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Abstract: A solute trapping model is developed based on a so-called solute drag treatment. By adopting a basic approach of 
phase-field models, and defining the free energy density in the interfacial region, a suitable interface shape function is introduced to 
derive the current model, in which the equilibrium and non-equilibrium interface behaviours can be described using a dimensionless 
parameter L (i.e. an important parameter in the present interface shape function). When applying the current model to Si-9%As 
(molar fraction) alloy with L=0.5, a good prediction of the steeper profile for high interface velocity, which is analogous to that using 
a phase-field model of DANILOV and NESLTER, has been obtained. 
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1 Introduction 

 
Solute trapping has been extensively studied since a 

phenomenon that the solid cadmium concentration in 
zinc-cadmium alloys could extend the equilibrium solid 
solubility limit after splat quenching was observed[1]. It 
is defined as “solute trapping” because the solute atoms 
seem to be caught by the growing phase although there is 
a driving force for them to escape from[2], and this 
phenomenon is broadly studied in pulsed laser annealing 
experiments[3−6]. So far, solute trapping has been 
theoretically treated using sharp interface methods[7−12], 
phase-field methods[13−16] and solute drag 
methods[17−18]. 

For sharp interface models, a discontinuity of solute 
concentration occurs at the interface. Whereas, the 
phase-field models consider, in a more realistic way, a 
diffusive interface with a finite thickness and describe 
dynamic phenomena in both the bulk phases and the 
interface region in terms of a single formalism. The 
interface properties change as a function of the 
phase-field variable φ (φ=1 for one phase and φ=0 for the 
other one) and the variation of φ with distance through 
the interface is determined by a step-wise, local 
minimization of Gibbs energy in a finite-element 
procedure[2]. The concentration profile becomes a 

continuous function of the coordinate. The specific jump 
in the concentration at the interface which is typical for a 
sharp interface formulation disappears and is replaced by 
a continuous profile with a characteristic maximum near 
the transition region[16]. As for the solute drag models, a 
finite thickness of the interface is also assumed, which is 
similar to the phase-filed models. However, it is 
supposed that the diffusivities and thermodynamic 
properties change only as functions of distance through 
the interface. 

Compared with the sharp interface models without 
considering interfacial solute diffusion and the 
complicated phase-field models, the solute drag 
treatment gives a relatively simple expression 
incorporating interfacial solute diffusion. However, the 
solute drag treatment is generally based on the 
wedge-shaped[17−18], truncated wedge[19−21] or 
smooth interface[22]. The above so-called continuous 
interface models are not really continuous[2]. The solute 
concentration profile across the interface to the bulk 
phases changes only continuously but not smoothly, i.e. 
the diffusive function cannot be described by a uniform 
formalism. 

In the present work, a suitable interface shape 
function is introduced using a basic approach with of 
phase-filed models, that the free energy density of the 
interfacial region incorporated with the solute drag  
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treatment. On this basis, a relatively simple solute 
trapping model, with characteristics analogous to 
phase-field approaches, is obtained. 
 
2 Model derivation 
 
2.1 Interface solute diffusion and solute trapping 

For a binary system, i.e. solvent A and solute B, a 
layer of thickness, δ, exists between liquid and solid 
phases, where the thermodynamic quantities, such as the 
solute chemical potential, μB, change continuously from 
solid to liquid. Supposing an ideal solution, μB in the 
interfacial region can be given as 

( ) ( )XCRTX lnI
0
BB += μμ                      (1) 

where 0
Bμ  is the standard chemical potential of the 

solute, R the gas constant, TI the interface temperature 
and C the solute concentration which depends on the 
coordinate X normal to the moving interface. 

Then, the diffusive flux of the solute, J, can be 
given as 
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where Vm is the molar volume, and DI the solute 
diffusion coefficient which also changes continuously 
from solid to liquid across the interface. 

Given a constant V, the composition profile in the 
interface is expected to reach a steady state. Supposing 
that the solid-state solute diffusion is always omitted, the 
mass conservation law gives 
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where CS is the solid concentration adjacent to the 
interface, and is expected to be C0 under steady state. 
From Eqs.(2) and (3), solute diffusion in the interface 
can be described as 
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The solution of Eq.(4) can be expressed as 
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As compared with CAHN’s model [18], Eq.(5) 

presents no singularity for V=0, since the solute diffusion 
in the solid is not considered here. Following the normal 

procedure of the solute drag treatment[17], the 
non-equilibrium partition coefficient, k, can be deduced 
as 
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 (6) 
In terms of η=X/δ, then Eqs. (5) and (6) reduce to 
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and 
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(8) 
Eq.(8) is the general expression for solute trapping 

in a dilute alloy, obtained from the solute drag treatment. 
It is clearly shown in Eq.(8) that solute trapping is only 
influenced by interface diffusion if V is already known. If 
V=0, an equilibrium interface holds, then interface 
diffusion is solely determined by the gradient of the 
standard chemical potential ,/0

B ημ ∂∂ and the 
non-equilibrium partition coefficient reduces to the 
equilibrium one, ke. If V→∞, then interface diffusion is 
solely determined by V/DI in Eq.(7) or (8), and a 
complete solute trapping occurs. This coincides with the 
limiting condition proposed by BAKER for the solute 
trapping model. 
 
2.2 Interface shape function 

In the solute drag treatment, the interface shape 
function, i.e. the diffusivities and thermodynamic 
properties as functions of the distance (i.e. η in Eqs.(7) 
and (8)) through the interface, are given as a priority. In 
order to obtain the interface solute concentration, C(η), 
and the non-equilibrium partition coefficient k for a 
given V, ,/0

B ημ ∂∂  and DI(η) in Eqs.(7) and (8) should 
be known. Generally, different interface shape functions 
lead to different solute trapping models. Given a 
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wedge-shaped interface function for ,/)(0
B ηημ ∂∂ DI(η) 

can be assumed, respectively, as the solid-state diffusion 
coefficient, DS, for half of the interface adjacent to the 
solid, and as the liquid-state diffusion coefficient, DL, for 
half of the interface adjacent to the liquid. Then, Eq.(8) 
reduces to BAKER’s model[17]. Assuming a linear 
change of )(0

B ημ  and a constant DI(η) in the interface, 
Eq.(8) reduces to the vacancy trapping model of 
HILLERT et al[23]. Furthermore, a combination of 
smooth shape interface function for ηημ ∂∂ /)(0

B  and 
constant DI assumption as the treatment of SVOBODA et 
al[22], or other treatments, for example truncated wedge 
interface[19−21], will lead to another solute trapping 
model. 

However, the above treatments guarantee only a 
continuous but not smooth solute concentration profile 
across the interface to the bulk phases, i.e. the interface is 
not really continuous. In order to obtain a diffusive 
interface under steady state, the standard chemical 
potential 0

Bμ  should change not only continuously but 
also smoothly from the interface to the bulk liquid. If 

ηημ ∂∂ /)(0
B  fulfills the following condition: 

0|| 1
0
B0

0
B =∂∂=∂∂ == ηη ημημ                    (9) 

and also, if the diffusion coefficient DI changes 
continuously from solid to liquid across the interface, 
then the steady-state interface diffusion function (i.e. 
Eq.(4)) will change continuously from the interface to 
the bulk liquid where there is no standard chemical 
potential gradient, i.e. the solute diffusion in the liquid 
and the interface can be described by a uniform 
formalism. By adopting a basic approach of the 
phase-field models[15], with defining the free energy 
density in the interfacial region, a simple expression for 

)(0
B ημ is 
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where L0
Bμ and S0

Bμ are the standard chemical potentials of 
liquid and solid, respectively. The dimensionless 
parameter, L, which determines the characteristics of the 
interface, is assumed to be a constant value. Compared 
with phase-field models where the interface properties 
are dependent on the phase-field variable, φ, the interface 
properties in Eq.(10) are determined by the distance η. 
The term η2(3−2η) comes from the function 
h(φ)=φ2(3−2φ), which is monotonic in the interface, and 
the term η2(1−η)2 comes from the double-well potential 
g(φ)= φ2(1−φ)2 in the phase-field model[15]. 

Further, it is better that ∂DI(η)/∂η fulfills the 
following condition below. To obtain a diffusive 
interface, such condition is not necessary under steady 
state condition, but it must be fulfilled under non-steady 
condition[24]: 

0|| 1I0I =∂∂=∂∂ == ηη ηη DD                   (11) 

Since it is assumed in the present model that DI(η) 
changes monotonic as a function of η, an expression for 
DI(η) is then obtained according to h(φ)=φ2(3−2φ) in the 
phase-field model[15]: 

( ) ( )ηη 232
SLSI −−+= DDDD                  (12) 

Until now, one can see that the interface shape 
function was deduced using phase-filed approach[15] 
and the interface characteristic is described in terms of a 
double-well potential function with a dimensionless 
parameter, L. 

Further, ηημ ∂∂ /)(0
B  can be obtained from Eq.(10) 

as 
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following equations: 
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Now, a solute trapping model incorporating 

diffusive interface is obtained, as well as the solute 
composition profile is across the interface. Obviously, 
this is a relatively simple analytical expression, with 
characteristics analogous to phase-field approaches 
because the interface shape function is deduced from the 
defining the free energy density in the interfacial region 
of phase-field model[15] and the solute diffusion in the 
liquid and the interface can be also described by a 
uniform formalism, which is also the characteristic of the 
phase-field model. As shown in Eqs.(10) and (13), L is 
an important parameter, which plays an analogous role to 
EB (i.e. the solute interaction energy at the center of the 
interface) from BAKER’s solute trapping models[17], or 
to A (i.e. an additional potential term for determining the 
equilibrium interface characteristics) from the smooth 
interface model[22]. Under equilibrium condition, for an 
alloy with ke＜1, if −1≤L≤1, the interface composition 
C(η) increases continuously from CS to CL, and the 
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interface is defined as inert; if L＜−1, C(η) possesses a 
minimum value at η=(1+L)/2L, and the interface is 
defined as repulsive (i.e. a “repulsive force ” occurs 
between the solute atoms and the interface); and if L＞1, 
C(η) possesses a maximum value at η=(1+L)/2L, and the 
interface is defined as adsorptive (i.e. an “attractive 
force ” occurs between the solute atoms and the 
interface). For an alloy with ke ＞ 1, however, the 
repulsive and adsorptive interfaces become prevalent for 
L ＞ 1 and L ＜ −1, respectively. As for the non- 
equilibrium behaviour of interface, a detailed discussion 
is presented elsewhere[24]. 
 
3 Model application 
 

The present model was used to describe the 
solidification of Si-9%As (molar fraction) alloys. Fig.1 
shows different model predictions, where the solid line is 
calculated with DL=1.5×10−9 m2/s[16], DS=3×10−13 
m2/s[16], ke=0.3[4], δ=4.6×10−9 m and L=0.5, within 
which δ and L are the fitting parameters. The predication 
of the phase-field model[16] with the parameter 
determining the thickness of the interfacial zone 
ε=3.5×10−9 m, is shown as dashed line, while the 
predictions using Aziz’s model with VDI=0.68 m/s and 
using Sobolev’s model with VDI=0.68 m/s and VD=2.6 
m/s are respectively imposed as the dotted line and the 
dashed-dotted line. Obviously, Aziz’s model fits well the 
experiment data only at low and moderate velocities, i.e. 
V＜1 m/s, Sobolev’s model fits well the experiment data 
covering throughout the interface velocity range. 
Regarding the current model predictions, the steeper 
profile from the present model is relatively better than 
that from the phase-filed model, in agreement with the 
experimentally measured partition coefficient for V=2 
m/s. At low and moderate velocities, both model 
predictions almost coincide. Analogous to Aziz’s model, 
an asymptotic convergence of the non-equilibrium 
 

 
Fig.1 Partition coefficient k as function of interface velocity V 
for Si-9%As alloys 

partition coefficient to one as V→∞ can be also 
described using the present model, whereas a sharp 
transition to k=1 at V=VD=2.6 m/s is predicted using 
Sobolev’s model (Fig.1). Compared with the phase field 
model[16], the current solute trapping model also 
incorporates the diffusive interface, but shows a 
relatively simple analytical expression. 
 
4 Conclusions 
 

1) By incorporating the diffusive interface into the 
solute drag treatment, a solute trapping model, with a 
simple analytical expression, is obtained. 

2) When applying a basic approach defining the free 
energy density of the phase-field model, an interface 
shape function is introduced to derive the current model. 

3) Both the standard chemical potential and the 
solute concentration change continuously across the 
interface, while the interface diffusion function holds 
continuously from the interface to the bulk liquid. 

4) When applying the current model to Si-9%As 
(molar fraction) alloy with L=0.5, a good prediction of 
the steeper profile for high interface velocity, which is 
analogous to the phase-field model predictions of 
DANILOV and NESLTER, has been obtained. 
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