (42)
Because

£rof= VIA"MN.M,AV

(1=1, 2, -« q) (43)

q
£1of= D AVIATMN.MAV = d" \
i= 1

=d'S'a= a'S'd= a0 (44

So, MINQUE of 0= (0}, 03, ... 0,)"is

S0=d (45)

A general formula (45) of MINQUE is applied
to all adjustment models. For example, when C= 0,
Eqn. (1) becomes the functional model of condition
adjustment with unknown parameters. S; and d; in
(45) are respectively

Sij: tl“( M()N(H'M()N(y')

(i j=1.2 - q)
di= £ MoNMf (= 1, 2,

(46a)
-+ q) (46b)

where
My=T '- T"'B(B"T" 'B) 'B"T"' (46¢)
It is just the result derived by Sjoberg
(1983)"*1. When B= 0 and C= 0, Eqn. (1) be

comes the functional model of condition adjustment,
and Eqn. (46¢) is reduced to Mo= T~ .

When A= - I, Eqn. (1) becomes the function-
al model of parameter adjustment with constraints a-
mong the parameter. In this case

Sij= tr( MOQiMOQj)

(i,j=1,2 - q) (47a)
di= VIMoQMoV (i=1, 2 .., q) (47b)
Mo= QO '- 0 'R(BR"Q 'B) 'R"Q ' (47¢)

when A= - I and C= 0. Eqgn. (1) becomes the
functional model of parameter adjustment, and Eqn.
(47¢) becomes

Mo= Q0 '- 0 'B(B'Q 'B) 'B'Q " (48)
It is exactly the same as that derived by Rao C R
but he thought that L, L»,

dent.

.-, L, are indepen-

4 A UNIVERSAL FORMULA OF ESTIMATION
OF VARIANCE AND COVARIANCE COMPO-
NENTS

We take the natural logarithm and derivative of
(12) and (15).

spectively, we find

Letting the derivation equal zero re-
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tr[( aTN(maT)7 : aNaiaT] = ﬁT aT< GN(L(LO‘T)7 Te
aNai aT< aN(l(l aT) ~ 1. aﬁ

(i=1, 2, - q) (49)
tr( MN,;) = £ MN M £.
(i=1L2 - q) (50)

1) Helmert type
As we all have known, A A+ Bx,;- f£= 0 and
aB= 0 with
A A= af (51)
Substituting (51) into (49) gives
] ((aV,a') " aVa' = i ( aV,at) T av,e
a'( aV,a") " ).
ad AN AT a']
(i=1 2 - q) (52)
Taking D= E( AA"), Eqn.(52) holds for any i =
1, 2, -5 ¢ . It has been shown that AA" is the so-
lution of the variance and covariance D in ( 6). Be-
cause A s a vector of errors, this gives us a hint that
the maximum likelithood estimation of variance and
covariance components based on the marginal likelr
hood or orthogonal complement likelihood is identical
with all kinds of estimations started from the defining
formula of variance and covariance matrix.
According to the squares adjustment, we have

V= QAT MoA A (53)
The quadratic form is
VIQ ' V= tr( MoN..MoA AN AT) (54)

Taking the expected value on both sides yields

SE( VIPV)= i;;zl'xr(MonMoN@) %

i=1
(55)
The definition of P; can be found in (41) of [3]. Us-

ing the residuals to replace its expectation, we can

obtain

S0=d (56)
Eqn. (56) has applied (45) and

VIP,V=d, (57)

Eqn. (57) is found in (44) of Ref.[3].

2) MINQUE and BQUE

Using MN,, M= M, M B= 0 and (50), we
have

tr( MN,;) = tr( MN ,,MN ;)

= VIA"MN.MAV
(i=1, 2, - q) (58)

therefore

S0=d (59)
Hence, we may come to the conclusion that Helmert
type estimation, MINQUE, BQUE and maximum
likelihood estimation are identical with one another.
Therefore Eqn. (45) is the universal formula of esti
mation of variance and covariance components.

5 A UNIVERSAL FORMULA FOR ACCURACY
EVALUATION

We have already obtained a universal formula (45) of
estimation of variance and covarinace components.
But in the estimation of variance and covariance, ac-
curacies in the estimates of individual variance compo-
nents must be taken into account. Now, we derive
the formula for accuracy evaluation.

From (45), we have

0= S 'd (60)
Taking the variance on both sides

D(®)=5 'D(d)S" (61)
In terms of (37), (39) and (53), we obtain

V~ N(0, GQOAT MAQ) (62)

It can easily be proved that
cov( VI YV, V'ZV)= 2ul YD( V) ZD( V)]
(63)
where Y and Z are any symmetric invertible matri-
ces, D( V)= OE)QATM()AQ. From (42a), we have
cov(d;, d)=20S;
(i, j=1, 2, -, q) (64)
Eqn. (64) has applied (63) and MoAQA" M= M.

T herefore, we can obtain

D(d)=2%S (65a)
D(0)=20S"" (65b)
D(H=28S,; (i=1, 2 - q) (65¢)

where S; is ith diagonal element of §~ LAl for-
mulas for accuracy evalution in Ref. [ 5] are special
cases of Eqn. (65). Formula( 65¢) of accuracy evalua
tion is applied to all adjustment models. For example,
when C= 0, Eqn. (11) becomes the functional model
of condition adjustment with unknown parameter. S
in (65) are S; in (46a). When A= -1, C=0, M
= 1, we have the formula of accuracy evaluation of u-
nit weight variance

D(05)= 20/ (e- u) (66)

This is a universal formula we usually use.
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