第 29 卷第 3 期 Volume 29 Number 3 2019 年 3 月 March 2019

DOI: 10.19476/j.ysxb.1004.0609.2019.03.14

磁制冷材料 Ni-Mn-Ga 合金的 连续马氏体相变与奇异热膨胀特性

魏生贤¹,何禧佳¹,曹义明¹,李 哲¹,张清清¹,时有明²,陶 昌²

(1. 曲靖师范学院 磁性材料及器件研究中心,曲靖 655011;2 曲靖师范学院 物理与电子工程学院,曲靖 655011)

摘 要:为深入解磁制冷材料 Ni-Mn-Ga 合金的热膨胀特性,利用 SEM、XRD、DSC 及 PPMS 系统分别对合金 Ni_{54+x}Mn_{19-x}Ga₂₇(x=0.2,0.6,1.0)的组分、结构、相变及热膨胀特性进行实验测试。结果表明:随着 Ni 含量的增加,合金的马氏体相变温度逐渐增加。当 x 从 0.2 增至 1.0 时,合金正反马氏体相变峰温分别从 274、282 K 增至 300、309 K,且存在 7~10 K 的热滞后。在升降温过程中,x 为 0.2 和 0.6 的合金出现两个连续的马氏体相变、x=1.0 的合金发生磁-结构耦合转变,相变温区分别为 33.5 K、35.1 K、27.5 K。零场热应变曲线表明,合金具有各向同性的热膨胀特性。马氏体相与奥氏体相的热膨胀系数分别为 5.02×10⁻⁶~10.31×10⁻⁶ K⁻¹和 3.74×10⁻⁶~7.72×10⁻⁶ K⁻¹之间。马氏体相变过程中合金出现正热膨胀行为和奇异的负热膨胀行为,最大的负热膨胀系数约为 -139.84×10⁻⁶ K⁻¹。结合实验数据,从微观的角度对 Ni-Mn-Ga 的负热膨胀行为 最大的负热膨胀系数约为 -139.84×10⁻⁶ K⁻¹。结合实验数据,从微观的角度对 Ni-Mn-Ga 的负热膨胀行为 文章编号: 1004-0609(2019)-03-0549-10 中图分类号: TG132.1 文献标志码: A

与气体压缩式制冷技术相比,固态磁制冷技术因 其结构紧凑、低噪声、高效率(效率可达卡诺循环的 30%~60%, 压缩式制冷效率只有卡诺循环的 5%~ 10%^[1])、节能(比压缩式制冷节能 20%~30%^[2])、绿色 环保[3-4]等优点而备受关注。因此,磁制冷技术被认为 是压缩式制冷技术的替代技术[2,4-5]。磁制冷技术是一 种基于磁性材料在磁化和退磁过程中自身温度升高或 降低的磁热效应的制冷技术。典型的磁制冷材料有 Gd-Si-Ge^[6-7] 、La-Fe-Si^[8-9] 、La-Fe-Si-H^[10] 、Mn-Fe-P-As^[11]、Ni-Mn-Ga^[12-13]等化合物,它们发生一级磁-结构相变(即磁性转变与结构转变同时发生)时具有较 大的磁热效应。比较而言,这些磁制冷材料的制冷性 能基本相当。但 Gd-Si-Ge、La-Fe-Si 及 La-Fe-Si-H 系 列化合物中含有稀土元素,价格昂贵; Mn-Fe-P-As 中 含有剧毒元素(As); 而 Ni-Mn-Ga 合金无毒无害、生物 相容性强,制备简单、成本相对低廉^[14-15],是近年来 磁制冷技术的重点研究对象之一。

研究表明, Ni₂MnGa 合金在降温过程中会发生两 个分离的相变:在 376 K 附近发生二级磁转变(或称为 居里转变); 在 202 K 附近发生一级马氏体相变(或称 为结构转变)^[16]。通过组分调节可实现 Ni-Mn-Ga 合金 一级磁-结构转变,此时合金具有较大的磁热效 应^[12-14]。受组分、热处理工艺、内应力等的影响, Ni-Mn-Ga 合金在马氏体相变前后会出现分离的预马 氏体相变^[17-18]或中间马氏体相变^[19-20]。连续的马氏体 相变有利于拓宽合金相变的温度区间、提高材料的制 冷性能。但对于 Ni-Mn-Ga 合金连续的马氏体相变报 道较少,深入开展此方面的研究是非常必要的。

此外,在无外加磁场的条件下,Ni-Mn-Ga 合金发 生马氏体相变时,合金热应变曲线的斜率会发生改变 或突变。即发生马氏体相变时,合金热应变曲线的斜 率有的为正^[21-23]、有的为负^[23-27]。然而,上述研究中 合金热应变曲线斜率正负(或大小)的变化主要用于表 征马氏体相变是结构上的相变。很少有研究者关注热 应变曲线斜率正负的含义及其产生的机制。事实上, 热应变曲线斜率的正负代表的是在该温度区间材料具 有正热膨胀或负热膨胀效应。热应变曲线斜率发生改 变、尤其是突变,意味着合金热膨胀系数的突变,即

收稿日期: 2018-01-16; 修订日期: 2018-06-10

通信作者:魏生贤,教授,博士;电话: 0874-8987852; E-mail: wsx_8600@163.com

基金项目:国家自然科学基金资助项目(31760341, 51661029); 云南省地方本科高校联合专项-面上项目(2017FH001-054); 2017 年地方高校国家级 大学生创新创业训练计划项目(201710684007)

合金的体积突然增大或减小。例如,Ni54.75Mn20.25Ga25 单晶在马氏体相变附近(330~333.5 K)的线膨胀系数达 到了 12×10⁻⁴ K^{-1 [27]},即约 4 K 的温差内合金体积膨 胀了 1.44%。工程应用中,这种现象的发生会严重降 低材料的抗热冲击性, 缩短材料的使用寿命^[28], 对磁 制冷腔体或装置造成严重损坏、降低系统的总体性能, 甚至导致系统瘫痪。因此,在磁制冷腔体的设计中须 预留足够的空间,以防磁性材料体积突变导致系统瘫 痪。为确定合适的预留空间,对 Ni-Mn-Ga 合金的热 膨胀系数进行实验测试是非常必要的。为解决此问题, 本文对 Ni54+x Mn19-x Ga27(x=0.2, 0.6, 1.0)合金的结构、 相变及热膨胀特性进行了实验测试与分析。结果显示, x=0.2 和 0.6 的合金出现了两个连续的马氏体相变, x=1.0 的合金出现了磁-结构转变。3 个合金在马氏体 相变附近出现了奇异的负热膨胀行为。此负热膨胀效 应很可能是马氏体变体的成核、重取向与磁态、热膨 胀相互竞争的结果。研究结果对全面了解 Ni-Mn-Ga 合金的热膨胀特性及磁制冷腔体预留空间大小的设计 具有较好的指导意义。

1 实验

实验选用高纯金属单质镍 Ni、锰 Mn、镓 Ga(纯 度分别为 99.98%、99.98%、99.999%)为原料,采用 WK2 型非自耗高真空电弧炉,在高纯氩气保护下制 备名义组分为 Ni_{54+x}Mn_{19-x}Ga₂₇(x=0.2,0.6,1.0) 的多 晶样品。为使样品成分均匀化,所有样品均反复熔炼4

次,但样品未做任何热处理。扫描电子显微镜 (Scanning electron microscope, SEM)测试显示, 实际 组分与名义组分基本一致。室温下样品的晶体结构采 用 Rigaku D/max-Ultima IV 多功能 X 射线衍射仪 (X-ray diffraction, XRD)加以表征。样品的相变温度 由差示扫描热分析仪 (Differential scanning calorimetry, DSC)加以测定,测试速率为10 K/min。 利用物性测量系统(Physical properties measurement system, PPMS, 美国 Quantum Design 公司)的振动样 品磁强计(Vibrating sample magnetometer, VSM)测量 样品低磁场(500 Oe)下磁化强度(Magnetization, M)与 温度(T)之间的热磁曲线[M(T)],以便确定样品的磁转 变;升降温测试速率为1.5 K/min。样品在零磁场下的 热应变采用标准应变仪接入 PPMS 系统进行测试:温 度范围为 50~360 K,加热/冷却速率为 3 K/min,试样 为2mm×5mm×10mm的长方体。

2 结果与分析

2.1 合金的相变特性

Ni_{54+x}Mn_{19-x}Ga₂₇(x=0.2, 0.6, 1.0)合金的 DSC 曲线 及热磁曲线 M(T)如图 1 所示。图 1 中 M_s 、 M_f 和 A_s 、 A_f 分别表示正、反马氏体相变开始与结束的温度; M_i 与 A_i 分别为合金中间马氏体态的温度; $\Delta T = \Delta T_i$ 分别 表示马氏体相变和中间马氏体相变的热滞后。正、反马 氏体相变峰值温度由 $T_M \approx (M_s + M_f)/2$, $T_A \approx (A_s + A_f)/2$ 近似 计算。所有合金的相变温度及其峰值温度如表 1 所列。

Fig. 1 DSC and M(T) curves of Ni_{54+x}Mn_{19-x}Ga₂₇ alloys: (a) x=0.2; (b) x=0.6; (c) x=1.0

衣I N154+x MI119-x Ca27 百 壶 的 与 以 件 投 文 価 反 马 然 佈 向	In _{19-x} Ga ₂₇ 合金的马氏体转变温度-	与热滞后
--	---	------

Table1 Martensitic transformation temperatures and thermal hysteresis of Ni_{54+x}Mn_{19-x}Ga₂₇ alloys

-				_							
	x	$A_{\rm s}/{ m K}$	$A_{\rm i}/{ m K}$	$A_{\rm f}/{ m K}$	$M_{\rm s}/{ m K}$	$M_{\rm i}/{ m K}$	$M_{\rm f}/{ m K}$	$T_{\rm A}/{ m K}$	$T_{\rm M}/{ m K}$	$(\Delta T = A_{\rm f} - M_{\rm s})/{\rm K}$	$(\Delta T_i = A_i - M_i)/K$
	0.2	265.2	285.8	298.2	291.3	279.5	257.4	281.7	274.4	6.9	6.3
	0.6	284.4	302.5	319	310.7	290.2	275.2	301.7	293.0	8.3	12.3
	1.0	295.1	_	323.2	313.1	-	286.3	309.2	299.7	10.1	_

由图 1 和表 1 可知: 1) 合金相变温度及其峰值温 度随 x 的增大而单调地增大。即随着 Ni 部分替代 Mn, Ni_{54+x}Mn_{19-x}Ga₂₇ 合金马氏体相变温度单调地增加。这 一结果与前期关于 Ni_{50+x}Mn_{25-x}Ga₂₅的研究结果基本一 致^[29]。马氏体相变温度增大是由于 Ni 部分替代 Mn 致使合金晶胞体积减小而导致的^[30]。2) 当 x 从 0.2 增 至 1.0 时,合金正、反马氏体相变峰值温度分别由 274、 282 K 增至 300、309 K; 升降温过程存在 7~10 K 的 热滞后。3)对于 x 为 0.2 和 0.6 的合金,马氏体相变过 程中各存在一个中间马氏体转变;中间马氏体转变的 温度 *M*_i和 *A*_i分别约为 280、290 K 与 286、303 K,存 在 6 K 与 12 K 的热滞后。

图 1(a)的热磁曲线 *M*(*T*)显示: 对于 *x*=0.2 的合金, 从 340 K 降温至 *M*_s点过程中,合金的磁化强度迅速增 大、合金从顺磁奥氏体态转变成铁磁的奥氏体态(属于 二级磁相变)。随着温度进一步降低,磁化强度在 *M*_s 与 *M*_i处出现了缓慢降低和迅速减小,意味着合金在上 述两点处发生了马氏体相变和中间马氏体相变; 当温 度达到 *M*_f时,磁化强度基本趋于稳定,此时相变完成。 这种连续的马氏体相变较为少见,但它有利于扩大相 变温区、提高材料的制冷性能。在随后的升温过程中, 磁化强度在 *A*_s处急剧升高、*A*_i处缓慢增大、*A*_f处趋于 稳定,意味着连续的反马氏体相变的开始与结束。随 着温度的进一步升高,磁化强度出现急剧降低,合金 发生二级磁相变。

图 1(b)所示的 DSC 曲线与 M(T)曲线显示:对于 x=0.6 的合金,在降温过程中,合金在 M_s 与 M_i 之间发 生了一个磁转变、在 M_i 与 M_f 之间发生了一个马氏体 相变。在随后的升温过程中,合金在 A_s 与 A_i 间发生了 一个反马氏体相变、在 A_i 与 A_f 间发生了一个磁转变。 结合表 1 的数据, M_s 与 A_f 间存在 8 K 的热滞后,意味 着合金在 M_s 与 M_i 间及 A_i 与 A_f 间发生的是磁-结构相 变。对于 x=0.6 的合金,在升降温过程中同样存在两 个连续的马氏体相变。

图 1(c)显示,在降温和升温过程中,*x*=1.0 的合金 正、反马氏体相变与磁转变同时发生,达到了磁-结 构耦合转变。

由上述分析可知: 1) 对于 x=0.2 和 0.6 的合金,

在升降温过程中存在两个连续的马氏体相变,整个相 变的温区(用((A_f-A_s)+(M_s-M_f))/2 表示)分别为 33.5 K 与 35.1 K。2) 对 x=1.0 的合金,升降温过程合金发生 了磁-结构耦合转变,相变温区为 27.5 K。3) 连续马 氏体相变及较大的相变温区很可能是由于样品制备中 引入的内应力所导致的。

2.2 合金的 X 射线衍射分析

图 2 所示为 Ni_{54+x}Mn_{19-x}Ga₂₇ 合金粉末在室温下的 XRD 谱。XRD 谱表明: 1) 当 x=0.2 时,合金的主要 衍射峰显示,室温下此合金为立方奥氏体结构,其晶 格常数为 0.58155 nm。其(220)峰出现了一个小的劈裂 (见标"*"的峰位),这可能是由于此样品的马氏体相 变温度接近室温,以至于室温下出现了少量的马氏体 相^[31]。2)当 x=0.6 时,XRD 谱表明,此样品主要是 7M 调制马氏体结构,并残留少量的非调制马氏体结 构^[13]。(依据正交晶体结构给出了此合金的晶格参数 a=0.84855 nm,b=0.56487 nm,c=0.51429 nm。分析发 现,7M 调制马氏体结构(222)峰分裂成(220),(202)和 (022) 3 个峰,在其它 Ni-Mn-Ga 合金中已有类似的报 道^[13-14]。3) 当 x=1.0 时,室温下为非调制的四方马氏 体结构,晶格常数 a=b=0.76814 nm,c=0.67085 nm。 以上分析表明,在 Ni_{54+x}Mn_{19-x}Ga₂₇ 合金中,随着 Ni

图 2 Ni_{54+x}Mn_{19-x}Ga₂₇ 合金粉末室温下的 XRD 谱 Fig. 2 XRD patterns of Ni_{54+x}Mn_{19-x}Ga₂₇ alloy powder at room temperature

含量的增加,马氏体相变温度逐渐增大,相变温度的 变化趋势与 DSC 测试结果一致。

2.3 合金的热膨胀特性

2.3.1 合金的热应变

为了研究 Ni54+x Mn19-x Ga27 合金的热膨胀特性,本 研究对合金在零磁场下的应变(ΔL/L293 K)(293 K 表示 室温)随温度的变化行为进行了测试,结果如图 3~5 所 示。由图3可知:1) 在奥氏体相和马氏体相,随着温 度的升高、合金热应变逐渐增大,呈现出近似线性的 正膨胀行为;而且,在升降温过程中合金的热应变基 本重合在一起,无热滞后现象。2) 在马氏体相变附近, x=0.2 和 0.6 的合金热应变随温度的降低出现了跳跃式 的减小再增大的趋势;而在反马氏体相变过程中,合 金热应变随温度的升高则出现跳跃式的减小再增大的 趋势,如图 5(a)和(b)所示。热应变的上述变化趋势与 图 1(a)和(b)的两个连续马氏体相变相对应。而且在第 二个马氏体相变过程中,随着温度的降低、合金的热 应变逐渐增大,即合金出现了明显的、奇异的负热膨 胀行为。在升降温过程中合金的热应变曲线不重合, 存在 6 K 和 12 K 的热滞后。3)对于 x=1.0 的合金,马 氏体相变附近,随着温度的降低和升高合金热应变出 现跳跃式增大和减小,展现出非常明显的负热膨胀行 为(存在 10 K 的热滞后)。热应变变化量远大于 x=0.2 和 0.6 合金的热应变变化量(如图 5 所示),这可能是由 于 x=1.0 的合金具有较强的磁-结构耦合相互作用而 引起的。

2.3.2 合金在马氏体相与奥氏体相的热膨胀特性

因合金在马氏体相与奥氏体相的热应变曲线与温 度基本成线性关系,现将合金升温过程的热应变数据 做线性拟合(见图 4),用拟合曲线的斜率代表合金的线 膨胀系数 *a*,如表 2 所示。表 2 的数据表明:1)对于 所有的合金,线性拟合的相关系数 *R* 均大于 0.97,说 明合金热应变与温度相关性较强;2)随着 Ni 含量的 增加,合金热膨胀系数变化不大,马氏体相与奥氏体 相的热膨胀系数分别为 5.02×10⁻⁶~10.31×10⁻⁶ K⁻¹

图 3 合金 Ni_{54+x}Mn_{19-x}Ga₂₇ 的热应变曲线

Fig. 3 Thermal strain curves of Ni_{54+x}Mn_{19-x}Ga₂₇ alloys: (a) *x*=0.2; (b) *x*=0.6; (c) *x*=1.0

Fig. 4 Thermal strain curves of alloys at pure martensitic (a)

and austenitic (b) states

与 3.74×10⁻⁶~7.72×10⁻⁶ K⁻¹。两相的热膨胀系数与 Ni 含量基本上无直接关系,很可能是 Ni 含量变化太 小的缘故; 3) 对比两相的热膨胀系数可知,马氏体相 的热膨胀系数约为奥氏体相的 1.34~2.05 倍。

2.3.3 马氏体相变附近的热膨胀特性

图 5 所示为合金在马氏体相变附近的热应变曲 线。对于相变附近的平均负热膨胀系数,本文取热应

表 2 合金 Ni_{54+x}Mn_{19-x}Ga₂₇在马氏体相和奥氏体相的平均热膨胀系数

Table 2 Average thermal expansion coefficients of Ni54+xMn19-xGa27 alloys at martensite and austenite phases

x	Temperatu	re range/K	Thermal expansion coe	efficient, $\alpha/(10^{-6} \text{ K}^{-1})$	Correlation coefficient, R	
	Martensite phase	Austenite phase	Martensite phase	Austenite phase	Martensite phase	Austenite phase
0.2	50-250	300-360	7.67	3.75	0.99999	0.99499
0.6	50-260	320-360	10.31	7.72	0.99999	0.99998
1.0	50-210	327-360	5.02	3.74	0.98180	0.97145

Fig. 5 Strain curves of alloys $Ni_{54+x}Mn_{19-x}Ga_{27}$ near martensitic transformation: (a) x=0.2; (b) x=0.6; (c) x=1.0

变曲线最高点和最低点对应的应变值和温度值加以估算,结果如表3所列。

表3 马氏体相变附近合金的平均热膨胀系数

Table	3	Average	thermal	expansion	coefficients	0		
$Ni_{54+x}Mn_{19-x}Ga_{27}$ near martensitic transformation								

x	Temperatur	e range /K	Thermal expansion coefficient, $\alpha/(10^{-6} \text{ K}^{-1})$		
	Cooling	Heating	Cooling	Heating	
0.2	260-278	280-286	-26.40	-48.93	
0.2	278-292	286-298	43.08	9.70	
0.6	274-289	283-301	-41.41	-16.14	
0.6	289-311	301-318	49.67	36.56	
1.0	286-313	295-323	-136.44	-139.84	

由表 3 的数据可知: 1) 对于 x=0.2 和 0.6 的合金, 在两个连续的马氏体相变过程中,合金的平均热膨胀 系数分别由 43.08×10^{-6} 与 49.67×10^{-6} K⁻¹ 转变为 -26.40×10^{-6} 与 -41.41×10^{-6} K⁻¹;在随后连续的反马 氏体相变过程中,合金的平均热膨胀系数分别由 -48.93×10^{-6} 与 -16.14×10^{-6} K⁻¹转变为 9.70×10^{-6} 与 36.56×10^{-6} K⁻¹。2)降温与升温过程中,合金 x=1.0的平均热膨胀系数均为负值;其数值较大、分别约为 -136.44 与 -139.84×10^{-6} K⁻¹。如此大的负热膨胀系数 很可能是由于 x=1.0的合金具有磁-结构耦合相变所 致的。

2.3.4 合金热膨胀的各向同性实验

为验证 Ni-Mn-Ga 合金热膨胀是各向同性的,以 x=0.2 的合金为研究对象,将应变片沿相互垂直的两个 方向(AB 与 BC 方向)贴于样品上分别进行热应变测 试,结果如图 6(a)和(c)所示。由图 6(a)和(c)可知,两 个方向上的热应变曲线基本相同。为精确判定两方向 上合金热膨胀特性的差别,将升温过程两相的应变数 据分别做线性拟合,结果如图 6(b)和(d)所示。结果显 示: 1) 在马氏体相, AB 与 BC 方向的负热膨胀系数 分别为 7.6705×10⁻⁶ K⁻¹ 与 7.6683×10⁻⁶ K⁻¹: 2) 对于 奥氏体相,两方向对应的热膨胀系数分别为 3.7512×10⁻⁶K⁻¹与3.7751×10⁻⁶K⁻¹。在连续反马氏体 相变过程(图 6 未给出)中,合金的热膨胀系数分别为 -48.934 与 9.703×10⁻⁶ K⁻¹(AB 方向)和-48.893 与 9.754×10⁻⁶K⁻¹(BC方向)。由此可知, Ni-Mn-Ga 合金 在任意两个垂直方向上的热膨胀系数近似相等, 这说 明此类合金的热膨胀是各向同性的。

2.3.5 合金负热膨胀机理的讨论

从目前的研究来看,负热膨胀效应的机理主要可 分为振动效应、铁电相变机制、阳离子迁移机制和磁 容积效应等。其中,1)A₂M₃O₁₂(A 为碱土金属、M 为 过渡金属)^[32]、ZrV₂O₇^[33]、TiF₃^[34]、Ag₃[Co(CN)₆]^[35] 等材料的负膨胀效应源于振动效应,主要由桥氧原子 的横向低能热振动或刚性多面体热摆动耦合作用所驱 动;2)PbTiO₃基钙钛矿结构材料的负热膨胀效应主要 源于铁电转变^[36];3)LaCu₃Fe₄O₁₂^[37]和BiNiO₃^[38]的负 热膨胀则源于温度引起的阳离子迁移;4)锰氮化合

图 6 x=0.2 合金沿 AB、BC 方向的热应变

Fig. 6 Thermal strain of alloy with x=0.2 measured along AB, BC directions: (a), (b) AB direction; (c), (d) BC direction

物^[39]及 LaFe_{13-x}M_x(M 为 Si, Al 等)金属间化合物^[9]的 负热膨胀效应源于磁容积效应。除上述四类材料以外, 具有热弹性马氏体相变的材料,如 Ni-Ti^[40]、Ni-Fe^[41]、 Mn-Co-Ge 基化合物^[42]等,在马氏体相变过程中同样 呈现出显著的负热膨胀效应。其中,Ni-Ti 与 Ni-Fe 的 负热膨胀效应被归因于其晶体结构的转变(高温立方 *B2* 结构→马氏体单斜 *B*19′结构)^[40,43]。与之类似, Mn-Co-Ge 基合金的负热膨胀效应亦可理解为晶体结 构上的变化所致。

Ni-Mn-Ga 合金的热弹性马氏体相变属于结构转 变(高温立方 L2₁结构→低温调制/非调制四方马氏体 结构)。变温 XRD 与中子衍射均表明,高温立方相到 低温马氏体相的转变过程中,合金的晶胞体积略有减 小^[16, 20, 44]。尽管 Ni-Mn-Ga 合金在马氏体相变过程中 的负热膨胀效应是由结构相变所引起的,但此效应不 可归因于两相晶胞体积的变化。Ni-Mn-Ga 合金在温度 诱导下发生马氏体相变时伴随磁态的变化,如图1所 示。磁态的变化对合金负热膨胀效应亦存在一定的影 响,如图5所示。结合表3的数据,对比图1与5可 知,与 *x*=0.2 的合金(铁磁奥氏体→铁磁马氏体)相比, 马氏体相变过程中 *x*=1.0 的合金(顺磁奥氏体→铁磁马 氏体)的负热膨胀效应更为显著。前期研究显示,孪晶 界移动所引起的马氏体变体的重取向会导致合金微观 体积的变化^[45-46]。而且,马氏体相变过程中结构相变 与磁性变化存在较强的耦合作用,有利于孪晶界的移 动。基于上述分析,本研究初略推测该合金体系在马 氏体相变过程中的奇异负热膨胀行为很可能是马氏体 变体的成核、重取向与磁态、热膨胀相互竞争的结果; 其背后所隐含的物理机制目前尚不清楚,是个值得进 一步深入研究的课题。

3 结论

1)随着 Ni 含量的逐渐增大,Ni_{54+x}Mn_{19-x}Ga₂₇合金的马氏体相变温度逐渐增大。当 x 从 0.2 增至 1.0时,合金正、反马氏体相变峰值温度分别由 274、282K 增至 300、309K,且存在 7~10K 的热滞后。

2) 对于 x=0.2 和 0.6 的合金,在升降温过程中出现了两个连续的马氏体相变,整个相变温区分别为 33.5 K 与 35.1 K。对 x=1.0 的合金,升降温过程合金 发生了磁-结构耦合转变,相变温区为 27.5 K。连续 马氏体相变及较大的相变温区很可能是由于样品制备 中引入的内应力所导致的。

3) XRD 分析显示: 随着 Ni 含量的增加, 合金室 温下的结构由立方奥氏体结构(*x*=0.2)过渡到 7M 调制 马氏体结构(*x*=0.6)、最后转变为四方马氏体结构 (*x*=1.0)。即随着 Ni 含量的增加, 马氏体相变温度逐渐 增大, XRD 定性分析与 DSC 定量测试结果一致。

4) 零场热应变曲线表明: Ni-Mn-Ga 合金具有各向同性的热膨胀行为。在马氏体相和奥氏体相,合金呈现出正膨胀行为,热膨胀系数分别位于5.02×10⁻⁶~10.31×10⁻⁶ K⁻¹与3.74×10⁻⁶~7.72×10⁻⁶ K⁻¹之间。马氏体相的热膨胀系数约为奥氏体相的1.34~2.05倍。

5) 对于 x=0.2 和 0.6 的合金,在连续马氏体相变 过程中均存在一个热膨胀行为和一个负热膨胀行为。 对于 x=1.0 的合金,在磁-结构相变中存在明显的、异 常的负热膨胀行为,且其最大负热膨胀系数约为 -139.84×10⁻⁶ K⁻¹,远大于前两者的热膨胀系数。该 合金体系的负热膨胀行为,很可能是马氏体变体的成 核、重取向与磁态、热膨胀相互竞争所引起的。

REFERENCES

- YU B F, LIU M, PETER W E, ANDREJ K. A review of magnetic refrigerator and heat pump prototypes built before the year 2010[J]. International Journal of Refrigeration, 2010, 33 (6): 1029–1060.
- [2] VELÁZQUEZ D, ESTEPA C, PALACIOS E, BURRIEL R. A comprehensive study of a versatile magnetic refrigeration demonstrator[J]. International Journal of Refrigeration, 2016, 63: 14–24.
- [3] 李振兴,李 珂,沈 俊,戴 巍,高新强,郭小惠,公茂 琼. 室温磁制冷技术的研究进展[J].物理学报,2017,66(11):110701.

LI Zhen-xing, LI Ke, SHEN Jun, DAI Wei, GAO Xin-qiang, GUO Xiao-hui, GONG Mao-qiong. Progress of room temperature magnetic refrigeration technology[J]. Acta Physica Sinica, 2017,66(11): 110701.

[4] 郑新奇, 沈 俊, 胡凤霞, 孙继荣, 沈保根. 磁热效应材
 料的研究进展[J]. 物理学报, 2016,65(21): 217502.
 ZHENG Xin-qi, SHEN Jun, HU Feng-xia, SUN Ji-rong,
 SHEN Bao-gen. Research progress in magnetocaloric effect

materials[J]. Acta Physica Sinica, 2016, 65 (21): 217502.

- [5] ROMERO G J, FERREIRO G R, CARBIA C J, ROMERO G M. A review of room temperature linear reciprocating magnetic refrigerators[J]. Renewable and Sustainable Energy Reviews, 2013, 21: 1–12.
- [6] PECHARSKY V K, GSCHNEIDNER K A. Giant magnetocaloric effect in Gd₅(Si₂Ge₂)[J]. Physical Review Letters, 1997, 78 (23): 4494–4497.
- [7] JAMES D M, MORRISON K, PERKINS G K, DEBORAH L S, LOGRASSO T A, GSCHNEIDNER K A, PECHARSKY V K, COHEN L F. Metamagnetism seeded by nanostructural features of single-crystalline Gd₅Si₂Ge₂[J]. Advanced Materials, 2009, 21(37): 3780–3783.
- [8] FUJITA A, FUJIEDA S, HASEGAWA Y, FUKAMICHI K. Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(Fe_xSi_{1-x})₁₃ compounds and their hydrides[J]. Physical Review B, 2003, 67 (10): 104416.
- [9] HU F X, SHEN B G, SUN J R, CHENG Z H, RAO G H, ZHANG X X. Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe_{11.4}Si_{1.6}[J]. Applied Physics Letters, 2001, 78 (23): 3675–3677.
- [10] LYUBINA J, NENKOV K, SCHULTZ L, GUTFLEISCH O. Multiple metamagnetic transitions in the magnetic refrigerant La(Fe, Si)₁₃H_x [J]. Physical Review Letters, 2008, 101(17): 177203.
- [11] TEGUS O, BRÜCK E, BUSCHOW K H J, DE BOER F R. Transition-metal-based magnetic refrigerants for roomtemperature applications[J]. Nature, 2002, 415(6868): 150–152.
- [12] LI Z B, ZHANG Y D, SÁNCHEZ-VALDÉS C F, SÁNCHEZ L J L, ESLING C, ZHAO X, ZUO L. Giant magnetocaloric effect in melt-spun Ni-Mn-Ga ribbons with magneto-multistructural transformation[J]. Applied Physics Letters, 2014, 104(4): 044101.
- [13] LI Z, XU K, ZHANG Y L, TAO C, ZHENG D, JING C. Two successive magneto-structural transformations and their relation to enhanced magnetocaloric effect for Ni_{55.8}Mn_{18.1}Ga_{26.1} Heusler alloy[J]. Scientific Reports, 2015, 5: 15143.
- [14] BABITA I, GOPALAN R, MANIVEL R M, CHANDRASEKARAN V, RAM S. Magnetostructural transformation, microstructure, and magnetocaloric effect in Ni-Mn-Ga Heusler alloys[J]. Journal of Applied Physics, 2007, 102(1): 013906.
- [15] DUAN J F, LONG Y, BAO B, ZHANG H, YE R C, CHANG Y Q, WAN F R, WU G H. Experimental and

theoretical investigations of the magnetocaloric effect of $Ni_{2.15}Mn_{0.85-x}Cu_xGa$ (*x*=0.05,0.07) alloys[J]. Journal of Applied Physics, 2008, 103(6): 063911.

- [16] WEBSTER P J, ZIEBECK K R A, TOWN S L, PEAK M S.
 Magnetic order and phase transformation in Ni₂MnGa [J].
 Philosophical Magazine Part B, 1984, 49(3): 295–310.
- [17] LIU J Y, WANG J M, ZHANG H B, JIANG C B, XU H B. Effect of directional solidification rate on the solidified morphologies and phase transformations of Ni_{50.5}Mn₂₅Ga_{24.5} alloy[J]. Journal of Alloys and Compounds, 2012, 541: 477–482.
- [18] CUI Y T, CHEN J L, LIU G D, WU G H, WANG W L. Characteristics of the premartensitic transition strain in ferromagnetic shape memory Ni_{50.5}Mn_{24.5}Ga₂₅ single crystals[J]. Journal of Physics: Condensed Matter, 2004,16 (18): 3061–3069.
- [19] 敖 玲, 王文洪, 陈京兰, 高淑侠, 吴光恒. 郝斯勒合金 Ni-Mn-Ga 中间马氏体相变研究[J]. 物理学报, 2001,50(4): 793-796.
 AO Ling, WANG Wen-hong, CHEN Jing-lan, GAO Shu-xia, WU Guang-heng. Investigation on intermartensitic

WU Guang-heng. Investigation on intermartensitic transformation in Ni-Mn-Ga alloy [J]. Acta Physica Sinica, 2001, 50(4): 793–796.

- [20] LI Z B, YANG B, ZHANG Y D, ESLING C, ZOU N F, ZHAO X, ZUO L. Crystallographic insights into the intermartensitic transformation in Ni-Mn-Ga alloys[J]. Acta Materialia, 2014, 74: 9–17.
- [21] RUDAJEVOVÁ A. Analysis of the thermal expansion characteristics of Ni_{53.6}Mn_{27.1}Ga_{19.3} alloy[J]. Journal of Alloys and Compounds, 2007, 430: 153–157.
- [22] RUDAJEVOVÁ A, ŠROUB J, LANG V. Influence of heat transfer on determination of transient temperatures for Ni_{53.6}Mn_{27.1}Ga_{19.3} shape memory alloy from dilatometric data[J]. International Journal of Thermophysics, 2009, 30(3): 969–975.
- [23] KOUROV N I, PUSHIN V G, KOROLEV A V, MARCHENKOV V V, MARCHENKOVA E B, KAZANTSEV V A, KURANOVA N N, POPOV A G. Crystal structure and physical properties of magnetic shape memory alloys Ni_{50-x}Cu_xMn₂₉Ga₂₁[J]. Physics of the Solid State, 2013, 55(12): 2471–2478.
- [24] PUSHIN V G, KOUROV N I, KOROLEV A V, MARCHENKOV V V, MARCHENKOVA E B, KAZANTSEV V A, KURANOVA N N, POPOV A G. Effect of cobalt doping on thermoelastic martensitic transformations and physical properties of magnetic shape memory alloys Ni_{50-x}Co_xMn₂₉Ga₂₁[J]. Physics of the Solid

State, 2013, 55(12): 2413-2421.

- [25] SAKON T, NAGASHIO H, SASAKI K, SUSUGA S, NUMAKURA D, ABE M, ENDO K, YAMASHITA S, NOJIRI H, KANOMATA T. Thermal strain and magnetization of the ferromagnetic shape memory alloy Ni₅₂Mn₂₅Ga₂₃ in a magnetic field[J]. Journal of Physics and Chemistry of Solids, 2013, 74 (1): 158–165.
- [26] SAKON T, OTSUKA K, MATSUBAYASHI J, WATANABE Y, NISHIHARA H, SASAKI K, YAMASHITA S, UMETSU R Y, NOJIRI H, KANOMATA T. Magnetic properties of the ferromagnetic shape memory alloys Ni_{50+x}Mn_{27-x}Ga₂₃ in magnetic fields[J]. Materials, 2014, 7(5): 3715–3734.
- [27] VASIL'EV A N, ESTRIN E I, KHOVAILO V V, BOZHKO A D, ISCHUK R A, MATSUMOTO M, TAKAGI T, TANI J. Dilatometric study of Ni_{2+x}Mn_{1-x}Ga under magnetic field[J]. International Journal of Applied Electromagnetics and Mechanics, 2002, 12(1): 35–37.
- [28] 马 骁,祝 星,赵仲勋,曹姗姗,柯常波,张新平.显 微组织不均匀性对富 Ti 含量 Ti-Ni 合金负热膨胀行为的 影响[J].中国有色金属学报,2018,28(3):446-456.
 MA Xiao, ZHU Xing, ZHAO Zhong-xun, CAO Shan-shan, KE Chang-bo, ZHANG Xin-ping. Influence of anisotropic microstructure on negative thermal expansion behavior of Ti-rich Ti-Ni alloys[J]. The Chinese Journal of Nonferrous Metals, 2018,28(3): 446-456.
- [29] 柳祝红,胡凤霞,王文洪,陈京兰,吴光恒,高书侠,敖玲.哈斯勒合金 Ni-Mn-Ga 的马氏体相变和磁增强双向形状记忆效应[J].物理学报,2001,50(2):233-238.
 LIU Zhu-hong, HU Feng-xia, WANG Wen-hong, CHEN Jing-lan, WU Guang-heng, GAO Shu-xia, AO Ling. Investigation on martensitic transformation and field-induced two-way shape memory effect of Ni-Mn-Ga alloy[J]. Acta Physica Sinica, 2001, 50(2): 233-238.
- [30] 蔡培阳, 冯尚申, 薛双喜, 陈卫平, 周 英, 吴建波, 王古平. 定向凝固 Ni₄₇Mn₃₂Ga₂₁多晶合金的结构、相变及磁特性[J]. 中国有色金属学报, 2011, 21(11): 2869–2974.
 CAI Pei-yang, FENG Shang-shen, XUE Shuang-xi, CHEN Wei-ping, ZHOU Ying, WU Jian-bo, WANG Gu-ping. Structure, phase transformation and magnetic properties in polycrystalline Ni₄₇Mn₃₂Ga₂₁ directionally solidified alloy [J]. The Chinese Journal of Nonferrous Metals, 2011, 21(11): 2869–2974.
- [31] PANDA A K, GHOSH M, ARVIND K, MITRA A. Magnetic transitions and structure of a NiMnGa ferromagnetic shape memory alloy prepared by melt spinning technique[J]. Journal of Magnetism and Magnetic

Materials, 2008, 320 (17): L116 – L120.

- [32] EVANS J S O, MARY T A, SLEIGHT A W. Negative thermal expansion in a large molybdate and tungstate family[J]. Journal of Solid State Chemistry, 1997, 133(2): 580–583.
- [33] KHOSROVANI N, SLEIGHT A W, VOGT T. Structure of ZrV_2O_7 from -263 to 470 °C [J] Journal of Solid State Chemistry,1997,132(2): 355-360.
- [34] WANG L, YUAN P F, WANG F, SUN Q, LIANG E J, JIA Y, ZHENG X G. Negative thermal expansion in TiF₃ from the first-principles prediction[J]. Physics Letters A, 2014,378 (38/39): 2906–2909.
- [35] GOODWIN A L, CALLEJA M, CONTERIO M J, DOVE M T, EVANS J S O, KEEN D A, PETERS L, TUCKER M G. Colossal positive and negative thermal expansion in the framework material Ag₃[Co(CN)₆][J]. Science, 2008, 319(5864): 794–797.
- [36] CHEN J, NITTALA K, FORRESTER J S, JONES J L, DENG J X, YU R B, XING X R. The role of spontaneous polarization in the negative thermal expansion of tetragonal PbTiO₃-based compounds[J]. Journal of the American Chemical Society, 2011, 133(29): 11114–11117.
- [37] LONG Y W, HAYASHI N, SAITO T, AZUMA M, MURANAKA S, SHIMAKAWA Y. Temperature-induced A–B intersite charge transfer in an A-site-ordered LaCu₃Fe₄O₁₂ perovskite[J]. Nature, 2009, 458: 60–63.
- [38] AZUMA M, CHEN W T, SEKI H, CZAPSKI M, OLGA S, OKA K, MIZUMAKI M, WATANUKI T, ISHIMATSU N, KAWAMURA N, ISHIWATA S, TUCKER M G, SHIMAKAWA Y, ATTFIELD J P. Colossal negative thermal expansion in BiNiO₃ induced by intermetallic charge transfer[J]. Nature Communications, 2011, 2: 347.
- [39] TAKENAKA K, TAKAGI H. Giant negative thermal

expansion in Ge-doped anti-perovskite manganese nitrides [J]. Applied Physics Letters, 2005, 87: 261902.

- [40] MAVOORI H, JIN S. Low-thermal-expansion copper composites via negative CTE metallic elements[J]. Journal of the Minerals, 1998, 50(6): 70–72.
- SCHILFGAARDE M V, ABRIKOSOV I A, JOHANSSON
 B. Origin of the Invar effect in iron–nickel alloys [J]. Nature, 1999, 400: 46–49.
- [42] ZHAO Y Y, HU F X, BAO L F, WANG J, WU H, HUANG Q Z, WU R R, LIU Y, SHEN F R, KUANG H, ZHANG M, ZUO W L, ZHENG X Q, SUN J R, SHEN B G. Giant negative thermal expansion in bonded MnCoGe-based compounds with Ni₂In-type hexagonal structure[J]. Journal of the American Chemical Society, 2015, 137(5): 1746–1749.
- [43] UCHIL J, MOHANCHANDRA K P, KUMARA K G, MAHESH K K, MURALI T P. Thermal expansion in various phases of nitinol using TMA [J]. Physica B: Condensed Matter, 1999, 270(3/4): 289–297.
- [44] YAO J, ZHENG X D, CAI W, SUI J H. Characterization of free-standing nanocrystalline Ni_{55.2}Mn_{24.7}Ga_{19.9} Gd_{0.2} high temperature shape memory thin film[J]. Journal of Alloys and Compounds, 2016, 661: 43–48.
- [45] ULLAKKO K, HUANG J K, KANTNER C, HANDLEY R C O, KOKORIN V V. Large magnetic-field-induced strains in Ni₂MnGa single crystals[J]. Applied Physics Letters, 1996, 69(13): 1966–1969.
- [46] CHMIELUS M, ZHANG X. X, WITHERSPOON C, DUNAND D C, MULLNER P. Giant magnetic-fieldinduced strains in polycrystalline Ni-Mn-Ga foams[J]. Nature Materials, 2009, 8(11): 863–866.

Successive martensitic phase transformations and abnormal thermal expansion in Ni-Mn-Ga magnetic refrigeration materials

WEI Sheng-xian¹, HE Xi-jia¹, CAO Yi-ming¹, LI Zhe¹, ZHANG Qing-qing¹, SHI You-ming², TAO Chang²

(1. Center for Magnetic Materials and Devices, Qujing Normal University, Qujing 655011, China;

2. College of Physics and Electronic Engineering, Qujing Normal University, Qujing 655011, China)

Abstract: The magnetic refrigeration materials $Ni_{54+x}Mn_{19-x}Ga_{27}$ (x=0.2, 0.6, 1.0) with nominal composition were prepared to reveal the thermal expansion properties of Ni-Mn-Ga alloys. The actual compositions, crystal structures, martensitic transformation temperatures, magnetic transition and zero field thermal strain of the alloys were experimentally investigated by scanning electron microscope equipped with energy-dispersive spectrometer (SEM-EDS), X-ray diffractometer (XRD), differential scanning calorimetry (DSC), vibrating sample magnetometer (VSM) and standard strain-gauge connected with physical properties measurement system (PPMS), respectively. The results show that the nominal composition of these alloys agree with the actual composition. The results from DSC and magnetic transition measurements show that the martensitic transformation temperatures gradually increase with Ni content increasing. Moreover, the peak temperatures of direct and reverse martensitic transformations increase from 274 K, 282 K (x=0.2) to 300 K, 309 K (x=1.0), respectively, and they have a distinct thermal hysteresis of about 7 ~ 10 K. Two successive martensitic transformations and magnetic-structural coupling transition are observed in alloys x=0.2, 0.6, and x=1.0, respectively, during cooling and heating cycles. The temperature window of phase transformations is about 33.5 K, 35.1 K and 27.5 K for x=0.2, 0.6 and 1.0. Zero field thermal strain curves illustrate that the alloys studied exhibit an isotropic thermal expansion property. The thermal expansion coefficients range from 5.02 to $10.31 \times 10^{-6} \text{ K}^{-1}$ and 3.74 to $7.72 \times 10^{-6} \text{ K}^{-1}$ at martensite and austenite phases, respectively, for Ni_{54+x}Mn_{19-x}Ga₂₇ alloys. More importantly, the alloys exhibit an obvious and abnormal negative thermal expansion behavior in the vicinity of the martensitic transformation. The maximal negative thermal expansion coefficient occurs in alloy with x of 1.0 is about -139.84×10^{-6} K⁻¹. This abnormal negative thermal expansion behavior may well be related to the nucleation and orientation of martensitic variants during the martensitic transformation. Based on the experimental data, the negative thermal expansion effect of Ni-Mn-Ga alloys was discussed briefly from microcosmic point of view.

Keywords: magnetic refrigeration; Ni-Mn-Ga alloy; martensitic transformation; thermal expansion property; negative thermal expansion behavior

Foundation item: Projects(31760341, 51661029) supported by the National Natural Science Foundation of China; Project(2017FH001-054) supported by the Yunnan Local Colleges Applied Basic Research Projects of Yunnan Province, China; Project(201710684007) supported by the National Students' Innovation and Entrepreneurship Training Program, Ministry of Education, China

Received date: 2018-01-16; Accepted date: 2018-06-10

Corresponding author: WEI Sheng-xian; Tel: +86-874-8987852; E-mail: wsx_8600@163.com

(编辑 李艳红)