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Abstract: The accuracy of nucleation parameter is a critical factor in the simulation of microstructural evolution during dynamic 
recrystallization (DRX). Based on the flow stress curve under hot deformation conditions, a new approach is proposed to identify the 
nucleation parameter during DRX. In this approach, a cellular automaton (CA) model is applied to quantitatively simulate the 
microstructural evolution and flow stress during hot deformation; and adaptive response surface method (ARSM) is applied as 
optimization model to provide input parameters to CA model and evaluate the outputs of the latter. By taking an oxygen-free 
high-conductivity (OFHC) copper as an example, the good agreement between the simulation results and the experimental 
observations demonstrates the availability of the proposed method. 
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1 Introduction 
 

Dynamic recrystallization (DRX) is an important 
metallurgical phenomenon during high temperature 
plastic deformation, which is able to change the 
microstructure of metallic materials, and influence their 
mechanical properties. Although the traditional model of 
DRX, i.e. the phenomenological or semi-empirical model 
based on the experimentation, can build the relationship 
between grain sizes and deformation parameters, it is not 
able to reveal the complex physical mechanism during 
hot working[1]. In recent years, a Monte Carlo (MC) 
method has been used to dynamically simulate the 
nucleation and the grain growth during DRX[2−5]. 
However, its application is limited due to the deficiency 
that the time step used in MC simulation is difficult to 
map to real time. Since the Cellular Automaton (CA) 
method was introduced to DRX by GOETZ and 
SEETHARAMAN[6], it has been successfully applied to 
simulate the microstructural evolution of various metals 
such as pure copper[7−8], titanium alloys[9] and 
steel[10−11]. In contrast with the MC method, the CA 
method is able to quantitatively consider the effect of 

deformation stored energy on growth kinetics of each 
recrystallized grain (R-grain) and build the relation with 
the actual deformation parameters. Therefore, it allows 
accurate predictions of the microstructural evolution and 
flow stress behavior under various hot working 
conditions. 

The nucleation rate is a key factor affecting the 
microstructural evolution during DRX. However, it is 
difficult to accurately determine the nucleation rate 
through theoretical or experimental means, due to the 
complexity of DRX process and the limitation of 
experimental measures[12−13]. At present, the 
backcalculated method is mainly used to evaluate the 
value of nucleation rate from the measurements of the 
percentage of DRX and the mean size of R-grain[7]. 
However, in real sample, the recrystallization softening 
takes place concurrently with the work-hardening during 
DRX so that the R-grain is hardly to be accurately 
discriminated from deformed matrix, which leads to 
inaccuracy of so-determined nucleation rate. To improve 
the simulation performance, RANE et al[13] proposed a 
genetic algorithm coupled with CA method to evaluate 
the nucleation rate during static recrystallization (SRX). 

Considering that the intrinsic information of DRX 
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like grain nucleation and growth is embedded in the 
material flow stress during hot deformation, a new 
method is proposed to identify the nucleation rate. In the 
method, the CA model, as a main part, is applied to 
quantitatively simulate the material microstructural 
evolution and the flow stress under hot working 
condition, and an optimization model based on adaptive 
response surface method (ARSM) is applied as an 
additional part to provide input parameters to CA model 
and evaluate the output of the latter. The reason to adopt 
an ARSM model is to reduce the computational time in 
optimization since CA modeling of DRX is usually a 
computation-intensive problem. According to the 
physical metallurgical principles, when the difference 
between the simulated stress— strain curve and the 
experimental data is minimized, the identified value of 
nucleation parameter and the microstructural evolution 
can reasonably reproduce the evolution in the real 
sample. By using the proposed method, the hot 
deformation behavior of an oxygen-free high- 
conductivity (OFHC) copper is simulated. 
 
2 CA model of DRX 
 

Similar to the model proposed by DING and 
GUO[7], three assumptions are employed: 

1) The dislocation density increases with strain in 
both primary grains and R-grains, and DRX will occur 
when the dislocation density exceeds the critical value. 

2 During DRX, nucleation only takes place on grain 
boundaries (including primary grain boundaries and 
R-grain boundaries). 

3) The heterogeneity of grain boundary mobility is 
neglected. 
 
2.1 Theoretical model of DRX 
2.1.1 Modeling of dislocation evolution 

The dislocation evolution model describes the effect 
of work hardening and dynamic recovery on dislocation 
density. For both primary grains and R-grains, the 
variation of dislocation density is calculated by the 
model proposed by MECKING and KOCKS[14]: 
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where k1 and k2 are the parameters representing work 
hardening and dynamic recovery, respectively. 

The flow stress σ is typically calculated from the 
mean value of dislocation density ρ [15]: 

bσ αμ ρ=                                  (2) 

where α is a dislocation interaction term which equals 
0.5−1.0 for most metals; μ is the shear modulus; and b is 

the magnitude of the Burgers vector. 
Substituting Eq.(1) into Eq.(2) yields: 
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where θ is the parameter associated with the work 
hardening, σs is the saturated stress representing the 
balance between work hardening and dynamic recovery. 
According to Eqs.(3)−(5), k1 and k2 can be determined 
from experimental stress—strain data. 
2.1.2 Modeling of DRX 

As deformation continues, new strain-free nuclei 
will form on grain boundaries when the dislocation 
density in material exceeds a critical value. Driven by the 
difference of stored energy between the deformed matrix 
and R-grains, the newly formed R-grains will grow by 
expanding into their surrounding deformed matrix. The 
grain boundary migration rate vi of the ith R-grain can be 
calculated from the grain boundary mobility m and the 
driving force per unit area fi[16]: 
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where λ is the characteristic thickness of grain boundary; 
D0,b is the boundary self-diffusion coefficient; k is the 
Boltzmann’s constant; Qb is the boundary diffusion 
activation energy; τ=0.5μb2, represents the dislocation 
line energy; ρrex,i and ρm,i represent the dislocation 
density of the ith R-grain and that of its surrounding 
unrecrystallized matrix, respectively; di is the size of 
R-grain; γi is the boundary energy; θi is the grain 
boundary misorientation; and γm and θm are the boundary 
energy and the misorientation for a high angle boundary, 
respectively. 
 
2.2 Cellular automaton method 

The CA method deals with an array of cell, the 
evolution of which is characterized by the state of cell 
that can be determined by the neighborhood and 
transformation rule. In order to simulate the DRX 
behavior of metallic material, the simulation space is 
discretized into an array of equally shaped quadratic cells 
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of 200×200 sites under the periodic boundary 
conditions. The size of each lattice site is 2 μm×2 μm, 
and the simulation lattice represents 400 μm×400 μm in 
the real sample. Each lattice site has four state variables: 
1) a dislocation density variable that describes the 
deformation stored energy, 2) an orientation variable, 
which is a random integer in the range of 1−180 and is 
used to evaluate the grain boundary energy, 3) a 
recrystallization number variable that denotes the cycles 
of recrystallization occurring in the area of cell and is 
represented by an integer in the range of 0−N, where 0 
represents the unrecrystallized matrix, and 4) a grain 
label variable that represents different grains and is given 
by a positive integer in the range of 0−M. 

The initial microstructure is produced by the 
site-saturated nucleation, i.e., a predefined number of 
nuclei are randomly generated at the beginning and no 
more nuclei are generated in the following time step. The 
dislocation density of each initial grain is set to the 1010 
m−2 which is close to the value in annealed materials. 
The label of grain is initially set to 0, and added by 1 
each time when new different grain emerges. With 
progressing deformation, the variation of dislocation 
density can be calculated by using Eq.(1). When the 
dislocation density exceeds the critical value ρc for 
nucleation of DRX, new nuclei form on grain boundaries. 
For two-dimensional cellular automaton, a nucleation 
rate I is defined, on the unit length of grain boundary 
where ρ＞ρc, as the number of new nuclei generated per 
unit time. For each cell along boundary where 
dislocation density exceeds a critical value, its nucleation 
probability PN in the time step Δt is given by 
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where NCA=1/LCA, is the number of cells along per unit 
length of boundary; and LCA is the cell length. For each 
newly formed R-grain, its initial dislocation density is 
again set to be 1010 m−2. For the cell that is occupied by 
the R-grain, the number of recrystallization is added by 1 
from its original value; at the same time, the labeling of 
grain is also added by 1 from its maximum value. The 
driving force of grain growth is provided by the 
difference of stored energy that exists in R-grains and 
their surrounding deformation matrix. For the ith R-grain, 
the growth velocity can be calculated from Eqs.(6)−(9) 
through each cell on its boundary where the boundary 
energy is evaluated through the maximum misorientation 
when the cell is surrounded by two or more 
differently-oriented cells. In order to simulate equiaxial 
grain growth, von Neumann neighborhood and a 
probabilistic transformation rule are utilized. Based on 
the studies on the scale of CA time step in the 

probabilistic cellular automaton model[17−18], the 
transformation probability PG can be expressed as 
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To ensure that both PN and PG are less than 1, an 

upper limit of Δt has to be set. The simulation tests show 
that there always exists I/NCA＜＜  1 in Eq.(10). Therefore, 
the upper limit of Δt can be defined as the ratio of the 
cell size LCA to the maximum growth velocity vmax[19]: 
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As the deformation continues, the nucleation and 
grain growth can take place on grain boundaries as long 
as its dislocation density exceeds the critical value no 
matter it belongs to unrecrystallized grain or R-grain. 

In the CA model, the strain increment and 
instantaneous strain can be obtained for a given time step 
Δt and strain rate. Therefore, the evolution of grain size 
and percentages of DRX, as well as the flow stress with 
strain can be obtained by simulating the nucleation and 
grain growth behavior at each time increment. 
 
3 Identification of nucleation parameter 
 

As previously mentioned, it is difficult to accurately 
estimate the nucleation rate due to the complexity of 
DRX and limitation of experiments. However, the 
nucleation rate is critical to the DRX behavior and the 
latter is a dominant factor to the material macroscopic 
flow stress curve. Hence, it can be expected to identify 
the nucleation rate by comparison of the simulated  
strain—stress curve and the measured one. Hereby, the 
identification of nucleation rate is to determine the 
appropriate value so that the difference between the 
simulated and measured flow stress curves can be 
minimized. In fact, it is a problem of optimization and 
the optimization objective can be defined as 
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where σi
exp and σi

cal(x) are, respectively, measured and 
calculated flow stresses at the strains εi (i=1, …, q); q is 
the number of sample points on the stress—strain curve; 
and x is the supposed nucleation parameter I which is to 
be identified. 

To reduce the computational cost and obtain the 
global optimum of nucleation rate, an adaptive response 
surface method (ARSM)[20−21] is applied. This idea 
comes from the fact that the ARSM as an approximate 
model can re-construct response surface model 



JIN Zhao-yang, et al/Trans. Nonferrous Met. Soc. China 20(2010) 458−464 461

automatically on the gradually reduced design space, so 
as to iteratively improve the model precision and 
approach to the global optimum. By taking Latin 
Hypercube Design (LHD) as the sampling method of 
nucleation rate, the flow stress is simulated by CA model 
at the sample points and the response surface model is 
constructed through least square method. The flow chart 
of the identification procedure which combines the CA 
model and ARSM-based optimization is shown in Fig.1, 
and the procedure is implemented as follows: 

1) Predefining an initial searching range of the 
nucleation rate and generating the LHD sample points in 
this range. 

2) Calculating the flow stress curve by running CA 
model at each sampling point, and then evaluating the 
simulation accuracy through Eq.(13) and storing it in the 
design library. 

3) Constructing the response surface model by least 
square regression: 
 

2
0 1 2y x xβ β β= + +                            (14) 

 
where y is the response; x is the boundary nucleation rate 
I; and β0, β1 and β2 are regression coefficients. 

4) Searching for the optimum on the response 
surface model and evaluating the actual response at the 

optimum and then storing it in the design library. 
5) Reducing the searching range by defining the 

threshold value. Here, the threshold value, y0, is taken as 
the average value of maximum and minimum responses 
written in the design library, and the reduced searching 
range is obtained by solving the following equation: 
 

2
2 1 0 0 0x x yβ β β+ + − =                       (15 ) 

 
The roots, x1 and x2, determine the reduced range as 

[min{x1, x2}, max{x1, x2}] for subsequential searching. 
6) Stopping iteration and outputting the identified 

nucleation rate when one of the following criterions is 
satisfied: 

(1) The mean error of the simulated flow stress is 

less than 0.001, i.e., ( ) 0.001f x
q

< . 

(2) The span of the range of boundary nucleation 
rate I is less than 50, which means the accuracy of PN is 
of the order of 10−5. 

7) Otherwise, updating the design library by 
inheriting those LHD points falling in the new reduced 
space for re-construction of RSM in the next iteration. 
Then, generating new LHD points and returning to   
step 2). 

 

 
Fig.1 Flow chart of new method by coupling CA and ARSM 
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4 Validation and discussion 
 

By taking an oxygen-free high-conductivity (OFHC) 
copper as an example, the microstructural evolution and 
the flow stress behavior during DRX at the temperature 
of 775 K and the strain rate of 0.002 s−1 is simulated, and 
the experimental data under the same deformation 
condition are obtained from Ref.[22]. The values of 
material constants for the simulation are listed in Table 1. 
The values of k1 and k2 are determined through least 
square method by using the experimental stress—strain 
data prior to the initiation of DRX. From the plot of 
dσ/dε versus σ shown in Fig.2, the approximate values of 
θ and σs can be obtained by linear regression method 
(Eq.(3)). Then, from Eqs.(4) and (5), the values of k1 and 
k2 are 3.94×108 and 20.904, respectively. For the 
boundary nucleation rate I, the initial range is designated 
as [5, 5 000]. Since there are three unknown coefficients 
in the respond surface model (Eq.(14)), the number of 
LHD sampling points must be larger than or equal to 3 
and it is taken as 6 in this work. After six times of 
re-construction of response surface model, the identified 
value of I is 655. The simulated results are compared 
with the experimental measurements. 
 
Table 1 Values of material parameters used in simulations[7] 

Qb/(kJ·mol−1) λD0,b/(m3·s−1) b/m μ/Pa γm/(J·m−2)

104 5.0×10−15 2.56×10−10 4.21×1010 0.625 

 

 

Fig.2 Curve of dσ /dε—σ of OFHC coper to determine θ and σs 
 

In Fig.3, the simulated stress— strain curve is 
compared with the measured one. The simulated flow 
stress is calculated from the mean value of dislocation 
density on the simulation lattice at each time step 
(Eq.(2)). The average relative error of the simulated flow 
stress curve is about 3.62%, which is less than that in 
Ref.[7]; while in the latter work, the nucleation rate is 
obtained from the experimentally backcalculated method. 

This indicates that the simulation precision is improved 
by the proposed method. The reason for the deviation 
may be attributed to such factors as the model 
assumptions, the grain deformation, the intragranular 
nucleation and the heterogeneously distributed 
dislocation density, which influence the DRX process in 
practice. Here, they are not considered in the simulation 
in order to compare the results simulated by the proposed 
method with those obtained in Ref.[7] under the similar 
simulation condition. 
 

 

Fig.3 Comparison of simulated and measured stress—strain 
curves of OFHC copper 

 
Fig.4 shows the simulated microstructure at 

different strains, where white areas represent the primary 
grains and other areas represent the R-grains. The mean 
grain size of simulated initial microstructure is 81 μm, 
which is close to the measured one of 78 μm. As usually 
observed in experiment, R-grains form randomly along 
primary boundaries and the microstructure is 
characterized by necklace morphology at the onset of 
DRX. With progressing deformation, the primary grains 
are gradually consumed and covered by R-grains. 

The evolution of the average grain size with strain is 
shown in Fig.5. When the strain reaches the critical value, 
DRX occurs so that the average grain size davg reduces 
rapidly. As the strain increases, the dropping rate of davg 
reduces gradually. When strain is about 0.6, the mean 
grain size approaches its steady value of 11.8 μm, which 
is close to the measured value of 14 μm[22]. 

Fig.6 compares the simulated percentage of DRX 
with measured one, where the simulated percentage of 
DRX is calculated by the ratio of the number of 
recrystallized cells to the total number of cells. It can be 
seen that the DRX occurs when the strain exceeds its 
critical value and the simulated curve has a characteristic 
sigmoidal shape. It can also be seen that the percentage 
of DRX simulated by the proposed method shows better 
agreement with the experiments compared with the 
simulated one in Ref.[7]. 
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Fig.4 Simulated microstructural evolution of OFHC copper at different strains: (a) 0.25; (b) 0.35; (c) 0.45; (d) 0.55 
 

 
Fig.5 Dependence of average grain size on strain of OFHC 
copper 
 

It is noted that the boundary nucleation rate in the 
CA model is defined on the grain boundary where ρ＞ρc. 
However, the length of the boundary where ρ＞ρc varies 
with strain due to the nucleation and grain growth during 
DRX. Therefore, the boundary nucleation rate cannot 
efficiently represent the number of new grains formed 
per unit time on the simulation lattice. Here, a volume 
nucleation rate, v ,n& is defined to represent the number 
of nuclei formed per unit time and unit volume. According 
to the stereological principium, an 2D area nucleation 

 

Fig.6 Comparison of simulated percentage of DRX and 
measured one for OFHC copper 
 
rate, sn& , obtained from CA model can be used to 
equivalently represent the 3D volume nucleation rate, 
and its value can reasonably reflect the softening effect 
of recrystallization. Fig.7 shows the strain dependence of 

sn& , from which an irregular fluctuation is exhibited. The 
reason of the fluctuation is that the nucleation takes place 
randomly and the length of the boundary where ρ＞ρc 
changes with strain nonlinearly. Besides that, sn&  
increases with strain in the initial stage and gradually 
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reaches a steady mean value with oscillation in a certain 
range. This tendency is closely related to the variation of 
mean grain size which directly affects the evolution of 
boundary length with ρ＞ρc. These characteristics of sn&  
as a function of strain are consistent with the theoretical 
analysis[23] and the results simulated by the Monte 
Carlo method[4−5]. The above analysis indicates that the 
flow stress-based nucleation rate identification method 
can improve the simulation accuracy of both 
microstructural evolution and flow stress behavior. And 
vice versa, the identified nucleation rate is also 
reasonable. 
 

 
Fig.7 Dependence of area nucleation rate on strain of OFHC 
copper 
 
5 Conclusions 
 

1) To overcome the difficulties in determining the 
nucleation rate, a flow stress-based nucleation rate 
identification method is proposed, in which the CA 
model is incorporated with an adaptive response surface 
model to search for the reasonable nucleation rate. This 
method provides an alternative strategy for reasonable 
determination of nucleation rate. 

2) The microstructural evolution and the flow stress 
behavior of oxygen-free high-conductivity copper under 
hot deformation conditions is simulated with the 
proposed method. The simulated results agree well with 
the experimental observations, indicating that the new 
method can effectively determine the nucleation rate and 
improves the simulation accuracy of microstructural 
evolution. 
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