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Abstract: The classical physics theory respectively obeys the three famous conservalion laws referred Lo as charge conjur

galion, parily and lime reverse, and Lthe open pil block model is equal 10 a Newlonian mechanics system. Consequently,

there would exist some correspondent symmelry principles and conservation laws within the 3D fixed block model of the

deposil and the theory for the oplimum design of the open pit mine. Reversing a series of relevanl fundamental concepls,

several conservation laws, which the theory for the optimum design of open pit mines should obey, as block weight conju-

galion, block model parity and combined symmetry of the both, were expounded. From the symmelry principle, the the

orelic significance for a series of the current oplimum lechniques was discussed and explained, and a kind of conjugate

heuristics which can check the error of itsell was presented and demonstrated. Thus it is shown thal the symmelry princr

ple lays the foundations and opens up the prospects for the further research with mine design and scheduling problem.
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1 INTRODUCTION

It is well known that all of the classical physics
theories and most of the modern ones respectively
obey the three symmetry referred to as C (charge),
P (parity) and T (time), and some combined sym-
metry such as CP and CPT'"?1,

mann have used a free mechanical system to illustrate

Lerchs and Gross-

the optimum design for the ultimate pit contour of the
block model !
physics such as mass and acceleration into the block

If introducing some concepts of

model of the deposit, the evolutive process of the me-
chanical system can be still used to analogize the form
mode of the optimum intermediate pit contours ( nest-
ed pits). To sum up, it is deduced that the pitting
model of the deposit, which is equivalent to the free
mechanics system, has some specified symmetry. On
the other hand, the theory for the optimum design of
the open pit mines, similar to the theory of Newtonr-
an mechanics, would obey some correspondent con-
servation laws. The same with the case of the current
optimization techniques, in all symmetry principles
and conservation laws, the predominant type of ore

body model used is the regular 3D (or 2D) fixed

block model referred by Kim'*l.

Consequently, the
subsequent discussion on the symmetry and the con-
servation laws is confined to this type of model.
Without loss in generality, the 2D block model is

used in the concrete.
2 FUNDAMENTAL CONCEPTS AND REVERSE

The theory for optimum design of the open pit

. . 5
mines includes a correspondent concept system[ ],

within the system each fundamental concept can be

@ Received date: Jan. 26, 1999; accepted date: Aug. 12, 1999

homologised with a reverse concept.

The 2D fixed block model as an example is as-
sumed to be the one with m (= 5) layers and n(= 9)
columns, as shown in Fig. 1.
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Fig. 1 2D fixed block model
or original system ( B®, A°, W")

2.1 Block and its reverse block

A basic unit of the ore body model is referred to
as a block, which is marked by b; ( see the grid
shown in Fig. 1). Each block b; is assigned a real
number w ; as its weight (see the number in the grid
shown in Fig. 1). The blocks can be classified as e
ther real blocks (if w; 7Z0) and imaginary blocks (if
w ;= 0), the real blocks can be further classified as
positive blocks (if w; > 0) and negative blocks ( if
w < O) .

In order to facilitate distinguishing between a
block and its reverse, the original block and its
weight are respectively marked by b and wj. Let
wi= — w4y, then a block bj with weight wj is re
ferred to as the reverse block of the bj. Of course,

the reverse block of a positive block is the negative
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block which still is in the same place, the reverse is
true. The reverse block of an imaginary block is the
block itself. For example, if the weights of all the
blocks shown in Fig. 1 are multiplied by — 1, then an
ore body model composed of the reverse blocks shown
in Fig. 2 will be obtained. Let B"= {bj;} and B’
W= {wj;} and W'

{ i}, correspondingly,
[wi).
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Fig. 2 Ore body model composed of

reverse blocks or system( B", A°, W)

2.2 Supporting set and reverse one

Assuming I is the supporting set of block b5,
then the reverse supporting set of b} is defined as I}
= {b,l b € [T}, T represents a set of block which
are directly covered by bj. In other words, if the
mining of block b,, is dependent upon the removal of
block b;, then b; €1, and b, € I, For the sim-
plest case, U= {bi_ 1 ¢l i ZL k=j- 1,1,j+ 1},
and U= { b/, 1 4l i Zm, k=j-1,j,j+ 1}. Let A®
= {1y} and A"= { I}}.
2.3 Pitting model of deposit and its image

The system ( B°, A°, W°) is referred to as a pit-

0 ] ]
m+ 1= i, n+ 1- />

. o
correspondingly,  w

ting model of the deposit. Let b=
=

and B’ = | b;jL- /.
W 1- i, nv 1-j and W= | w;;‘} The system ( B°,
., 1s referred to as an Image of system ,
A", W ferred t ge of syst B
A°, W°). In other words, system ( B’, A°, W’) can
be transformed into its image by rotating it for 180°,
a supporting set in the image is substantially a reverse
one of the original system. The images of the pitting

models shown in Fig. 1 and Fig. 2 are respectively
shown in Fig. 3 and Fig. 4.

2.4 Reverse closure and its weight

Within system ( B°, A°, W), a reverse closure
is a set of blocks C} such that if a block b} belongs to
C; then its reverse supporting set [, must also be-
long to C;. The weight w; of a reverse closure C; is
the sum of the weight of the total blocks belonging to
C;, namely w;= . sz

b
i
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Fig. 3 Image of system ( B, A", W")
or system ( B’, A", W")
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Fig. 4 Image of system ( B, A, W")

r

or system (B, A", W')
2.5 Strong reverse closure

There exists a reverse closure C; whose weight
w;< 0, forany C; CCy, if w; >w;, then C; is re

ferred to as a strong reverse closure.

2.6 Maximum reverse closure

Within system ( B, A, W’), a maximum re
verse closure is a reverse closure with minimum
weight or, in other words, with negative weight
whose absolute value is maximum, namely, the set of
all the blocks is not mined by open cast.

Similar to the reverse of the closure and its deriv
concepts, the reverse of the increment-closure and its
deriv concepts may be defined, it is not necessary to
enumerate them one by one here but to point out that
the images of closures or increment-closures are re-
verse ones and the reverse Is true.

3 SYMMETRY AND CONSERVATION LAWS

In physics, symmetry generally means in form
some specific nature of objects studied such that there
is something permanent on putting the objects in cer
tain operation. Each and every symmetry will directly
result in conservation. T he object studied for the opti-
mum design of the open pit mines is system ( B’, A",
W)y, within this system, the nature of something

can be generalized by a set of fundamental theo-
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The symmetry of system ( B”, A, W*) and the
conservation laws of the fundamental theorems may
be described as follows.

Conservation law 1 ( block weight symmetry):
For the original blocks { bj;] and its reverse blocks

{ bij} the fundamental theorems are the same.
Conservation law 2 ( block model parity): To
the pitting model of a deposit ( B*, A, W*) and its
image ( B, A", W") the fundamental theorems are
constant.
Conservation law 3 ( combined symmetry of
block weight and model) : If each block bj; is replaced

by its reverse block b, for the image (B", A", W")
of the model ( B", A”, W") which consists of the re-
verse blocks and the original pitting model ( B, A”,
W’) the fundamental theorems are all suitable.

The three conservation laws above are hereafter
referred to as simply W symmetry, M symmetry,
and WM symmetry respectively. The maximum clo-
sure and the maximum reverse closure, are mutually
replaced in W symmetry, all put upside down in M
symmetry, and mutually transformed in WM sym-
metry. Hence, all of the optimizing techniques for
the maximum closure are universally applicable to the
maximum reverse closure.

From the three conservation laws, the following
inferences of the fundamental theorems may be ob-
tained.

Inference 1: The combination set of a strong re-
verse closure and its strong reverse increment-closure
is still a strong reverse closure.

Inference 2: Within system ( B°, A’, W") the
maximum reverse closure Is a strong reverse closure.

Inference 3: The sufficient and necessary condr
tion for a strong reverse closure being a maximum one
is that there does not exist any strong reverse incre-
ment-closure of the strong reverse closure.

On the fundamental theorems and their infer
ences the following theorem is obtained.

Theorem ( maximum division theorem): Within
system ( B’, A°, W), there exists a division Cf.
and Cla, if Cluy is the maximum closure, then Clu.
must be the maximum reverse closure; the reverse is
true.

4 DERIV TECHNIQUES

The symmetry for the block model of the deposit
becomes rarely known, but some current optimizing
techniques have related to this principle. On the other
side, the symmetry principle will certainly derive a
great many of new applied techniques.

Within the various dynamic programming algo-
rithms for optimum design of the open pit mines,

such as Wilke and Wright” s dynamic cone method ',
both the supporting set and the reverse supporting set
must be employed.

Gershon’ s heuristic method for optimum produc
tion scheduling has utilised the concept of a reverse
closure to calculate a block’ s positional weight, there-
by further determining when that block should be
mined 7',

The “PrePass” approach described by Chen'®! is
essentially a method to determine a subset of the max-
imum closure or the maximum reverse closure of the
pitting model in advance.

Within numerical calculuses, a heuristic method
is normally accompanied by a method of the error es
timate. By WM symmetry, a kind of conjugate
heuristics can be proposed, which can be used not on-
ly as a method of calculating error but also as a pre-
pass approach. The heuristics is divided into two
steps as follows.

Step 1: Search for an approximate maximum
closure C},. of system ( B, A”, W) using one of the
design heuristics.

Step 2: Search for an approximate maximum re-
verse closure, C',., of system (B, A", W")_, or an
appoximate maximum closure of system (B', A',

W") using the same one.

Within system ( B°, A", W*), all blocks would
be divided by the conjugate heuristics into four sec
tions as follows:

CoM = b b € Cl N

i max

C' 7= (b1 b € Chy\ Chu)

i max max

Cﬂ = I/b(; | b; E C(J)nux/ ﬂ C,I-“‘“X/}
C() Ur — I/b(; | b(_). E C() / U CZI]L[X/}

i max

Generally, it is considered that C'" S CO,

and €\ " S Chu. € and €Y are veferred respec
tively to as mistaken zone and blind zone for the
heuristics, the error range of the solution of the
heuristics is the combination set €""" U ¢*Y" of
both. On the other side, C°'"UC""” would be re-
garded as the solution of the prepass approach,
furthermore, determining a division C” and C" of
¢ UeYr by a rigorous graph theory algorithm,
results in ¢°UC "= Chux, and C' Uc'’= C'...
As an example, a conjugate moving cone algo-
rithm is applied to solve the pitting model of the de-

posit shown in Fig. 1, the solution produced by

Lemieux’ s sequence of testing for positive cones is! !

. . . U, '
shown in Fig. 5. In this example, C’= C"~" and C'
_ C() Nr

moving cone algorithm are repectively caused by the

. The mistaken zone and the blind zone of the

help compensation increment-closures and the com-
. 5
mon compensation ones' .

In a sense, the theory for the optimum design of
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Fig. 5 Solution of conjugate moving cone algorithm

the open pit mines seem to be still the time reverse

conservation. As for the searching sequence,

Lemieux’ s negative moving cone technique is a re-

verse of the positive one' I,

heuristics' ™! is a reverse of the nested Lerchs

Crossmann algorithm'''T.

and Wang-Serim’ s

In general, the symmetry and the conservation
laws can be applied in system ( B, A°, W*) to de
crease calculating quantity of the rigorous algorithms,
and increase calculating precision of the heuristic algo-
rithms.

5 CONCLUSIONS

The three important principles of the pit block
model, namely, the symmetric principle which is be-
ing discussed, the fundemental principle which has
been discussed, and the decoupling principle which
will be discussed, have constructed a total theoretical
frame for the optimum design and scheduling of the

open pit mines. The frame not only can support the
various strategies and techniques which have been re-

viewed by Kim and Thomas for determining the cur-

rent pit design and scheduling'*'*!, but also will be

replenished by many more that follow.
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