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1 MRREBMGE

1.1 WHRFEE
111 GOk

THOULJES et (RO et Rt ) 2 W e 5 BORERHIR T
ANREXT M F S s g R i, BRI SRR
THIAAE A AT LA B2 o A AN SRS LR . 514
JE AR N E A SRRy A
ZGEH . PIBRIRE A S UL AR TR A S8 M. &
SAE NI P ATE, 50 A
LT T 3 1 4 R A 255 B 7 TR AS 35 S0 RN A A L T A 5
P, ST A 4 3R T ROV TS e R = A R I s ik
LIS et A PR 3R B 7 2 B T A AR A 2 . H
WAL IER & JBAE AN, KA, S8t
JEF Pk R 57 B4 s FRK R R SR K A R A N A,
RAEPAM N, 5 SO R o F k!, 5 ik s
FHZRER, oA 19 4 A D BH AR R 25 5 4% s ok,
T FELASE o 10 4 B A D AR U 52 1 40T S 2 Ji ok
BALZERT 0.25V B, F2AE R EARE s ™ E, BHAR
) R Sy N 1] G o N G N A N

T [ s s 2 o, R 2 4 T eh T 2 oK RS
EAR P S R AE B A ZE T A XK R A
Upn-Ug =Wy -Wg)/e 1)

Her, Uy—Ug ARMEEIAE; e NHETHAE; Wafl
Wy GBI Dk g, iRAE ) H T R R
P T D) R BO S, HETIAS 2 B AH 2 18] i AR
HEAZE .
1.1.2 WDk

FERETTERIL T, &EITRM TOKRR Y AL T 3
LA, KRBT R EREAN, AR TGk 1 oK R
WAL T FAT RN AT 8], L A TROK BB th BT 7 2
MR R 2 BT IheR . EREAE RS, BT
PRAEOE R B SRR RE G tH BIIA BL 73S BRIl
/N e R . HRIA R
W=—ep-Eyg (2)

X wRBTIREG ¢ NERERmIN— S K HE S
—ep N TR — R ETEHHAE: Er ABRKRNTOKRE
P T IIRBUE NG SR REZNWESH, A
W5 &E W T80 LA KRR, T H RN T
R MRFE . A FE R R A AR 15 2
B, BMERF BT HEIRSAR, HAGA
[ PRy LT Dl R K. FL T e K/ PR < e L F - D e K

KIEJRE G ka1, L, MRERmm g 1)
PBRBHOR, AU RS R R, R 57
HRARRAR; APRIERIE 7 Th e Bk, R S
MK HIER Y, B R LT, RS M, B
AR, AR

1.2 fRAR7GE

THECR 2L T 2% R 2 s B S (DFT) P 1 8 S 34 7
IIMNCKE BT /12 FE 5 CASTEPPY, oGk AE R
P B EEE L (GGA)) PBE T HIAE % 1k 6 58,
J& T J# A K 8 3K (Ultrasoft) J& %, X B BFGS
(Broyden Flecher Goldfarb Shanno) LHis 247 H
TUh g, KHEEIEISCR) AT 5, fEftbid
PR, P A T REEL 500 eV, JLTZS I AL HIU 85
PRAER: R RISRERISE 1 X107 eV/atom, &4
JRF%2 71/ F 0.03 eV/A, R ZE /N T 0.05 GPa,
ANEF/ANT 1X107° A, SCF HIWSBEREAR 1X10°°
eV/atom, NERIE K FUSEAMIK T 40, Mg £ AL Ca.
Mg,Ca.Mg;;Al, I k S ZH57 719 8 X 8 X 8.8 X 7 X8,
8X8X8. TXTXE, HAWSAH A 200. KH Slab
B S RET, FEZMMESERE N 16 A, M
T AT LA 28 FR A0 3 T 2 [|) AR ELVE R o AL 52 2
Z B R, HE I ARAIE SR TR T (9 78 40 5t 74 o

NTEBEME Mg R, FH2E
THEARF LS5 T T D E. BT BT T 8UE
B AR T AR, S T IR RHERRTE, 2 AN
Tl TR [ o 50 TSR B T A [ ki o =X, B R R R
T AR AR S A A . AR RR s E 7 5 mT AR i
ISR MBEC T E R, JERAMEBIE, DUEH
TP R AR

2 HHERSTE

2.1 Mg @B FHRYAITE

Mg FEARH PRI THE, R T 1X1X13 Jv
JERRL, BT ORAE F D BB S, RS R AR AR
B a=b=3216 A, c/a=1.618, SHBHE*a=3212A,
cla=1.621 AISZEAE P a=321 A, cla=1.62 FFEHUT .
GBS [ T T D R O R T RE, IR SR
WEMSLIEX L, Wk 1.

R 1 nTLUE H, Mg gB R [11(000 1) [H 1) HLF- D) iR
BN 3.38 eV, RMEAEHALA 0.42 J/m*; HKH
(0112) KA1 (10 10) [, HL-FTHEREHIA 3.21 eV Al
3.11 eV, FHEAEDHIA 0.59 J/m* 1 0.57 Jm*. — 1
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1 Mg SRR [F) 4 55T 1Y fL 7 Dl R BOR 36 T e
Table 1 Work function(/) and surface energy(c) of Mg phase

for different terminated planes

wi Weall Wex/ o/ Ocall Oexp/

Sutface v ey eV (Im?) (m?) (m?)
3330 3,662 0.52%1  .7812

(0001) 3,38 3.690% 3,847 0.64%1  0.761%

(0112) 321 3.63%) 0.59 0.612¢

(1010) 3.11  3.64%) 0.57 0.642

BUF, MDA, RIMBEERMC, Ui AR %
ML, R AE Ml B 2 ek U HL R T R e
A AT SR T 3X — B a] AR SR T AR e AR 22, A SE Bt
DR AR EAETE . R, 7R RS MRS 3R
TR, 4 Mg(0001) i N EEHET, 438728 —AH
R Z R R B 1 FisA Mg(0001) 5 T 1)
Fr A AR 2R

5L Vacuum level

Fermi level Witg00o1=3-38 eV

_20 1 1 Il
0.4 0.6 0.8 1.0 1.2 1.4 1.6

Z/nm

B 1 Mg(0001)if & FiL 34 it il 26
Fig. 1 Electrostatic potential curve of Mg (0001) surface

2.2 AlLCa BFIIERHATE

ALCa J& T ILJ7 d R GG, Ak 5 i fn % 2
a=b=c=8.023 A, HARALLE R 5524 a=b=c=8.02 A
FFAR P a=b=c=8.02 A BENTF & . B XRD 20 Hraf
A1, Al,Ca FIATH G BB 2 HIEE, PL(311). (112)
AN(L10)E PR Y. PRI B AL Ca AR
pe R AT R, JF 5 Mg Jeik i1 Dy ek sk
A7 EeAge, BT R AS [ FL A A S i b VR - R ALCa
A REER AT LG Y, AL JE PRI Ca JR A HEHES, —
S ST ) AL R TA Ca JR T 2 MRS, T L
T DU 2 IR TE R (B s DR AR 3 T (2 e
SXof [7i) = & T AR AN [i) ()7 8 5 38 T 459 81 AN [i) ) 28 425 T

LR 1 ARSI AN R, 45 21 H 3 2h R B A
FAF o R, DA SEOIR A I R %At 1 S e
WIVEFE, JRSL T R dh i AR AR St AR, %A
s [T R FL 7 D R BB AN 2 B

T2 AlLCa AN[FAIZ ST 1 H T D ek
Table 2 Work function of Al,Ca phase for different

terminated planes

Surface Terminated plane WieV
A-mixed(Al,Ca) 3.002

(110) B-mixed(Al,Ca) 3.052
C-mixed(Al,Ca) 3.022

A-mixed(Al,Ca) 3.171

(112) B-mixed(Al,Ca) 3.185
C-upper plane-mixed(Al,Ca) 3.424

Lower plane-Ca 3.053

A-Al 3.628

(311) B-upper plane-Al 3.689
Lower plane-Ca 3.016

A-mixed(Al,Ca) 3.023

(310) B-upper plane-mixed(Al,Ca) 3.151
Lower plane-Al 3431

(on) A-mixed(Al,Ca) 3.057
B-mixed(Al,Ca) 3.051

Kl 2 RN ALCa(110)HE ) H EARL, RELT I
FRESROBIOTR, B2 40T 3 MEmr U
3 FhEREUT 38 A LLR A (AL, Ca) W L5 TH I Fr 2 A
B, WERERNE 2 . 45RRME—HTEHHA
A4 S5 T T DR BUE A, BV R 45T A R
JuE, BETFHEBIT L& PR R FANA, e

@—6-€

B2 AlLCa(110) AR JE 72445 Z R
Fig. 2 Slab models of different atomic terminated planes for

Al,Ca (110) surface
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FEAEANE IR EUE . B 3 RN AlCa (112)[H
R R, N TR EEEE RS, R T BRI
XIRR G AR, JERA T 3 AT =,
Wl 3 frs, HE 3 tia). (b)) LR G (AL Ca) NZ
ZETH, C 2RI & AR A (AL Ca) AR S5 THI 1 Fr R,
AR DL AL RS R BB, X BRI
ANKEFRIARTE, R T AR AE IE I 7735 v B
TREMBEFINRE, THESENTE 2. D
ALCa(112)-C ittt 7 s S ae i 4, 45 Rl 4 fros.
HHE 4 7151, Al Ca b RPRIM HF D) sk HUE A,
K H 3 K fE 2 (Fermi Level{EZ18—0.014 eV, R
(Lower plane)fft] B 4% fE 4 (Vacuum level)}y 3.039 eV,
[ (Upper plane)IEZFHEHN 3.411 eV, HIHK(2)
3 BRI T D) R EUE 230 3.053 eV il 3.424
eV. ERFZEMA A TR, ALl Al JE¥
Al Ca JE-F NALEHIMAREIZL, HMZLLALRTH
ALEFREM 2, ERBGIERMALE I T8,
Tt A T A 1) R S

Bl 5 FimA ALCa(311). (310)HI(101)[ [ F 245
A, HA311)-4 fI(310)-4 KA T LR RESFRAA
XPRR IO SR L A, (311)-B 1H S (310)-B
A0 R 7 B F xRS X, BT IhE

B3 AlLCa(112)MHiA [ Ji -1 2 £ ) Fr R AR
Fig. 3 Slab models of different atomic terminated planes for
Al)Ca (112) surface

Vacuum level

Fermi level

W oppe=3-424 eV

upper

Wiowe=3.053 eV

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Z/nm

4 ALCa(112)[H ) HL 35 BE H 25
Fig. 4 Electrostatic potential curve of Al,Ca (112) surface
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Fig. 5 Slab models of different atomic terminated planes for
different Al,Ca surfaces: (a) Al,Ca (311); (b) Al,Ca(310); (c)
Al,Ca(101)

B R 2 Frol. hE 2 B, ALCa I
TR EEEIN(3.002~3.689 eV), BT T e 1K BUE
YEFIECR, 258 0.7 eV, 5 Mg(0001)[H 1) H T 2 e £
3.38 eV AHEL, &N ShTH7E Pl F8 H 4E FAS D,
e (311)-4 1fi. (112-C-IR A (AL Ca))ifi« (310-B- R
TH-ADTH PA 2 (311-B-"F K THI-AL)THI ¥ HEL T Zh pR HUK T
Mg(0001) [ [ FEL T IR . ma()al&n, FiRAAE g
FEN(2T~193 mV), 241X 63 [ 52 55 7 FL AL 1 J6 ol
Wi, RERT, U, X Mg BRI
PSS, T (110)H < (112)-4 T« (310-4-T8 & (ALCa))
i+ (112)-B [« (101)[f. (311-B- F#H-Ca). (112-C-
N If-Ca). (310-B-_ LK -1 A (Al,Ca)) I (1) H 7 I8
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BREINT Mg(0001) I i) HL TSR BOREUH [H], HAE
HL A 22 2)(—236~—121 mV), %I % 55 7E Ak 2230 s
B, DY BT, TS A BHBAH , D AR ) B i R

2.3 MgpAl, BFINRETHE
Mg Al RS TEEH, S H S SEGE T,

RALLE RN a=b=c=10.5726 A, HAR LG R5iH5
E5%a=b=c=10.56 A FILI1Ea=b=c=10.55 A 55
BUF, BT MgpAl, M REMECNE S, HT4H
RZ, BRIk, LR DA TR T SR AN [R] 24 &5 1 1Y)
LT Dk ARAE ST 2 AR AN, 2R T
R RTR R FI AKX AR AT 3, X FAK IR 2
SRR A TR IR 50 5T L 2y R U0
Kl 6 Fis A Mg;Aly, [RI(001) T« (110) T AT(111)TH
FERER, D EE R 3 . B 6(a)tiRH

(2)

(®)

©

@, © [ J
:ro: sto G!q;g&é‘ Eg .& (8..!0 & v fL] 0
A B
6 Mg Al AN[F I 5~ A S5 T Fr 2 AR
Fig. 6 Slab models of different atomic terminated planes for

different Mg;;Al;, surfaces: (a) Mg;7Al;,(001); (b) Mgi;Al;,
(110); (c) Mg;7AlLp(111)

[ Vacuum level

Fermi level /Upper;

W ppe=3.855 eV

upper

Wipe=3.331 eV

_18 L
0.4 0.6 0.8 1.0 1.2 1.4 1.6
Z/nm

E7 Mg,Al(110)-B TH [F e I 28
Fig. 7 Electrostatic potential curve of Mg;Al;, (110)-B
surface

3 MgpAly &N RIS T HL T D ek 4
Table 3 Work function of Mg;;Al;, phase for different

terminated planes

Surface Terminated plane W/eV
A-Al 3.618

(001)
B-mixed(Mg,Al) 3.253
A-upper plane-Mg 3.289
Lower pane-Al 3.543

(110)
B-upper plane-Al 3.855
Lower plane-mixed(Mg,Al) 3.331
A-upper plane-Al 3.637
Lower plane-Mg 3.432

(111)
A-upper plane-Al 3.815
Lower plane-Mg 3.484

T ER AT B 6(a)H 4 LA Al NS TH
(R ZHERY, B 2 LR A (ALM)E 2R S5 T () 1 2 A
A B 6(b)KH ENREAMRMER TR, B 1L
R 2905 DL Mg JE TR ALJR T & S5 TH I Fr SR
A, B ETRESHLL AL JFE T, BAEALMe)EN
KEETH I R B 6(c) R L R AN BRI By
X, Hr 4 f B ETFRISZLL AL FEFH Mg 5
TNAEHM T EHER, FHEERYTX 3, L
Mg;AlL»(110)-B A1, {7 # s aeih 2.

EB%% 3 Ef%l], Mg17A112 E/‘] %%m@ﬁ”ﬁﬁ/‘]ﬁ%
(3.253~3.855 eV), H:H1(001-4-AH+ (1)1 (110-4-
N R TH ALY T A1(110-B-_F 3 [ -Al) [ ) HL T 2 R £0K
T Mg(0001) [ Y HL T bR 2, AAEHL R ZE LA N
(32~475 mV), TEHMZER PR G L HT, 784
e, &R Mg BRI ;AL Ca A S TH 5 5
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PRI DR BUE AR, AR AL, ARG R A
JE . 53 2 AHECATAN, MgAly, 9 HT D R BB
KT ALCa B TIheR BE, AL ALCa BRI
M, 5SS

2.4 Mg,Ca BFIIERHITE

Mg,Ca J& T7577 i REEM, W fks S 5ok
b 15 8 a=b=6.254 A, c=10.103 A, 5itH 14
a=b=6.23P"A, ¢=10.09 A FI5256 1 a=b=6.253" A,
c=10.141 A FFEHUTF. SR BRI FRS AR
(AT ST MgyCa L T PR F 1 2 R

Kl 8 7N Mg,Ca ARl i I Fr 21548, [ 8(a)
PR BN R AR AT 50, K 4 2D Mg &
T RALEH I ERA, B2 LIRAMg,Ca) W& 45 H
[ =8 [ 8(b)¥ R A b R FR AU T =X
HZLPLREMg,Cay N4 4. T K 9, Mg,Ca 1
(0001)ifi~ (01 11) T~ (1102 3K FHAH [ (i AU 7 (-
NIHEXTAR), HA AL CRL Mg R NAEETH T A2
B, EJ& DL Ca JE T ONASETHIN B E R MgyCa (1)
(0111)-B T~ (1101)-E T K FHANF #8538 R 1
ASKFFRY, (0111) -B [Hi A LA Mg JE T 2R GE T ) Fr 2
A, (1101)-E B ERIZE L Mg B ALK A Z

(@
[(®] Mg

© Ca

0]
(b)
@ Mg
© Ca
D @ G0 ©
© ® z
oW e
e oi %)
A B e

El8 Mg,Ca AR T2 45 ) v 2
Fig. 8 Slab models of different atomic terminated planes for
Mg,Ca (00 10) (a) and Mg,Ca (1100)(b) surfaces

2019 4E 2 A
(] Mg
© Ca
I:..(_..I
.o" .: :‘ ..:."
° © ol $
: ..:.. ::: a.. @ £
[l €40, oo & Jo% yﬁO
B C

9 Mg,Ca HIA AT J5 12 45 1 1 )2 A

Fig. 9 Slab models of (0001) surface(4), (0111) surface(B),
(0111) surface(C), (1102) surface(D), (1101) surface(E) of
Mg,Ca

B, RERTELL Ca JEFALGHMN Y EZHA, it
ARG T£ 4, LL Mg,Ca(0001)[ AFI i T &b
Mhzk, WKl 10 s

RIEE 4 AT%1, Mg,Ca I HLF Ih ik 51 Vi [ 2
2.611~3.244 eV, HTINRBMIUEIEES Mg),Al,
IHEE AR, 5 Mg(0001) [ 1) H T B AUE 3.38
eV AL, &SSO E A F . FTRAE H,
Mg,Ca AN [F] 2 25 T ) FL ¥ D B AU R T Mg(0001) [f
(I D) R, AMEH 72 N-480~—85 mV, KT
Mg ZEMA B 2, Smbrgift—8. H,
Mg,Ca(0001) i [ Y HL - D R E 5 3.244 eV, 55256
{8 3.16 eVE IR &0 47E LA B R P24 MgyCa
FHEE, WG R, TR APHRAR, B A ok
AR, PR EA S T e .

R4 MgC, & ANF) A L5 ) L Th R £
Table 4 Work function of Mg,Ca phase for different

terminated planes

Surface Terminated plane WieV
_ A-Mg 3.03
(1010)
B-mixed(Mg,Ca) 2.72
A-mixed(Mg,Ca) 2.663
(1100)
B-mixed(Mg,Ca) 2.618
(0001) A-Mg 3.244
_ B-upper plane-Mg 2.611
011D
Lower plane-Mg 2.946
(0110) C-Mg 3.023
(1102) D-Ca 2.768
E-upper plane-Mg 2.901
(11o1)
Lower plane-Ca 2.644
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Vacuum level

Wy=3.244 eV

0 p_Fermilevel / ____

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Z/nm
B 10 Mg,Ca(000 1) )& HL 24 i i 28
Fig. 10 Electrostatic potential curve of Mg,Ca (0001) surface

3 &g

1) BEEHE MRLT Mgi,Al, BT IR
FEMERT Mg AR 7Dk s, AmkERT,
TEJE A R 78 MBA AR AlL,Ca HL-FIh R 2L 10734
B5 Mg AR T DR BOHE R, 75 i 5 24 1)
FT s MgoCa HLF DI BB /N T Mg ZER I
TUIRH, SR ZSHT, FERE e 2 P AR AR .

2) AlLCa fl Mg,Ca 5 Mg FE/RMHHAZ(KT
Mg,;Al, SRR AZE, mIERAE Ca 85 &M
JE v P B A 2 N5 .
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First principle study on micro-corrosion of
magnesium alloy with Ca contents

ZHANG Yong, BAI Pu-cun, CUI Xiao-ming, CAO Wen-tao, HOU Xiao-hu, LIU Fei, WEI An-ni

(School of Material Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China)

Abstract: The Fermi level, vacuum level, electronic work function and the intrinsic potential difference of the main
second phases (Al,Ca, Mg,Ca, Mgj;Al};) of magnesium alloy with Ca contents were calculated by using the
first-principles method based on density functional theory. The electronic mechanism of the corrosion resistance of Mg
alloy with calcium contents was analyzed. The results of electron work function show that the mean electron work
function of Mg;,Al,; is larger than that of Mg matrix, and Mg;,Al;, acts as cathode phase in corrosion. The mean electron
work function of the Al,Ca is the same as that of the Mg matrix, which is similar to the matrix in corrosion. The average
value of Mg,Ca electron work function is smaller than that of Mg matrix and acts as anode phase in corrosion. The results
of intrinsic potential difference show that the potential difference between Al,Ca, Mg,Ca and Mg matrix is lower than
that between Mg;;Al;, and the matrix, the corrosion resistance of Mg alloy with calcium contents is strengthened.

Key words: magnesium alloy; intrinsic potential difference; second phase; electronic work function; galvanic corrosion;

first-principles
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