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Abstract: Based on Lhe concepl of admissibilily in statistics, a definilion of generalized admissibilily of Bayes eslimales

has been given al [irst, which was with inaccurale prior for the application in surveying adjustment. Then according Lo the

definition, the generalized admissibility of the normal linear Bayes estimale with the inaccurate prior information that con-

Lains deviations or model errors, as well as how lo eliminate the effect of the model error on the Bayes eslimate in survey-

ing adjustment were studied. The resulls show that if the prior information is nol accurale, thal is, il contains model er-

ror, Lhe generalized admissibility can explain whether the Bayes estimale can be accepled or nol. For the case of linear

normal Bayes estimale, Lthe Bayes estimale can be made generally admissible by giving a less prior weight if the prior infor-

malion is inaccurale. Finally an example was given.
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1 INTRODUCTION

Bayes estimate has been widely used in surveying

1. The advantage of Bayes estt

data processing' '~
mate is that it can make use of not only the informa
tion contained in the observations, but also the infor
mation from the historical data or from other areas.
This means that the Bayes estimate can make compre-
hensive use of the knowledge in different areas,
which is very important in modern science and tech-
nology' * 1.

But there also exists a very important default in
Bayes estimate in practical application, that is, in
many situations the prior information is subjective.
The subjectively given prior information will be
vague, and will unavoidably contain deviations.
These deviations will certainly affect the results of
surveying adjustment. In this case, one probably
questions that can the subjectively determined prior
information actually improve the results? If the prior
information is not reliable, that is, the prior informa
tion contains deviations or model errors, do the re
sults of the Bayes estimate still have practical sense?
In other words, are the results of Bayes estimate bet-
ter than that of the estimate that does not use any pri-
or information.

Berger in 1980 and 1984 has studied the robust-
ness of Bayes estimate when the prior information
contains deviations or model errors, his work was to
restrict the deviations of prior information or prior

[ 6]

distributions But in many cases in surveying ad-

justment, one usually does not know the exact devia-
tion of the prior information. The deviation or the
model errors in prior information usually can not be
avoided. In this paper we will deal with the Bayes es
timate in another way. Our research will focus on
that in which conditions the estimate that has make
use of the Inaccurate prior information will be better
than the estimate that does not use any prior informa-
tion, and how to determine the prior parameters if
the prior information has model errors or deviations.

If a Bayes estimate is better than an estimate
that does not use any prior information, this Bayes
estimate can be accepted, we can say this Bayes esti-
mate is admissible.

At first the paper gives out the definition of the
admissibility. Based on the definition, the paper then
studies the admissibility of the normal linear Bayes es-
timate with the inaccurate prior information, and
studies how to eliminate the affection of the model er-
ror on the Bayes estimate in surveying adjustment.
Finally an example is given.

2 DEFINITION OF ADMISSIBILITY OF BAYES
ESTIMATE IN SURVEYING ADJUSTMENT

2.1 Concept of classical admissibility in statistics
In surveying adjustment, the observation equa
tions can be denoted as
L+ V= Ax (1
where x denotes the unknown vector, L denotes

the observations, V the residuals vector, A the coef-
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ficient matrix. From Eqn. (1), one can get an esti-
mate of x:

= A 'L (2)
where A~ ! denotes a generalized inverse of A. In
statistics, the process finding the estimate ¥ from
Eqn. (2) is called an action. How to get the estimate
usually depends on loss function. The welkFknown

and widely used loss function is quadratic function'"':

L(x, £)=(x- &) (x- )" (3)
Under the quadratic loss, one can get the esti-
mate from Eqn. (1)

= (A"PA) 'A"PL (4)

Eqn. (4) is actually the least square estimate.
Different observations L will bring out different ¥,
so the values of the loss function will be different.
The average loss over different values of ¥ is defined
as the risk function:

R(x, )= Eo(L(x, X))
- J‘L(x, %) dPy( L/ 0) (5)

For the Bayes estimate, the posterior expected loss is
defined as the risk function:

R(x, %p)= J‘L(x, &p) P(x/ L) dx (6)

For two estimates X and X», if there exist:

R(x, %1) SR(x, %2)
we say the estimate X is R-better than 2‘2[8]. The
classical admissibility of an estimate is defined as fol-
lowing:

An estimate is admissible if there exists no R-
better estimate.

Under the quadratic loss function the risk func
tion of estimate ( Eqn. (4)), that is the least square
estimate, 1s:

R(x, %)= E((x- %)(x-%)")= D(x) (7)
This means that under quadratic loss, the risk of the
least square estimate is the variance of the estimate.
The classical admissibility means that the least square
estimate has least variance. Under the quadratic loss,
the Bayes estimate of model ( Eqn. (1)) is

Xp= E(x/ L) (8)
the corresponding risk is

R(x, ®p)= E((x- %p)(x- %p) ")

= D((x/L)< D(x) (9)
It means that the risk of the Bayes estimate under the
quadratic loss Is its posterior variance.

From above, we know that the classical admissi-
bility of an estimate is based on the risk function.
However, the loss function and the risk function are
derived from an assumed model. If the assumed mod-
el is based on the practical situations, that is, the dif-
ference between the assumed model and the real situa
tion is small, the above admissibility is reasonable and
feasible. However, if the prior information is not reli-
able, or is determined subjectively, the assumed mod-
el perhaps deviated largely from the practical situa

tion. In this condition, the classical admissibility is
senseless for Bayes estimate. This also can be ex-
plained mathematically by the following:

Let Po(x) be the real prior distribution, P(x)
the assumpted prior distribution, then the classical
risk will be

R(x, Xp)= J‘L(x, Xp) P(x/L)dx
J‘L(x, gy DHLLELLCX)

f(L)
(10)
But the real risk should be
P(L/x)P
Ro(x, %p)= J‘L(x, %p) ( f’(‘)L)n(x)dx

(11)
If the prior information is not reliable or P(x) is de
termined subjectively, it is possible that P (x) con-
tain a large model error. This model error certainly
brings about a large difference between the risk func-
tion R (x, Xp) and Ro(x, Xp). This means that
R(x, %p) can not reflect the real loss, the admissi-

bility on R(x, Xp) will be senseless.

2.2 Definition of generalized admissibility of Bayes
estimate

In the Bayes estimate, if the prior information is
subjective, one perhaps concerns mainly with whether
the result of Bayes estimate is reliable. In other
words, one perhaps want to know whether the results
that have make use of the subjectively determined pri-
or information will be better than the result that does
not use any prior information. According to the con-
cept of the classical admissibility, we can still use the
value of the risk function to decide which estimate is
better. In order to show a Bayes estimate is valuable
or not, and to show the subjectively determined prior
information has played a valuable role in the estimate
or not, we defined an another kind of admissibility
for Bayes estimate in surveying adjustment as that the
Bayes estimate is generalized admissible if

Ro(x, %5) SR(x, %) (12)
Ro(x, Xp) is found by Eqn. (11), and is
determined by the real prior distribution. The value
of Ro(x, Xp) is not affected by the model error, so
it accurately reflects the expected loss of x5. Ro(x,

where

X) is the risk of the estimate that do not use any prior
information, but use the same observations as the
Bayes estimate.

This definition means that a Bayes estimate may
be determined by a kind of unreliable prior informa-
tion (that is, the prior information contain model er-
rors), only if the risk of the estimate is still smaller
than that does not use any prior information. In this
situation, the prior information ( although it contains
model error) has made the risk of the estimate smaller
and played a useful role in the process of estimating.

The above definition is different from the classi-
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cal admissibility. Classical admissibility of an estimate
means the estimate has the least risk. Under quadrat-
ic loss, classical admissibility of an estimate means the
estimate has the least variance. But above definition
emphases on whether the modelerror-contained prior
information has played a useful role in the estimate or
not. The admissible estimate only means the prior in-
formation has made the risk or the variance smaller,
and the estimate can be accepted.

In order to avoid confusing with the classical ad-
missibility in statistics, the above definition is tenta
tively called as generalized admissibility.

Po (x) 1s usually
unknown, so the risk Ro(x, Xp) also is unknown.

In practical computation,

However, in many situations, the model error usually
can be valued according to the practical condition,
that is, the difference between Po(x) and P(x)
usually can be valued, so the generalized admissibility
can be studied on the valued model errors.

3 ADMISSIBILITY OF LINEAR NORMAL
BAYES ESTIMATE

Assume:

I= Ax+ €

&~ N(0, 01Pg) (13)
where [ denotes the observation, x the vector of

unknown, A the coefficient matrix, € the error vec
tor. The least square estimate of above model is:

%= (APA) 'ATPL
The corresponding loss function will be:

R(x, %)= 0’(APA) '

If we have prior information

x~ N(L, 0°Py")
under the quadratic loss, the Bayes estimate of Eqn.
(13) will be

%p= (A"PA+ P.) (A'PI+ PJ,) (14)
The corresponding loss will be

R(x, %p)= E((x- %p)(x— &) ")

For the normal prior, the model error of the prr
or information depends on the deviation of the prior
parameters I, and Pyx. For convenience of analysis,
without loss generosity, we assume:

KI= P;'P, = (A"PA)" 'P, (15)

Pi— Py = NPy (16)

P.= KPi= K(A'PA)

AL ANl v= \Dy (17)
where X is the least square estimate of model ( Eqgn.

(13)), D: is the variance of X, P;= D§1 be the
weight matrix of X; le) and lxl) denote the real prior

parameters, P, and I, the prior parameters containing
deviations, Aly denotes the deviations of I;. K actu-
ally denotes the ratio of the prior information to the
information contained in observations, A denotes the

ratio of the deviation of the prior information to real
prior information, and % denotes the deviation of pri-
or parameters I, to the variance of the least square es
timate from the observation. The ratio X can explain
how large the deviation of the prior parameter be, so
the model error of the prior information can be deter
mined by N and .

Enter Eqn. ( 14) into Eqn. (11), we have

Ro(x, %)= (A"PA+ P,)  '(A"PA+

P(P:'+ axx")Po)e

(A"PA+ P.)! (18)
Considering Eqns. (15), (16) and (17), we have
1

RoCx, Xo)= 0 0 WK

(1+ (1+ )\1)2[(2(‘[%+ )
(A"PA) !

1+ (1+ M) PK(1+ BK)

T (1+(1+ MK)?
R(x, %) (19)

The admissibility of the Bayes estimate of model

(Eqn. (13)) is therefore discussed according to three
separate situations:
1) =0, N 70, that is, the prior parameter
I, is accurate, but the weight P, contains deviations.
In this situation, if Eqn. ( 12) is tenable, we will
have
I+ (1+ N)°K
(I+ (1+ M)K)
After rearranging, we have

1+ K

> < (20)

> M-l (K1) (21)
N> max '}_i_[%,— ll (K> 1)
A> - 1 (K>1) (22)

that is, if prior parameter I, is accurate and the devi-
ation of prior weight Py can make Eqn. (21) or Eqn.
(22) tenable, the corresponding Bayes estimate is ad-
missible.

Eqgns. (21) and (22) show that:

a. When 0> N> - 1, we have P:< Py . this

means that the used prior weight is less than the real
prior weight. This case is corresponding to that the
observations with higher accuracy are used as lower
accurate observations. In this case, no unreasonable
results will be brought out, except the observations
with higher accuracy do not play completely the role
in the adjustment.

b. When K> 1, the worst case will be = oo,
that is, the deviation of prior parameter P(x) is infr-
nite, the results will be Xp= lx“. This case is corre-
sponding to the situation that only prior information
is used, the observations are neglected. But K > 1

means Px“> P;, that is, Dg“: P;U1< D= P; 1,

thus, the Bayes estimate is still better than the least
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square estimate.

¢. When K K1, the deviation of prior weight
will be limited by Eqn. (21). For different values of
K, the upper limitations can be calculated, the re-
sults are listed in Table 1.

Table 1 Upper limitation of
deviation parameter A\

K 0.01 0.1 0.3 0.5 0.6
M 1.02 1.22 1. 86 3.00 4.00
K 0.7 0.8 0.9 0.95 0.99
M 5.67 9.00 19.0 39.0 199

Apparently, only if I, is accurate, that is, does
not contain deviations, the limitation on the deviation
of Py is very large. Usually, the given value of the
prior weight Py is not too large, for example, Py<

P, . the Bayes estimate always be admissible, and al

ways can be accepted.

2) N=0, & Z0, that is, the prior value I, of
X contains deviations, but prior weight P, is accu-
rate.

From Eqn. (19), we have

1+ K(1+ »K)

(1+ K)?

1+ K(1+ %K) < (1+ K)?

1+ MK < 2+ K

A < .1_-[|-<_K_ (23)

that is, providing prior weight P, is accurate, the de-

|

viations of prior value I, of x can make Eqn. ( 24)
tenable, the Bayes estimate is admissible.

From Eqn. (24), we know that when K take its
value in the area of (0~ 1), (1+ K )/ K will get its
value in the area of ( 00, 2). This means when the
prior information does not play a leader role in the
Bayes estimate, a large deviation of prior value of x is
allow ed.

3) N FZ0, N Z0, both prior parameters [, and
P, contain deviations, from Eqn. (18), we have

1+ (1+ ANJ2K(1+ MK)

(1+ (14 NJK)?
1+ (1+ N)PK(1+ MK)< (1+ (1+

<1 (25)

NK)?
(1+ NJK(1+ %K )< 2(1+ N)K+
(1+ N)2K?
(1+ N)K(1+ N+ X(1+ N)K- 2-
(1+ N)K)< 0

1+ N 20

M+ M(1+ N)K< I(1+ N)K

M1+ N)K< 1- N+ (1+ N)K
1- N1+ MK

AT WK

(26)

1= A
(1+ N)K
For different values of K and A, the upper limi-

X< 1+ (27)

tations of X are calculated, the results are listed in
T able 2.

Table 2 Upper limitation of
deviation parameters »

K,
M
0.01 0.05 0.1 0.3 0.5 0.7 1.0
-0.9 1901 381 191  64.33 39 28. 14 20
- 0.5 301 61 31 11 7 5.286 4
- 0.1 123.2 25.44 13.22 5.074 3.444 2.746 2.222
0 101 21 11 4.333 3 2.429 2
0.1 82.82 17.36 9.182 3.727 2.636 2.169 1.818
0.5 34.33 7.667 4.333 2.111 1.667 1.476 1.333

From Table 2, following can be concluded.

a. If K is very small and A< 1, especially A<
0, a large deviation in prior value I, of x is allowed.
This conclusion is very important and useful, for ex-
ample, in many ilFsolutions, there usually exists little
prior information. It is very difficult to determine the
prior parameters. But from above conclusion, we
know that if the value of prior weight is given very
small, a large deviation of prior value I of x is al-
lowed. So we can give a prior value I,= 0, and a very
litter prior weight Py in the ilFsolution situations.

b. For a given K, the upper limitation of X will
increase when XN decease. This means that when it is
difficult to determine the prior parameters or the prior
deviations, the prior weight

parameters contain

should be given a less value.
4 EXAMPLE

The following is a problem of multicollinearities

which is taken from Fang'”':

L+ V= Ax
where
10 10 10 10 10 10 10 10 10
AT: 1.1 1.4 1.7 1.7 1.8 1.9 2.0 2.3 2.4
1.1 1.5 1.8 1.7 1.9 1.8 1.8 2.1 2.5
L'= (16.3, 16.8, 19.2, 8.0, 19.5, 20.9,

21.1, 20.9, 20.3, 22.0)
D=1
The real values of x is x' = (1, 2, 3). The least

square estimate of above model is

1000 181 186

P.= ATPA=| 181 34.09 35.06,
186 35.09 36.1
while
1. 129
x=|11.307 |,
- 6.591
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0.026 - 0.233 0.092
D,=10.092 27 - 25.08
0.092 - 25.08 23.9

In this situation, no any prior information can be
used. On the principle “small as possible until it can
be ignored”, we can take 1% of the information con-
tained in observations as its prior information, that
is, let le)z 0. 01P,. Because the prior information

determined in this way is far less than that contained
in observations. Its role in the adjustment can be ne-
glected in usual situations. In practical process, 1%
of the least component in the diagonal of Py= A" PA
can be taken. In this case, we take 34. 09 x 1% =
0. 34 as the prior, that is, let

P, = 0.341 (28)

Let the prior value of x be 1= (0,0, 0,), comparing
with the result of the least square estimate, we can
know that there probably exists a deviation Alxlz X1

- 1,,=1.129in [, which can make M= Alfl/D,cI

= 1.129%/0. 026= 49. 2= 49 means the deviation is
very large. But if the prior weight determined by
En. (28) is thoueht to be reasonable. that is. A= 0
is assumed, enter K = 0. Ol and A= 0 into Eqn.
(26), one can get the limitation of the deviations is
101> M= 49, so in this situation the Bayes estimate
is admissible and accepted.

Even if take A= 0.3, then

0. 47 0 0
P.= P, + 0.3P, = 0 0. 47 0
0 0 0. 47

one still can get the limitation of deviation be 53> X
= 49, that is, the Bayes estimate still be admissible
and can be accepted.

Take the prior parameters I,= 0, P,= 0. 361
and I,= 0, Py= 0.471, the corresponding Bayes es
timates are calculated, the results are listed in T able

3.

Table 3 Comparison of different results

Ttem x L. R, B.-1 B.-2
Xy 1 1.1292 1.2869 1.2612 1.2816
X 2 11.307 2.0992 2.2956 2.1345
X2 3 - 6.591 1.5186 1.4670 1.5129

Note: x denote the real value of the unknown, L, denoles the least
square estimale, R, the resull of ridge estimale ( the ridge trace
method), B.— 1 the result of Bayes estimate ( K= 0.36), B.- 2 the
result of Bayes estimate (K = 0.47).

From Table 3, one can know:

1) The results of Bayes estimates are better than
that of the classical least squares, and are close to the
result of ridge estimate. This shows the conclusions
in the text, that is, “when K is very small, N< 1,
a large deviation in prior value I, of x is allowed”. In
this case, the deviations is M= 49.

2) Even if no prior information can be used, the
prior parameters can still be found on the limitations
of Eqn. (27), and Bayes approach can still be used in
the problem of multicollinearities, the result will be
close to the ridge trace method, but the computation
process will be simpler.

5 CONCLUSIONS

1) If the prior information is not accurate, that
is, contains model error, the generalized admissibility
can be used to show whether the Bayes estimate can
be accepted or not.

2) For the linear normal Bayes estimate, if the
prior parameter I, is accurate ( o= 0), the Bayes es
timate is admissible in most situations. Even in the
situation K K1, the limitations on the deviations of
prior weight Py still are very large.

3) If the prior parameters P, are accurate, the
limitation on deviation of prior value Iy depends on (1
+ K)/K, when K take its value in the area (0~ 1),
(1+ K )/K will get its value in the area ( oo, 2).
This means when the prior information does not play
a leader role in the Bayes estimate, a large deviation
of prior value of x is allowed.

4) In the situations that both parameters I, and
P, contain deviations, if the ratio of the prior infor
mation to the information contained in observations is
small, a large deviation in prior value I of x is still
allowed. If it is difficult to determine the prior pa
rameters, the prior weight is given a less value usually
can make Bayes estimate admissible.
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