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Abstract: The effect of extrusion parameters on the extrusion load for AZ31 magnesium alloy was investigated with the support of 
numerical methods. With this regard, the process temperature, extrusion ratio, friction factor and punch velocity were selected as 
main parameters for the experiments. Besides, the experimental results were analyzed by using the finite element method (FEM) and 
artificial neural network (ANN) method to build a numerical model for predicting the forming load. All the experimental and 
numerical results were compared to each other and it was concluded from the results that the effect of friction factor on the extrusion 
load is more dominant at lower extrusion temperature for all given extrusion ratios and punch velocities. Besides this, higher 
extrusion ratios require higher process temperatures to obtain the lower extrusion load. Also, it was observed that the increase in the 
extrusion speed causes a significant increase in the forming load for all extrusion ratios and extrusion temperatures. 
Key words: extrusion; magnesium; AZ31; finite element method; artificial neural network 
                                                                                                             
 
 
1 Introduction 
 
    Today, different materials are being tested to obtain 
lighter and more durable products that can meet different 
needs. Magnesium alloys have been added to this list 
with offering light weight, high specific strength, and 
superior damping capacity. It was reported that selecting 
magnesium material parts instead of aluminum and steel 
for the same volume of material usage would save the 
weight around 33% and 77% [1]. It is increasingly used 
in the automobile industry instead of aluminum and steel. 
Hence, magnesium has been the center of interest for 
various applications of automotive and aerospace 
industry in the last decade [2]. Even though casting 
products of magnesium are more dominant for various 
applications, wrought magnesium alloys offer significant 
advantages in strength and ductility over castings. 
Extrusion is a suitable process for manufacturing of 
magnesium wrought alloys providing the desired shapes 
of products with high specific strength and excellent 
dimensional accuracy. 
    Many researchers studied the microstructure and 
mechanical properties of extrusion products and the 
relation with extrusion parameters. For example, 
UEMATSU et al [3] studied on the grain refinement due 

to the extrusion process and the fatigue behavior of the 
extruded materials in three magnesium alloys, AZ31B, 
AZ80 and AZ61A. GALL et al [4] investigated the 
microstructure and mechanical properties of magnesium 
AZ31 sheets produced by extrusion. TANG et al [5] 
carried out various experiments to determine the effect of 
extrusion parameters on grain size and texture 
distributions. FATEMI-VARZANEH et al [6] studied the 
thermomechanical parameters on the microstructure of 
the AZ31 material and showed that dynamic 
recrystallization is very dominant with higher strain rates. 
KANG et al [7] investigated the results of severe plastic 
deformation on material characteristics. They concluded 
from tensile tests that the fracture elongation increased 
with decreasing grain size, while the yield and tensile 
strength decreased. CHANDRASEKARAN and   
JOHN [1] used AZ31 and ZK61 magnesium material and 
carried out experiments for different process 
temperatures to investigate their extrudability and 
microstructure. They showed in their study that AZ31 
could be formed over 300 °C and Mg alloyed materials 
can be achieved better formability with higher process 
temperatures. CHEN et al [2] investigated the effects of 
extrusion ratio on the microstructure and mechanical 
properties. They used the AZ31B material for the 
experimental work and evaluated the results of the effect 
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of extrusion ratio on tensile properties and hardness of 
the material. They proved that there was a critical 
extrusion ratio for grain refinement and the improvement 
of mechanical properties. 
    Besides those studies, some researchers paid 
attention to analyzing the extrusion process by using 
numerical methods for shortening the design procedure 
and eliminating the costly trial-error phase. 
HAGHIGHAT and MAHDAVI [8] used both upper 
bound and finite element for bimetal tube extrusion. 
Some studies reported in the literature focused on the 
simulations of extrusion of complex profiles and die 
designs [9−12]. BINGÖL [13] applied FEM method via 
DEFORM software on extrusion ram speeds for 
optimization of the process. In another study, BINGÖL 
and BOZACI [14] investigated the strength of the hollow 
extrusion profile with seam weld produced at different 
ram speeds with FEM method both experimentally and 
numerically. LIANG et al [15] simulated the extrusion 
process after applying experiments to collect initial data, 
such as friction factor, heat transfer coefficient and 
stress-strain curves for the FEM model. Forming load 
was the output and the comparison criterion for the 
different temperatures and frictional conditions. They 
showed that the extrusion load and billet temperature rise 
could effectively be reduced using oil-based graphite 
lubricant. Similarly, LI et al [16] investigated hot 
deformation behavior of extruded AZ80 magnesium 
alloy at temperatures ranging from 250 to 450 °C with 
strain rates varying from 0.001 to 10 s−1. LIU et al [17] 
studied on the X-shaped profile extrusion of AZ31 type 
magnesium material. They investigated the correlations 
between the process variables according to the main 
process parameters (extrusion temperature and peak 
extrusion pressure) by 3D FEM model and finally 
compared the calculated results with experiments. 

A faster method is getting more popular for metal 
forming operations as an alternative of finite element 
method. Artificial neural networks (ANNs) method is 
preferred because of its robustness and stability. Unlike 
the FEM, the ANN can predict the results without 
creating realistic simulations of the metal forming 
processes depending on many input parameters and 
could reduce the number of FEM simulations [18,19]. 
ASHHAB et al [20] applied the ANN method for deep 
drawing method. TEIMOURI and BASERI [21] used 
ANN on predictions for friction stir welding process. 
Moreover, ANN became a useful tool for making 
predictions for extrusion. HSIANG et al [22] 
investigated the relationship between the billet 
temperature and product tensile strength of the hot 
extrusion of magnesium alloy through ANN analysis. 
They analyzed the relationship between the temperature 
range and the tensile strength of a rectangular tube for 

various extrusion speeds and extrusion ratios. 
Additionally, some researchers like BINGÖL et al [23] 
integrated FEM and ANN methods to investigate the 
effect of gear tooth number, die land length, and 
extrusion ratio on extrusion load for gear-like profiles. 
    Extrusion load is the base point of the design study 
that helps to determine the die design, tool material 
selection, and press capacity. Nevertheless, so many 
parameters affect the extrusion load. Therefore, the 
research in this study aimed to investigate the effect of 
extrusion ratio, frictional conditions, process temperature 
and extrusion speed on the extrusion load by using 
numerical methods for predictions. For this purpose, the 
establishment of a predictive ANN model for forward 
extrusion was the focus of this study because of its 
potential for giving fast and accurate predictions. By 
achieving this target, firstly, experiments were carried 
out, and the extrusion load for the condition was saved. 
Then, FEM results obtained from DEFORM-3D model 
were compared and validated by experiments. The FEM 
model was expanded to be used as the initial test and 
train data for ANN study. Artificial neural network 
modeling predicted the effects of the parameters on the 
forming load. 
 
2 Methodology 
 

In order to predict the forming load, the study was 
divided into three stages. At first, the experiments were 
carried out to obtain forming load for different extrusion 
parameters such as extrusion ratio, frictional conditions 
and the process temperature of the extrusion. After that, 
the FEM model was built for the same problem to predict 
the extrusion load, and its results were compared and 
validated with experiments. 

At second phase, the FEM model was expanded for 
extrusion speeds different from experimental values. The 
developed FEM model results were used as input dataset 
for ANN study. The ANN method was trained and tested 
according to FEM study. Finally, ANN results were 
compared with experiments. The flowchart of this study 
is given in Fig. 1. 
 
2.1 Experimental study 

In the presented study, commercial purity AZ31 was 
used as workpiece material because of its promising 
future as a structural engineering material for various 
industrial applications. The AZ31 chemical composition 
taken from Shimadzu EDX 720 is given in Table 1. 

The physical properties of the AZ31 alloy are listed 
in Table 2. 

The load−displacement data were collected from 
INSTRON 8501 test machine by tensile tests, and true 
stress−strain curves were calculated for process 
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temperatures, as shown in Fig. 2. The true stress−strain 
curve data for punch velocities of 1, 5 and 10 mm/s were 
then uploaded to DEFORM material library for the FEM 
simulations. 

Experiments were carried out in the PLC-controlled 
hydraulic press with capacity of 1500 kN. Load−stroke 
 

 
Fig. 1 Flowchart of study method 
 
Table 1 Chemical composition of AZ31 used in experiments 
(wt.%) 

Al Zn Si Cu Mn Ni Ca Fe Mg

3.1 0.94 0.01 ≤0.01 0.21 ≤0.001 ≤0.01 0.004 Bal.

 
Table 2 Physical properties of AZ31 used in experiments 

Poisson 
ratio 

Density/ 
(kg∙m−3) 

Elastic 
modulus/

MPa 
Emissivity 

Coefficient of
linear 

expansion/K−1

0.35 1780 45000 0.12 2.68×10−5 

 

 
Fig. 2 Experimental true stress−strain curves: (a) v=1 mm/s;  
(b) v=5 mm/s; (c) v=10 mm/s 
 
values were recorded and stored by the PLC system. 
Punch velocity was set to be 5 mm/s. The experimental 
AZ31 magnesium material was machined to cylindrical 
samples with a diameter of 30 mm and a height of 
60 mm. The die, container and punch materials were 
selected as AISI H13 alloy hot work tool steel. The die 
materials were oil quenched and tempered at 500 °C. The 
hardness value for the die materials was measured as  
HRC 58. Inner surfaces of the container were polished 
for preventing the sticking effect. The die setup was 
heated by circular heating coil system and the 
temperature was set for specific temperatures (250, 300, 
350 and 400 °C). The samples were first covered with 
aluminum folio to prevent from the oxidation and then 
put in an oven to be heated to the desired temperature for 
the experiments. The billet was heated in an external 
furnace and then swiftly transferred into the container. 
After that, extrusion started immediately. The die and 
workpiece were at the same temperature and so there is 
no heat transfer between die/workpiece interfaces at the 
beginning of the experiments. The heating coils covered 
the dies for heating the die for selected temperature 
levels. Experimental die setup is given in Fig. 3. 
    The samples were annealed before the experiments 
at 320 °C for 80 min to eliminate residual stresses and to 
provide complete recrystallization and homogenous grain 
distribution. The extrusion experiments were conducted 
for four different extrusion ratios and five different 
temperature values, as seen in Table 3. The temperature 
values were recorded and statistically evaluated and 
given in Table 3. The ambient temperature of the  
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Fig. 3 CAD model (a) and experimental die setup (b) 
 
Table 3 Measured temperature values of container and workpiece 

Extrusion ratio Billet temperature/°C Container temperature/°C Outlet temperature/°C 
2, 4, 6, 8 250, 300, 350, 400 250, 300, 350, 400 Avg. 25 

 
experiments was measured as 25 °C. Four different 
temperature values were selected (250, 300, 350 and 
400 °C) for the experiments. Temperature values were 
measured for each experiment by TESTO infrared 
thermometer with K type probe. 

The friction type was considered as shear and the 
friction factor (m) at workpiece/die interfaces was 
calculated as constant. The friction factor (m) is defined 
as 0.4 for dry conditions with well-cleaned samples 
obtained from the ring compression test and the friction 
factor was defined as 0.052 when MoS2 lubricant was 
used and friction factor was 0.2 for the graphite-based 
lubricant in lubricated conditions [15]. 
 
2.2 FEM modeling 

Finite element method is one of the most efficient 
method for complex engineering problems. FE method is 
based on dividing the whole geometry into the finite 
elements and then calculations were performed for every 
single element. Final result for general geometry is the 
sum of every elemental result. There are a number of 
FEM based softwares for specialized research areas and 
DEFORM 3D is a commercial software specialized for 
metal forming problems [24]. Lagrangian finite element 
code was used in the simulations. The geometric model 
was first built and assembled in CAD software and then 
imported to DEFORM 3D as STL file format. The FEM 
model is given in Fig. 4. The billet was selected as 
plastic material and die components were defined as 
rigid bodies. The AZ31 type material was generated in 

the software library according to test data taken from 
tensile tests. The die component materials were selected 
from the software library as H13 die steel material. Mesh 
distribution is essential for the accuracy of the FEM 
result and also affects the calculation time and data 
storage space, so the optimum mesh should be selected 
to balance the simulation time and the sensitivity. 
Element number was determined as 110000 elements for 
workpiece material and 45000 elements for die 
components. It was decided that the convergence error 
limits for velocity and load are 0.005 and 0.05, 
respectively. The global remeshing was chosen, and the  
 

 

Fig. 4 FEM model and mesh distribution 
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type of interference depth was selected as relative one 
and its value was considered as 0.7. The Conjugate− 
Gradient solver has been used to solve the problem 
because of its capability for complex geometries. The 
constant friction factor was used by several researchers 
like FERESHTEH-SANIEE et al [24]. So, in this study, it 
was selected as 0.052, 0.2 and 0.4 as it was defined in the 
experiments. The die and workpiece temperatures for 
each sample were measured before the experiment starts. 
Heat transfer coefficient between die and workpiece was 
set to be 11 N∙s−1∙mm−1∙°C−1. 

The mesh distribution was selected to be as possible 
as homogenized on the flow region of the workpiece. 
The initial temperatures of billet, container and the die 
were taken to be as same as measured in the experiments 
as seen in Table 3 for FEM simulations. 
 
2.3 ANN study 

Expert systems such as fuzzy logic, artificial neural 
network (ANN) and the genetic algorithm can be used to 
predict the material behavior under different conditions. 
Among them, artificial neural networks are powerful 
than other traditional methods for the solutions of 
complex problems where mathematical models are 
challenging to build and for problems, especially where 
the boundary conditions are not well defined, or the 
solution are complicated to calculate. The fact remains 
that, finite element method also can make predictions for 
the same conditions of the problem but, when the 
parameters were changed, it requires renewing the 
simulations. Conversely, ANN does not need a new 
model for the same situation, unlike others. That is the 
most crucial advantage of the ANN method. Hence, 
many researchers paid attention to applying ANN 
solutions for complicated engineering problems, 
particularly in the last decade [25]. 

An ANN structure is built on three main layers 
which are defined as a set of input, one or more layers of 
hidden nodes, and a set of output nodes aiming to 
establish a connection with input and output data sets. 
Some neurons in each layer operate as independent 
elements and are intimately related together. The learning 
method is critical stage of the study and different 
learning rules can be used so, proposed ANN model is 
trained by a back-propagation algorithm which is the 
typical learning method, and then subjected to testing 
and verification using a new data set. 
    Learning rule [26] is generally given as  

new old( ) ( )kj kj kjW W W= + Δ                       (1) 
 
where W is the weight of the layer, ΔW represents the 
change in weight, k is the kth node of the output layer 
and j represents the jth node of the hidden layer. 
    Best weight increment is computed by updating the 

values in each step with Eq. (2). The momentum is 
combined for fast convergence of the back-propagation 
algorithm:  

( ) ( 1)kj ok i kjW K y W Kηδ αΔ = + Δ −                (2) 
 
where ∆Wkj(K) is the change in the weight for the Kth 
iteration, α∆Wkj(K−1) is named as momentum term, η is 
the learning rate parameter, δok is an error term for node i, 
α is the forgetting factor in the interval (0,1) and δokyi is 
the partial derivative of the error signal. The momentum 
is combined for fast convergence of the back- 
propagation algorithm. 

The network is continuously run and updated to an 
acceptable error criterion value by a training function. 
The back-propagation artificial neural network with a 
Levenberg–Marquardt and momentum algorithm is 
employed to predict the forming load. The algorithm was 
coded in the MATLAB software to train the neural 
network model. The number of hidden layers and the 
number of neurons in each hidden layer were calculated 
based on trial and error and the mean squared error. 
Necessary input and target data for ANN study were 
obtained from FEM study. Following iterations for the 
ANN model was simulated and the training procedure 
was stopped when the mean error was 0.99955 between 
output and target. The new outputs of the ANN model 
were compared with FEM and finally experimental 
results. ANN made predictions according to training data 
obtained from FEM study. This model used the extrusion 
ratio, process temperature, friction factor and extrusion 
speed for input data and the extrusion forming load is the 
output layer with different process parameters. The 
structure of the ANN method is given in Fig. 5. 

The levels of ANN study based on the FEM results 
are given in Table 4 in detail. 
 
3 Results 
 
3.1 Experimental and FEM results 

For the extrusion researches, extrusion load 
prediction is the crucial point to determine the optimum 
press capacity. Besides, it is essential to understand the 
effects of extrusion parameters on the extrusion load. In 
traditional approaches, many researchers do many 
experiments and solve complicated equations. However, 
numerical methods promise significant advantage instead 
of expensive and long-continued trial and error. The 
current study was performed for this purpose including 
three phases. The first stage starts with experimentation 
with direct extrusion of AZ31 magnesium alloy material 
under different initial conditions to provide a database 
for numerical analysis of both FEM and ANN. 

Figure 6 shows the variation of the extrusion load 
with the change of extrusion ratio for different process  
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Fig. 5 Flowchart of ANN study 
 
Table 4 Levels of parameters used in simulations 

Input parameter Level 1 Level 2 Level 3 Level 4

Process temperature, T/°C 250 300 350 400 

Extrusion ratio, RE 2 4 6 8 

Friction factor, m 0.052 0.2 0.4 − 

Punch velocity, v/(mm∙s−1) 1 5 10 − 

 

 
Fig. 6 Experimental load comparison for different process 
parameters at m=0.052 
 
temperatures of friction factor m=0.052. The highest 
forming load was obtained at 250 °C process temperature 
for all given extrusion ratios. A significant decline in the 
forming load could be observed after increasing the 
temperature, and all of the extrusion loads decrease. That 
is the result of the crystal lattice structure of magnesium 
that the temperature starts the deformation mechanisms 
and activates dislocations at the same time. The effect of 
temperature rise has different responses for different 
extrusion ratios, but significantly, higher extrusion ratios 

require higher process temperatures for lower extrusion 
load. For the samples with the extrusion ratio of 2, 
forming load was measured as 110 kN for 250 °C; when 
it was 54 kN for 400 °C, the forming load decreased by 
about 50%, in return for the rise of temperature from 250 
to 400 °C. However, that change in the load was 
observed differently for higher extrusion ratios. 
Especially, for the temperature of 400 °C, the decrease of 
the forming load was measured at about 144 kN which 
equals 36% decrease in the load. 
    Figure 7 gives the load comparison for different 
extrusion ratios when the friction factor was m=0.2. It 
was observed an increase in process temperature from 
250 to 300 °C caused load decrease for extrusion ratio of 
2 by about a range of 20%. The forming load decreases 
considerably by increasing the process temperature. For 
the extrusion ratio of 4, the extrusion load decreases in 
the range of 24% for the 50 °C temperature rise. At 
 

 
Fig. 7 Experimental load comparison for different process 
parameters at m=0.2 
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300 °C process temperature, the decrease in the forming 
load is proportional and shows linear tendency 
conversely. The load change curve shows exponential 
character for 250 °C process temperature. Additionally, 
the forming load increases with the increase of the 
extrusion ratio. For the higher extrusion ratio, the 
forming load is sensitive to the rise of the process 
temperature compared to the lower extrusion ratio values. 
This effect is more apparent for the extrusion ratio of 8. 
The extrusion load could be reduced by about 40% by 
increasing the temperature to 400 °C compared to 
measured load value of 250 °C process temperature. 

It can be concluded from the Fig. 8 that, when the 
extrusion ratio increases from 2 to 8, the load value 
increases by 2.96 times for 300 °C process temperature, 
but, this increase becomes 3.74 times whereas process 
temperature was 400 °C. This result can be explained as 
a positive effect of the process temperature on the 
formability of the AZ31 type magnesium material. 
 

 
Fig. 8 Experimental load comparison for different process 
parameters at m=0.4 
 
    When the diagrams were evaluated together, both 
frictional forces and extrusion ratio are useful parameters 
on forming load but notably, the higher extrusion ratios 
lead to increased extrusion load. Addition to this, the 
point which temperature changes from 250 to 300 °C, is 
noteworthy. After that point, increasing the process 
temperature gives rise to a reduction in the forming load. 
This positive effect on forming load is related with 
forming behavior of magnesium and it is specially 
essential when higher extrusion ratios are concerned, 
because magnesium and its alloys have limited 
formability at room temperature due to their hexagonal 
crystal structure. There are three slip systems in HCP 
metals: basal, prismatic and pyramidal, and only basal 
slip system is active. For this reason, magnesium and its 
alloys are difficult to be formed at room temperature. 
However, raising temperature activates other slip 
systems by generating local stress concentrations and 
leading to accumulating the dislocations on the grain 

boundaries and enhances the ductility of magnesium. 
The effect of process temperature on the extrusion load 
shows similarity with results obtained from 
CHANDRASEKERA and JOHN [1]. 
    After the experimental study, actual experimental 
results were compared with DEFORM-3D software FEM 
results. DEFORM 3D simulations were used to put 
foresights about real forming problems without any 
experiment. The main purpose using DEFORM 3D aided 
FEM study is to determine the forming load for different 
process temperatures, extrusion ratios, frictional 
conditions and punch velocities. A satisfactory 
convenience can be clearly seen between calculated FEM 
results and the experiments. The maximum forming load 
was determined to be the comparison criterion for the 
prediction of forming load for different process 
conditions because of its importance for the selection of 
press capacity and optimum die design. Figures 9−11 
suggest the comparative diagrams for all extrusion ratios 
under different frictional conditions. 

Figure 9 gives the load comparison for m=0.052. 
The regression value was used to measure statistically 
how FEM data are close to the experiments. It is seen 
that the estimated forming load decreases with the 
increase of the process temperature, same as experiments. 
The measured and calculated load values are very close 
to each other, as seen from the regression values of each 
diagram. The regression values are of 99.99% accuracy, 
which proves the validity of the proposed FEM model. 

The prediction of the maximum extrusion load is 
vital to decide all forming parameters such as die design, 
press capacity, and tool material selection, so the 
proposed FEM model shows reasonably good prediction 
results when being compared with the experimental study, 
as seen in Figs. 9−11. The maximum load error is less 
than 9% for all predictions, which shows that the FEM 
estimations are in good agreement with the actual 
extrusion experiments. The regression (R2) values, which 
validates that the FEM model fits with the experimental 
data and the differences between the measured and 
predicted values are acceptable and unbiased for all 
experimental conditions. The regression value for 
friction factor of m=0.052 is calculated as 0.9997−0.9999. 
The regression value is observed as <0.9994 when 
friction factor is 0.2. The FEM model gives a suitable 
prediction for given process parameters. For the friction 
factor of m=0.4, the regression values were obtained 
between 0.9987 and 0.9999. The more accurate results 
regarding regression value were taken from the lower 
process temperatures. However, in general, the obtained 
regression values which identify the applicability and 
validity of FEM model could be acceptable for future 
predictions. This also reveals the robustness of the 
proposed FEM model for giving accurate predictions. 
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Fig. 9 Comparison between FEM and experimental load values for m=0.052 
 

 

Fig. 10 Comparison between FEM and experimental load values for m=0.2 
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Fig. 11 Comparison between FEM and experimental load values for m=0.4 
 

After approving the reliability of FEM results with 
experiments, the FEM model was extended to obtain 
results according to different process parameters in 
addition to experiments. For this purpose, the effect of 
the extrusion velocity change was investigated 
additionally. The simulations were performed with new 
extrusion parameters. Extrusion load values were used as 
test and validation of ANN study. 
 
3.2 Application of ANN method 

Applying a stronger prediction method gives an 
ability to neural network to generalize new data. For this 
aim, the obtained data set is divided into two categories 
which can be called as training and test subsets. Levels 
of the parameters are listed in Table 4. Then, testing 
subset data are used to measure the generalization of the 
network. Among 144 data patterns which are given in 
detail in Table 5, 108 data are categorized to training 
representing 75% proportion, and 36 data pattern which 
represents the proportion of 25% is selected to test the 
built ANN model. In this study, the testing data patterns 
were used at the final stage of the calculation as a test 
instrument for the accuracy of the network. 
Levenberg–Marquardt and Momentum were selected to 
obtain the best fitting back propagation algorithm for the 
proposed model. The coefficient of multiple 
determinations (R2) value was compared with the 

predicted ANN results and simulated FEM data set. 
Back-propagation algorithm is the most used learning 
algorithm for the ANN method. Moreover, the 
performance of the BP algorithm was measured with 
average absolute error (%). The results of this 
comparison for the proposed model are given in Table 6 
with the maximum R2 and the minimum average absolute 
error for the Levenberg–Marquardt (LM) algorithm and 
transfer function of TanhAxon. 

Hidden layer of the ANN algorithm needed a 
transfer function to define the nonlinearity into the 
network. A TanhAxon transfer function was selected as a 
transfer function. FEM simulation was applied as the 
feed-forward neural network for the forming load 
prediction of ANN model. 

In the hidden layer, the optimum number of neurons 
should be determined according to comparison values by 
using trial and error. Four neurons in the hidden layer 
were used for initial guess value as a starting point for 
the optimization of the trial process. Subsequently, the 
number of neurons to achieve the optimum multiple 
determination coefficients (R2) was increased until it 
reaches 28 neurons for Momentum while the Levenberg− 
Marquardt back-propagation algorithm with a TanhAxon 
transfer function at the hidden layer was given more 
accurate R2 value with 12 neurons. So, it was selected as 
a fast and accurate function for ANN calculations. 
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Table 5 Design of extended FEM simulations for training and testing ANN model 

Punch 
velocity/ 
(mm∙s−1) 

Process 
temperature/ 

°C 

Forming load/kN 

RE=2 RE=4 RE=6 RE=8 

m=0.052 m=0.2 m=0.4 m=0.052 m=0.2 m=0.4 m=0.052 m=0.2 m=0.4 m=0.052 m=0.2 m=0.4

10 

250 305 378 412 408 511 563 585 661 736 674 741 873

300 225 286 331 326 405 492 475 514 621 598 662 751

350 192 224 265 281 324 401 387 422 512 462 503 663

400 144 174 201 213 279 263 301 376 443 341 419 546

5 

250 118 134 179 228 271 320 318 352 422 398 427 494

300 89 105 126 177 208 248 246 276 311 308 329 394

350 76 92 109 154 187 225 227 239 283 279 298 346

400 54 67 83 124 143 179 196 198 235 248 263 296

1 

250 81 108 141 121 152 195 236 269 338 287 314 375

300 64 78 92 81 98 150 161 187 226 221 235 281

350 51 61 84 64 75 129 129 152 176 192 187 228

400 39 49 58 42 51 92 91 104 148 165 171 168

 
Table 6 Comparison of different neural network modeling 
results 

Algorithm Function Neuron 
No. R2 Average absolute

error/% 

LM TanhAxon 12 0.9997 1.25 

Momentum TanhAxon 12 0.9965 6.75 

Momentum TanhAxon 20 0.9978 4.36 

Momentum TanhAxon 28 0.9986 2.34 

 
Although trained ANN does not fit 100% with the 

simulation results which were taken from FE model, it 
approaches suitably to the FEM solution results.  
Predicted values are necessary to be validated for 
ensuring that the proposed model is applicable for 
various process parameters. Similarly, KIM and KIM [26] 
applied the neural network method to metal forming 
processes with the support of FEM also. It can be clearly 
seen that the input data set is admissible with small 
errors for the problem. It is important to note that errors 
are connected directly to the deviations of the ANN 
training results from the FEM train data. The ANN 
training which contributes to minimize the errors in the 
optimal inputs minimizes the deviations of the ANN 
outputs from the FEM model outputs. In addition to that, 
the Jacobian matrix should be calculated numerically and 
requires FE simulation data in small increments as inputs 
for each calculation cycle. The available data indicate 
that the outputs are sensitive enough for all the inputs 
over the given range providing satisfactory confidence 
that the Jacobian matrix does not become singular. 
Moreover, the obtained errors should be identified to be 
acceptable or not. If necessary, optimal inputs in the 

time-consuming FE simulation can be verified by a 
single study. 
    A feed-forward ANN model was used for prediction 
of extrusion load with one input, one hidden and one 
output layer. The proposed model is capable of 
predicting the extrusion load satisfactorily when the 
results were compared with the experimental one. This 
outcome shows that the ANN model is more successful 
than the finite element method over the range of the 
training data. Apart from the training data, the theoretical 
model is generally more sophisticated and it captures 
many essential features of the existing theory. 
    As it is seen from Fig. 12, the ANN model for 
prediction of forming load can not only perform well in 
training/validation but also accurately predict the test sets 
 

 

Fig. 12 FEM simulation and ANN predicted extrusion load in 
test period 
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with a linear correlation coefficient (R2) of 0.9911. For 
the prediction of forming load, this is an excellent 
correlation. 
    Computer training is performed on specific epoch 
numbers. An epoch is a cycle that the algorithm sees all 
samples in the dataset. Thus, the obtained results are the 
number of epochs which are determined by comparison 
with a minimum tolerance. Different functions can be 
used for Epoch. In the proposed ANN model, epoch 
number when the training error was at its minimum is 
733. The minimum calculated error is 0.000275696. 
Training error was calculated as 0.000282799 at the last 
Epoch. The general view of epoch course can be seen in 
Fig. 13. 
 

 
Fig. 13 Mean square error values for epoch 
 

Figure 14 gives the desired output values of the 
ANN method and actually measured forming load from 
experiments. The figure reveals that the proposed ANN 
model predicts the experimental forming load. The 
courses of the curves are so similar, which represents the 
validity of the ANN model. The obtained results show 
the high compatibility of ANN and experiments, which 
means that ANN model is capable of identifying the 
variables dominating the extrusion load with high 
accuracy. 
 

 

Fig. 14 FEM simulation and ANN predicted extrusion load in 
test period 

    The correlation of ANN prediction results versus 
experimental ones is given in Fig. 15. Regression 
coefficient (R2) value was obtained as 0.9939, and such a 
high regression coefficient value expresses a good 
agreement between experimental results and validity of  
the ANN model. It can also be seen in Fig. 16 that the 
ANN model results are very close to the experimental 
ones according to the error values. 
 

 
Fig. 15 ANN predicted extrusion load versus experimental 
results 
 

 
Fig. 16 Relative error (a) and absolute error (b) of ANN 
compared with experiments 
 
    It is obvious from Fig. 16 that the differences 
between ANN and experimental results are in the range 
from −19.81 to 23.71 kN but most are in ±10 kN. The 
relative error results are in the range from −9.39597% to 
9.78261%, but mainly error values are cumulated in ±5%. 
It is observed that there is no favorable proportion for 
most points because of the change of the forming load. 
Consequently, using relative error values would give a 
more realistic approach for the prediction performance of 
the ANN model. 
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4 Conclusions 
 
    (1) Regarding the statistical measurements, 
comparisons show that the ANN method can be used as a 
fast and accurate prediction tool instead of long-running 
and uneconomic experiments in the process-planning 
phase for metal forming operations. Also, it can be 
supported by FEM study to obtain more accurate 
prediction results. 
    (2) It is found that the effect of friction factor on the 
extrusion load is more dominant at lower extrusion 
temperatures compared to all given extrusion ratios and 
punch velocities. 
    (3) According to the comparative results, higher 
extrusion ratios require higher process temperatures in 
order to achieve a lower extrusion load. 
    (4) The increase in the extrusion speed causes a 
significant increase in the forming load for all extrusion 
ratios and extrusion temperatures. 
    (5) Raising the process temperature causes to 
decrease forming load till 350°C, but from that point, the 
increase in the temperature does not lead to a significant 
decrease for AZ31 magnesium. 
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镁合金挤压成形过程中的成形载荷分析 
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摘  要：采用数值模拟方法研究挤压成形过程中工艺参数对 AZ31 镁合金挤压载荷的影响，选取挤压温度、挤出

比、摩擦因数和冲压速度作为主要参数。采用有限元法(FEM)和人工神经网络(ANN)方法对试验结果进行分析，

建立可预测成形载荷的数值模型。将实验结果和数值分析结果进行比较，结果表明，对于所有给定的挤压比和冲

压速度，在较低的挤压温度下，摩擦因数对挤压载荷的影响最大。此外，当挤压比较高时，需要较高的加工温度

以便获得较低的挤压载荷。结果还表明，在所有的挤压比和挤压温度下，提高挤压速度会导致成形载荷显著增加。 
关键词：挤压；镁；AZ31；有限元法；人工神经网络 
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