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Abstract: Considering both the effect of nonisothermal nature of the solid/liquid interface and the microscopic solvability theory 
(MicST), a further improved version of free dendritic growth model for pure materials was proposed. Model comparison indicates 
that there is a higher temperature at the tip of dendrite predicted by the present model compared with the corresponding model with 
the isothermal solid/liquid interface assumption. This is attributed to the sidewise thermal diffusion, i.e. the gradient of temperature 
along the nonisothermal interface. Furthermore, it is indicated that the distinction between the stability criteria from MicST and 
marginal stability theory (MarST) is more significant with the increase of bath undercoolings. Model test also indicates that the 
present model can give an agreement with the available experimental data. It is finally concluded that the nonisothermal nature of the 
solid/liquid interface and the stability criterion from MicST should be taken into account in modeling free dendritic growth. 
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1 Introduction 
 

The free dendritic growth in an undercooled melt 
has attracted focused attention in the research of 
solidification experiment as well as theory in the past 
decades [1−6]. To model free dendritic growth, three 
parts must be treated, including interface kinetics, 
thermal or solutal transport in the bulk liquid and 
morphological stability for the solid/liquid (S/L) 
interface. For the interface kinetics, Turnbull’s 
collision-limited growth model [7] is commonly used, 
for both metals and alloys, to describe an interface 
responce function, i.e. a relationship among the 
interfacial migration velocity, temperature and 
compositions of solid and liquid phases. To describe the 
thermal and solutal transport in liquid ahead of the S/L 
interface, the classical Fick diffusion equation or the 
extended hyperbolic diffusion equation was used [8−16]. 
The first attempt was made by IVANTSOV [8,9] to 
obtain an exact solution with the assumption of 
isothermal and isosolutal S/L interface of a paraboloid of 

revolution. Based on the Ivantsov’s result, a series of free 
dendritic growth models were proposed [11−14]. 
Recently, eliminating the isothermal and isosolutal S/L 
interface assumption, LI et al [17,18] have further 
obtained the exact solution of steady state Fick diffusion 
equation, successfully. In reality, the curvature and 
normal velocity are variable along the S/L interface 
under the steady state growth condition. This means that 
the interface is nonisothermal and nonisosolutal 
(anisotropic). Therefore, taking into account the 
anisotropic nature of the S/L interface is meaningful. 

All of these free dendritic growth models  
mentioned above adopted marginal stability theory 
(MarST) [19−25] to deal with the morphological stability 
for S/L interface. MarST has been widely adopted by 
materials scientists and engineers, due to its ability of 
giving an agreement with experiment data [24,25]. 
However, it should be noted that MarST has its 
theoritical limitations. A steady state parabolic shape 
does not exist in the absence of anisotropy [26,27]. That 
is to say, the interfacial anisotropy (at least the surface 
energy anisotropy) is required to guarantee a steady state  
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parabolic shape of S/L interface. In MarST, the 
hypothesis of isotropic S/L interface is made, which 
leads to the unphysical results, e.g. yields tip splitting. 
Taking into account the interfacial anisotropy, 
microscopic solvability theory (MicST) [26−31] has also 
been developed to describe the morphological stability of 
S/L interface, including the selected mode for rapidly 
growing needle-like dendrite. 

In the present work, a more improved version of the 
free dendritic growth model was proposed by 
considering both MicST and the effect of nonisothermal 
nature of the S/L interface. As first attempt, pure materils 
were focused. A comparison of the present model 
(nonisothermal dendritic growth model with MicST) 
with the nonisothermal dendritic growth model with 
MarST and the isothermal dendritic growth model with 
MicST was made. Furthermore, a model comparison 
with the available experiment data was also made. 
 
2 Model 
 

In this section, the interface response function 
which can deal with the nonisothermal nature of the S/L 
interface was firstly described. Then, taking the interface 
response function as a boundary condition of the thermal 
diffusion equation, an exact solution was obtained, which 
can describe the tip temperature of the nonisothermal 
interface. Finally, the stability criterion from MicST was 
introduced to replace the MarST. 
 
2.1 Interface response function 

During steady state dendritic growth, the 
morphology of S/L interface could be approximated by a 
paraboloid of revolution. It will be convenient to use a 
parabolic coordinate system (α, β, θ), which makes α=1 
represent the S/L interface [17,18]. At different points of 
the S/L interface (with different values of β), the 
interfacial curvature (1/r(β)) and normal velocity (Vn(β)) 
are different. This implies that the curvature 
undercooling (ΔTr) and kinetic undercooling (ΔTk) are 
variable along the interface. Thus, the S/L interface is 
nonisothermal in reality. Taking into account the 
nonisothermal nature of the S/L interface, the interfacial 
responce function can be extended as [32]  

2
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where TL(1, β) is the interfacial temperature, Tm is the 
melting point, Γ is the Gibbs−Thompson coefficient, μ0 
is the kinetic coefficient, r is the radius of curvature at 
the tip, and V is the velocity of the dendrite growth in the 
axial direction. Equation (1) is reduced to the one 
commonly used in previous models [1] by setting β=0. 

2.2 Thermal transport 
For free dendritic growth in undercooled melts, the 

interfacial temperature is higher than that in liquid far 
from the interface due to the release of the latent heat. 
Therefore, there must be thermal transport in the liquid 
ahead of S/L interface to guarantee a steady state growth. 
Ignoring thermal diffusion in the solid, the thermal 
transport phenomenon in the liquid can be described by 
the classical Fick diffusion equation as [13]  

2
T L ( , ) 0D T

t
α β∂ ∇ − = ∂ 

                      (2) 
 
where TL(α, β) is the actual temperature in the liquid, and 
DT is the thermal diffusivity in the liquid. For 
mathematical convenience, a new temperature field  
UL(α, β) in the liquid is defined by [17]  

L L L( , ) ( , ) ( )U T Tα β α β α′= −                     (3) 
 
where L ( )T α′ is the temperature field obtained by 
fictitious problem of an isothermal interface (Ivantsov 
condition), which is described as [8,9]  
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where ΔH is the latent heat of fusion, cp is the specific 
heat capacity, E1 is the exponential integral function, T∞ 
is the temperature of the undercooled melt far from the 
interface and pt is the thermal Peclet number defined by 
pt=rV/(2DT). Particularly, L ( )T α′  is equal to ΔTt+T∞ at 
α=1 (the S/L interface), where ΔTt is the thermal 
undercooling defined by ΔTt=Iv(pt)ΔH/cp and Iv(pt) is 
Ivantsov function [5]. 

With the parabolic coordinate system (α, β, θ) and 
the definition of UL(α, β) described by Eq. (3), Fick 
diffusion equation, Eq. (2), can be rewritten as follows 
[17]:  

2 2
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α α β βα β
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     (5) 

 
In this equation, a term −2ptβ∂UL/∂β is neglected 

under the condition 1/β>>2ptβ. This condition is 
reasonable since the solidification behavior at tip of the 
dendrite (β=0) is only influenced by the regions in the 
vicinity of β≈0. 

Ignoring solid temperature gradient, the thermal 
transport balance could be described by  

L
L 1( , ) / |KV H T

r αα β α =Δ = − ∂ ∂                  (6) 
 
where KL is the thermal conductivity of the liquid. The 
thermal diffusion equation (Eq. (5)), combined with the 
boundary conditions (Eqs. (1) and (6)), could be solved 
exactly to obtain the description of temperature field 
UL(α, β), which further gives the following relationship 
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at the tip (β=0) [17]:  

t 1 t 2 t
0
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where ΔT is the bath undercooling defined by Tm−T∞, 
and the parameters N1(pt) and N2(pt) are defined by  
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where Φ(a,b,Z) is the confluent hypergeometric function 
of the second kind. If the parameters N1(pt) and N2(pt) 
equal unity, the relationship, Eq. (7), reduces to the one 
used by models with isothermal S/L interface 
assumption. 
 
2.3 Morphological stability criterion 

Based on the thermal diffusion field with a 
boundary condition of nonisothermal interface, the 
relationship, Eq. (7), has been obtained, which gives a 
correlation between the tip radius of curvature r and the 
interfacial migration velocity V at a given bath 
undercolling ΔT. In order to uniquely determine 
solidification behavior of steady state dendritic growth, 
another relationship should be established. A 
morphological stability criterion of S/L interface can 
give the additional information. LANGER and 
MULLER-KRUMBHAAR [33] introduced a stability 
criterion of the form Vr2=constant for small Peclet 
numbers and a scaling parameter σ defined by  

0 T 0
2

t

2d D d
rpr V

σ = =                            (10) 

 
where d0 is the capillary length determined by 
d0=Γcp/ΔH. 

According to Ref. [33], the radius of curvature r at 
the dendritic tip can be approximated by the shortest 
perturbed wavelength λs (λs=2π/ω, ω is the angular 
velocity). Placing sinusoidal perturbation Z=δ(t)sin(ωx) 
on the planar S/L interface and following the standard 
stability criterion procedure of the linear analysis of 
morphological stability, MarST gives the following 
stability criterion [19]:  

* * * 2 1 1/2
t t{1 [1 ( ) ] }pσ σ ξ σ σ −= = − +              (11) 

 
where σ* is a constant (σ*=1/(4π2)), and ξt is a medium 
variable. This theory has its theoritical limitations just as 

aforementioned that it makes the hypothesis of an 
isotropic S/L interface. A steady state parabolic shape 
does not exist under this condition [26,28]. That is to say, 
the interfacial anisotropy, at least the surface energy 
anisotropy, is required to guarantee a steady state 
parabolic shape of S/L interface. Taking into account the 
surface energy anisotropy, MicST successfully deals with 
the problem of morphological stability and gives the 
stability criterion as follows [30]:  

7/4 7/4
0 d t 0 d

1 d t
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            (12) 

 
where ad is the surface anisotropy stiffness, σ0 is the 
selection constant, and a1 is a constant defined by σ0 

(a1=(8σ0/7)1/2(3/56)3/8). 
Therefore, one should take the stability criterion,  

Eq. (12), to replace the stability criterion from MarST, i.e. 
Eq. (11), even though it has been widely used by 
materials scientists [19−25]. Up to now, considering both 
MicST and the effect of nonisothermal nature of the S/L 
interface, the entire free dendrite growth model has been 
described. It contains two independent equations, Eqs. (7) 
and (12). Solving these two equations numerically, one 
can determine the interfacial migration velocity V and 
the radius of curvature r at the tip, and further obtain the 
temperature distribution TL(1, β) along the S/L interface 
at any given bath undercooling ΔT. 
 
3 Results and discussion 
 

A model comparison was carried out to analyze the 
effect of nonisothermal interface (Section 3.1) and the 
difference between the present nonisothermal model with 
MicST and the previous nonisothermal model with 
MarST (Section 3.2). Finally, an experimental 
comparison was made (Section 3.3). The numerical 
results are shown in Figs. 1−5, by application to the pure 
materials white phosphorous. The thermophysical data, 
used in the present calculation, are listed in Table 1. 
 
3.1 Effect of nonisothermal interface 

The interfacial temperatures as functions of the 
normalized bath undercooling for the nonisothermal 
model and isothermal model are shown in Fig. 1. The 
temperatures TL(1, β) at β=0 (the tip of dendrite) and 
β=0.5 are given for the nonisothermal model due to the 
variation in temperature along the interface. It also gives 
the interfacial temperature L (1),T ′  i.e. the tip temperature 
predicted by the isothermal model due to the isothermal 
assumption of the S/L interface. It is indicated that the 
interface temperature TL(1,0.5) is higher than the tip 
temperature TL(1,0) predicted by the nonisothermal 
model. In order to show this nonisothermal nature of the 
S/L interface more clearly, the temperatures along the 
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interface at different values of β are given by the insert in 
Fig. 2, at the normalized bath undercooling ΔΘ=0.7 as an 
example. It can be seen that there is a gradient of 
temperature along the interface and the temperature 
increases along the interface from the tip to the root. This 
implys that the temperature is increasing along the 
interface from the tip to the root. This gradient would 
result in an extra sidewise thermal diffusion which 
further leads to the increase of the tip temperature. 
Therefore, a higher temperature at the tip is predicted by 
the present nonisothermal model compared with the 
isothermal model (see Fig. 1) because there is no 
additionally sidewise thermal diffusion (see the insert in 
Fig. 2). In Fig. 2, we also define modelΔT =  

L L(0,1) (1)T T ′−  as the difference of temperature between 
the tip temperatures pridected by the two models and 
ΔTi=TL(1,0.5)−TL(1,0) to denote the gradient of 
temperature along the nonisothermal interface. It is 
 

 
Fig. 1 Evolution of interfacial temperature as function of 
normalized bath undercooling ΔΘ, defined by ΔΘ=ΔTcp/ΔH 
with MicST 
 

 
Fig. 2 Temperature differences ΔTmodel and ΔTi as functions of 
normalized bath undercooling (The insert shows the 
temperature profiles TL(1,β) and L (1)T ′  along the interface at 
ΔΘ=0.7. ΔTmodel is the difference between the tip temperatures 
calculated by the nonisothermal and isothermal model, defined 
by TL(1,0)− L (1)T ′ , and ΔTi is defined by the temperature 
difference TL(1,0.5)−TL(1,0)) 

indicated that with the increase of the normalized bath 
undercooling, the difference ΔTi increases and the 
difference ΔTmodel also increases. This further confirms 
that the higher temperature at the tip predicted by the 
present nonisothermal model is caused by the variation 
in temperature along the interface, i.e. the gradient of 
temperature along the nonisothermal interface. 
 
3.2 Model comparison on MarST and MicST 

In order to compare the effects of MarST and 
MicST on free dendritic growth models, dendrite tip 
radius of curvature as a function of the normalized bath 
undercooling is shown in Fig. 3. By comparing Eq. (11) 
with Eq. (12), one of the main distinctions lies in the 
expression of the paramter ξt, which are shown in Fig. 4 
for both MarST and MicST. At relatively low bath 
undercoolings ΔΘ, the difference of radius of curvature 
predicted by the two models is relatively small in 
comparison with that at high ΔΘ (Fig. 3). This can be 
explained as follows. When the bath undercooling is very 
small, Peclet number is small enough to meet the 
condition d0<<r<<l, where l is the diffuson length defined 
as 2DT/V. According to Ref. [33]，the stability criterion 
of the form 2 constantVr = is reasonable for small Peclet 
number and the scaling parameter σ can be rewritten as 

2
s[ / (2π )]rσ λ= , where s 02π ldλ =  is the shortest 

warelength of disturbance which would cause a plane 
interface to suffer a MULLINS-SEKERKA insta-   
bility [24]. Under the condition d0<<r<<l, LANGER and 
MULLER-KRUMBHAAR [33] concluded that the 
stability of dendrite tip interface can be maintained with 
r≡λs. When the Peclet number is small enough, ξt for 
both MarST and MicST would be approximate to unit as 
shown in Fig. 4. Thus, the stability criteria from MarST 
and MicST, Eqs. (11) and (12) are reduced to 
Vr2=constant, given by LANGER and MULLER- 
KRUMBHAAR [33] at relatively low ΔΘ. However, as 
shown in Figs. 3 and 4, with increase of ΔΘ, the 
distinction between the stability criteria from MarST and  
 

 

Fig. 3 Dendrite tip radius of curvature as function of 
normalized bath undercooling (Using nonisothermal model) 
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Fig. 4 Parameter ξt as function of Peclet number using 
nonisothermal model 
 
MicST is more remarkable. This significant distinction 
should be taken into account in modeling free dendrtic 
growth. 
 
3.3 Experimental comparison 

An experimental comparison for the interfacial 
migration velocity V versus the normalized bath 
undercooling is shown in Fig. 5. The kinetic coefficient 
μ0 and the Gibbs−Thompson coefficient Γ were treated 
as fitting parameters in their reasonable range. And σ0 as 
the selection constant was also adjusted so that the 
experimental data can be fitted well. An agreement of the 
prediction from the present model with the experiment 
data is obtained at ΔΘ≤1.2. The deviation from 
experimental data at high undercooling may be attributed 
to the following two reasons. Firstly, some parameters 
may be changed with the variation of temperature, such 
as DT, Γ and μ0. For example, with the increase of ΔΘ, 
the solidification velocity V increases. When V is high 
enough the defect in materials increases during 
solidification, so the entropy of solid will be heightened.  
 

 
Fig. 5 Interfacial migration velocity as function of normalized 
bath undercooling calculated by present nonisothermal model 
with MicST and available experimental data for white 
phosphorus [33] 

Table 1 Thermodynamic parameters for white phosphorus used 
in model computation [17]  

Parameter Value 

Melting point of P4, Tm/K 317.1 
Hypercooling, ( 1Δ pH c−⋅ )/K 25.6 

Capillarity constant, Γ/(K∙m) 4.277×10−9 

Thermal diffusivity, DT/(m2∙s−1) 1.302×10−7 

Kinetic coefficient, μ0/(m∙s−1∙K−1) 0.17 

Surface energy stiffness, ad 0.15 

Capillary length, d0 2.073×10−8 

Selection constant, σ0 80 

 
This means that the effective thermodynamic driving 
force will be reduced and finally the interfacial migration 
velocity V would become lower. This corresponds to a 
lower value of the kinetic parameter μ0 at high ΔΘ. 
Secondly, at high ΔΘ the S/L interface experiences from 
a dendrite to a scalloped structure. That is to say, the 
morphological stability with the paraboloid of revolution 
cannot be maintained, namely, it is not predictable using 
the present model. 
 
4 Conclusions 
 

(1) A free dendritic growth model was proposed for 
pure materials by considering both the effect of 
nonisothermal nature of the S/L interface and the 
microscopic solvability theory (MicST). Comparative 
analysis indicates that the present model provides an 
agreement with the available experimental data for white 
phosphorus. 

(2) Model comparison between the present model 
(nonisothermal dendritic growth model with MicST) and 
the dendritic growth model with MicST and the 
isothermal S/L interface assumption indicates that there 
is a higher temperature at the tip predicted by the present 
nonisothermal model. This is due to the variation in 
temperature along the interface, i.e. the gradient of 
temperature along the nonisothermal interface. 

(3) Model comparison between the present model 
(nonisothermal dendritic growth model with MicST) and 
the previous nonisothermal dendritic growth model with 
the marginal stability theory (MarST) indicates that the 
distinction between MarST and MicST disappears if 
Peclet number is small enough, and with the increase of 
bath undercoolings (Peclet number) the distinction 
between the stability criteria from MarST and MicST is 
more significant. This should be taken into account in 
modeling free dendritic growth. 



Shu-cheng LIU, et al/Trans. Nonferrous Met. Soc. China 29(2019) 601−607 

 

606

 
References 
 
[1] CHEN Z, CHEN P, GONG H H, DUAN P P, HAO L M, JIN K X. 

Phase field method simulation of faceted dendrite growth with 
arbitrary symmetries [J]. Transactions of Nonferrous Metals Society 
of China, 2018, 28: 290−297. 

[2] LIU C L, AZIZI-ALIZAMINI H, PARSON N C, POOLE W J, DU Q. 
Microstructure evolution during homogenization of Al−Mg− 
Si−Mn−Fe alloys: Modelling and experimental results [J]. 
Transactions of Nonferrous Metals Society of China, 2017, 27: 
747−753. 

[3] HERLACH D M, BINDER S, GALENKO P, GEGNER J, 
HOLLAND-MORITZ D, KLEIN S, KOLBE M, VOLKMANN T. 
Containerless undercooled melts: Ordering, nucleation, and dendrite 
growth [J]. Metallurgical and Materials Transactions A, 2015, 46: 
4921−4936 

[4] SOBOLEV S L. Rapid phase transformation under local 
non-equilibrium diffusion conditions [J]. Materials Science and 
Technology, 2015, 31: 1607−1617. 

[5] SOBOLEV S L. Driving force for binary alloy solidification under 
far from local equilibrium conditions [J]. Acta Metallurgica, 2015, 93: 
256−263. 

[6] GALENKO P K, REUTZEL S, HERLACH D M, DANILOV D A, 
NESTLER B. Modelling of dendritic solidification in undercooled 
dilute Ni–Zr melts [J]. Acta Materialia, 2007, 55: 6834−6842. 

[7] TURNBULL D. On the relation between crystallization rate and 
liquid structure [J]. Journal of Chemical Physics, 1962, 66: 609−613. 

[8] IVANTSOV G P. Temperature field around spherical, cylindrical, and 
needle-shaped crystals which grow in supercooled melts [J]. Doklady 
Akademii Nauk SSSR, 1947, 58: 567−569. 

[9] IVANTSOV G P. On the growth of a spherical or a needlelike crystal 
of a binary alloy [J]. Doklady Akademii Nauk SSSR, 1952, 83: 
573−576. 

[10] ÖNEL S, ANDO T. Comparison and extension of free dendritic 
growth models through application to a Ag−15 mass pct Cu alloy [J]. 
Metallurgical and Materials Transactions A, 2008, 39: 2449−2458. 

[11] WANG H F, LIU F, CHEN Z, YANG G C, ZHOU Y H. Analysis of 
non-equilibrium dendrite growth in a bulk undercooled alloy melt: 
Model and application [J]. Acta Materialia, 2007, 55: 497−506. 

[12] GALENKO P K, DANILOV D A. Local nonequilibrium effect on 
rapid dendritic growth in a binary alloy melt [J]. Physics Letters A, 
1997, 235: 271−280. 

[13] GALENKO P K, DANILOV D A. Model for free dendritic alloy 
growth under interfacial and bulk phase nonequilibrium conditions 
[J]. Journal of Crystal Growth, 1999, 197: 992−1002. 

[14] SOBOLEV S L. Rapid solidification under local nonequilibrium 
conditions [J]. Physical Review E, 1997, 55: 6845−6854. 

[15] DIVENUTI A G, ANDO T. A free dendritic growth model 
accommodating curved phase boundaries and high Peclet number 
conditions [J]. Metallurgical and Materials Transactions A, 1998, 29: 
3047−3056. 

[16] CHEN Z, WANG H F, LIU F, YANG W. Effect of nonlinear liquidus 
and solidus on dendrite growth in bulk undercooled melts [J]. 2010, 
20(3): 490−494. 

[17] LI S, GU Z H, LI D Y, LIU S C, CHEN M H, FENG Y. Analysis for 
free dendritic growth model incorporating the nonisothermal nature 
of solid−liquid interface [J]. Physics Letters A, 2015, 379: 237−240. 

[18] LI S, LI D, LIU S, GU Z, LIU W, HUANG J. An extended free 
dendritic growth model incorporating the nonisothermal and 
nonisosolutal nature of the solid–liquid interface [J]. Acta Materialia, 
2015, 83: 310−317. 

[19] MULLINS W W, SEKERKA R F. Stability of a planar interface 
during solidification of a dilute binary alloy [J]. Journal of Applied 
Physics, 1964, 35: 444−451. 

[20] TRIVEDI R, KURZ W. Morphological stability of a planar interface 
under rapid solidification conditions [J]. Acta Metallurgica, 1986, 34: 
1663−1670. 

[21] BOETTINGER W J, CORIELL S R, TRIVEDI R. Rapid 
solidification processing: Principles and technologies IV [M]. Baton 
Rouge, LA: Claitor’s, 1988: 13−24. 

[22] GALENKO P K. Extended thermodynamical analysis of a motion of 
the solid−liquid interface in a rapidly solidifying alloy [J]. Physical 
Review B, 2002, 65: 144103. 

[23] DIVENUTI A G, ANDO T. A free dendritic growth model 
accommodating curved phase boundaries and high Peclet number 
conditions [J]. Metallurgical and Materials Transactions A, 1998, 29: 
3047−3056. 

[24] LI S, ZHANG J, WU P. Numerical test of generalized marginal 
stability theory for a planar interface during directional solidification 
[J]. Scripta Materialia, 2009, 61: 485−488. 

[25] WANG H F, LIU F, YANG W, CHEN Z, YANG G C, ZHOU Y H. 
An extended morphological stability model for a planar interface 
incorporating the effect of nonlinear liquidus and solidus [J]. Acta 
Metallurgica, 2008, 56: 2592−2601. 

[26] BRENER E A, MEL'NIKOV V I. Pattern selection in 
two-dimensional dendritic growth [J]. Advances in Physic, 1991, 
40(1): 53−97. 

[27] ALEXANDROV D V, DANILOV D A, GALENKO P K. Selection 
criterion of a stable dendrite growth in rapid solidification [J]. 
International Journal of Heat and Mass Transfer, 2016, 101: 
789−799. 

[28] BARBIERI A, LANGER JS. Predictions of dendritic growth rates in 
the linearized solvability theory [J]. Physical Review A, 1989, 39: 
5314−5325. 

[29] KARMA A, RAPPEL W J. Phase-field simulation of 
three-dimensional dendrites: is microscopic solvability theory correct? 
[J]. Journal of Crystal Growth, 1997, 174: 54−64. 

[30] GALENKO P K, DANILOV D A. Linear morphological stability 
analysis of the solid-liquid interface in rapid solidification of a binary 
system [J]. Physical Review E, 2004, 69: 051608. 

[31] DANILOV D A, GALENKO P K. Selected mode for rapidly 
growing needle-like dendrite controlled by heat and mass transport 
[J]. Acta Materialia, 2017, 137: 64−70. 

[32] KOTLER G R, TARSHIS L A. An extension to the analysis of 
dendritic growth in pure systems [J] Journal of Crystal Growth, 1969, 
5: 90−98. 

[33] LANGER S, MULLER-KRUMBHAAR H. Theory of dendritic 
growth—I: Elements of a stability analysis [J]. Acta Metallurgica, 
1978, 26: 1681−1687. 

 
 
 
 
 
 



Shu-cheng LIU, et al/Trans. Nonferrous Met. Soc. China 29(2019) 601−607 

 

607

 

基于界面非等温特性以及微观可解性理论的 

自由枝晶生长模型 
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摘  要：在同时考虑固/液界面非等温性质的影响与微观可解性理论(MicST)的情况下，提出一个更加完善的纯物

质自由枝晶生长模型。模型比较结果表明：与相应假设的等温固/液界面模型相比，本文作者提出的模型预测的枝

晶尖端温度更高，这归因于沿着非等温界面的侧向热扩散，即温度梯度。此外，随着过冷度的增大，MicST 与边

缘稳定性理论(MarST)给出的稳定性判据间的差异变得更加明显。模型测试结果表明：本模型的预测结果与实验

数据吻合较好。因此，在自由枝晶生长建模中必须考虑固/液界面非等温性质的影响与 MicST 给出的稳定性判据。 
关键词：枝晶；凝固；建模；界面；微观可解性理论 
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