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Abstract: The bulk metal forming processes were simulated by using a one-step finite element (FE) approach based on deformation 
theory of plasticity, which enables rapid prediction of final workpiece configurations and stress/strain distributions. This approach 
was implemented to minimize the approximated plastic potential energy derived from the total plastic work and the equivalent 
external work in static equilibrium, for incompressibly rigid-plastic materials, by FE calculation based on the extremum work 
principle. The one-step forward simulations of compression and rolling processes were presented as examples, and the results were 
compared with those obtained by classical incremental FE simulation to verify the feasibility and validity of the proposed method. 
Key words: bulk metal forming; plastic deformation theory; finite element method; one-step forward simulation; rigid-plastic 
materials 
                                                                                                             
 
 
1 Introduction 
 

In 1970s, LEVY et al[1] applied plastic deformation 
theory to the finite element(FE) simulation of sheet metal 
forming processes and developed one-step inverse 
approach. In this method, the final part shapes are 
prescribed and the initial blank sheet configurations are 
solved, satisfying the external force conditions based on 
the finite element formulation taking account of 
deformation theory as well as static equilibrium 
condition. The one-step calculation is capable of 
efficiently handling complicated sheet forming problems 
and providing that the results are in close agreement with 
incremental FE predictions. 

Bulk metal forming processes are nonlinear and 
large deformation problems, which are solved by 
incremental FE simulation in general[2−3]. Compared 
with sheet forming processes, the deformation path and 
the contact history between workpiece and tool in bulk 
forming processes are more complicated. It is much 
difficult to apply the deformation theory to bulk forming 
simulation[4−5]. Consequently, despite the remarkable 
progresses that have been achieved in one-step approach 

for sheet metal forming simulation[6−8], the applications 
in bulk metal forming are seldom studied. 

In recent years, only a limited number of 
researchers devoted to the solution of bulk metal forming 
processes by means of deformation theory. The ideal 
flow theory based on deformation theory has been 
already applied for plane strain and axisymmetric bulk 
forming problems[9−11]. This approach involves strict 
assumption for the minimum plastic work path, so that it 
may not be feasible for conventional forming processes 
and tools. A large time increment (LATIN) method was 
put forward for non-linear mechanical behaviour, 
adopting an iterative procedure that takes the whole 
loading process into account in one step by internal 
variables[12]. This method has already been applied to 
the metal forming processes simulation[13−15]. But, it is 
difficult to understand the principle and implementation 
procedure of the algorithm. SIMO and ORTIZ[16] and 
BRUNIG[17] built a framework of nonlinear FE 
procedure for finite deformation elastoplastic problems 
based on deformation theory of plasticity. In this method, 
a hyperelastic constitutive law based on a free energy 
potential function was used, in which stress measurements 
were related to Green strain. This procedure has been 

                       
Foundation item: Project(50575143) supported by the National Natural Science Foundation of China; Project(20040248005) supported by the Specialized 

Research Fund for the Doctoral Program of Higher Education of China 
Corresponding author: WANG Peng; Tel: +86-21-62813435; E-mail: wpengw123@sjtu.edu.cn 
DOI: 10.1016/S1003-6326(09)60134-5 



WANG Peng, et al/Trans. Nonferrous Met. Soc. China 20(2010) 276−282 

 

277

applied to bulk forming permitting large increment size. 
However, it has not been investigated to solve practical 
problems involving contact condition by this method. 

In the present work, the bulk metal forming 
problems were analyzed by a one-step FE approach 
based on deformation theory of plasticity[18−19]. 
 
2 One-step FE simulation scheme 
 

One-step FE approach for bulk metal forming has 
some different features from the incremental FE 
approach. It is based on the plastic potential energy, 
relating the initial configuration to the final configuration 
in one step. The solution was obtained by minimization 
of the function, which is an approximated plastic 
potential energy derived from the total plastic work and 
the equivalent external work. 
 
2.1 Kinematics 

Due to the large computing step size between the 
initial and the final configurations, it is inevitable to 
consider the geometrical non-linearity. In the Cartesian 
coordinate system, by adopting Lagrangian description, 
Green strain tensor related to the displacement is defined 
as 
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The strain field can be defined over the elements by 
the nodal displacement vector as 

{ε} e}]{[ uB=                                 (2) 

where {ε} is the strain vector, [ ]T}{ rzzr εεεε θ=ε  
for axisymmetric problem, [ ]T0}{ xzzx εεε=ε  
for plain problem; and the geometric matrix [B] is 
decomposed as 

][][][ NL BBB +=                             (3) 

where [BL] and [BN] are linear and nonlinear items of 
geometric matrix, respectively, which are given 
explicitly as follows: 
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where p=N/X1 for axisymmetric problem; and p=0 for 
plain problem. 
 
2.2 Constitutive equation 

Constitutive equation for one-step FE approach is 
based on Ilyushin deformation theory, which is suitable 
for the work hardening material, ignoring elasticity. 
Adopting Mises yield condition, the constitutive 
relationship between stress and total strain is defined as 
 

ijij σ
σ
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2
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where ,σ  ,ε  σ′ij and p

ijε  are the equivalent stress, the 
equivalent strain, the components of stress deviator and 
plastic strain, respectively. The strain is a function of 
current stress state, independent of stress history. 

The equivalent strain is defined by 
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Through estimation of total strain {ε}, we can 
compute ε  by Eq.(10), then estimate the stress by 
Eq.(9). This operation is performed for each numerical 
integration point by iterations. 
 
2.3 Plastic deformation energy 

Based on the constraint variational principle and 
deformation theory, by taking the deforming body and 
specified surface tractions as a system, energy function is 
expressed in current configuration in static equilibrium 
by the principle of extremum work. The 
incompressibility is enforced by penalty function. Then, 
we can establish the functional as 
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where α is the penalty factor; εV is the volumetric strain; f 
is the surface traction; and u is the displacement of the 
traction surface. 

Among admissible displacement fields satisfying 
the condition of compatibility and incompressibility, as 
well as the displacement boundary conditions, the actual 
solution minimizes the function. After finite-element 
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discretization, a nonlinear equation system is established 
by minimizing eπ : 
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The geometrical nonlinear items containing BN are 

transposed as fictitious load directly, and geometrical 
nonlinearity is omitted in penalty function item. 

Eq.(12) is solved iteratively by using the 
Newton-Raphson method 
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where b=(BL)TBLue; [Kf] is the item by frictional work. 
Eq.(14) can be written in following form 
 

PuK =Δ⋅                                 (16) 
 
where K is the stiffness matrix and P is the residual of 
the nodal point force vector. 
 
2.4 Boundary conditions 

Since the large time step is involved, the contact 
boundary conditions between the workpiece and the tool 
are simply treated. A fictitious sliding constraint surface 
is introduced to replace the geometry of tool and to guide 
the movement of boundary nodes only on it during 
Newton-Raphson iterations, dispensing with treatment of 
contact. Moreover, it is inevitable to estimate the work of 
the external force through considering the history of 
contact by means of equivalent method. As for some 
bulk forming processes, the equivalent work of external 
force can be estimated by recording the relative 
tangential displacements of boundary nodes on the 
sliding constraint surface between the initial and final 
configurations. The shear friction model is adopted. 
Because this model is velocity-dependent, the 
displacement is converted into pseudo-velocity by 

introducing the virtual loading time. The friction force 
model is expressed by 
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where f is the friction coefficient; k is the shear strength, 

3σ=k ; u0 is a constant, u0=10−5; and Δus is the 
relative node velocity, which is the pseudo velocity by 
means of dividing displacement by virtual loading time. 

The fictional work item in the function is 
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The local coordinates are employed to define the 
sliding constraint surface for each boundary nodal point. 
The stiffness matrix K and the residual force vector P 
should be transformed into the local coordinates using 
the transformation matrix T 
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where the subscript i designates the node number; and θi 
is the angle from the global coordinate to the local 
coordinate in counterclockwise direction. 
 
2.5 Initial guess of displacement field 

Because of large step length between adjacent 
configurations, the deformed history is considered 
approximately, which results in high nonlinearity in the 
computation. It is prerequisite to get a reasonable initial 
solution of displacement to start calculation. Compared 
with sheet forming, the shapes of billet and workpiece in 
bulk forming are more complicated. As far as forward 
simulation of bulk forming using deformation theory, it 
is necessary to preset the final configuration according to 
incompressible condition, forming processing and tools 
etc, before getting the initial solution. Then, we can 
obtain two sets of FE meshes with the same topological 
relationship on the initial and the finial configurations by 
means of mapping. 

For example, in compression of square rod, the final 
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workpiece configuration could quite easily be preset by 
satisfying the volume constancy and guessing the barrel 
profile. Then, meshes are generated by mapping. The 
procedure of mesh mapping is described as follows. 
Firstly, the initial meshes of billet are projected to the 
workpiece along the height direction, namely, the 
boundary nodes on the top and bottom surfaces of the 
billet are projected on the top and bottom surfaces of the 
workpiece respectively. Then, all inside nodes are 
distributed uniformly along the height direction, without 
changing width coordinates of all nodes. At last, the 
width projection of meshes is performed by the same 
method. 
 
3 Numerical examples 
 

Based on the above formulations, the one-step 
simulation program for bulk metal forming using 
deformation theory of plasticity is developed. For 
comparison, ABAQUS/Standard is used to provide 
simulation results of incremental FE approach. 
 
3.1 Compression of square rod 

The compression of square rod is studied as an 
example due to its relevance in bulk metal forming 
application. Width and height of billet are 20 mm and 15 
mm, respectively. Material hardening behaviour is 
assumed to be ,0.10 2.0ε=σ  f=0.1. The one-step 
forward simulation is performed under plain strain 
assumptions, and symmetry FE models are accomplished 
by discretizing only half the cross section of the 
geometry by means of 150 four-node quadrilateral 
elements and 176 nodes. 

From Fig.1, it can be seen that similar barrel 
profiles are obtained by both one-step and incremental 
simulations. By taking the contact histories of workpiece 
and tool into account equivalently, the effect of frictional 
work on deformation is realized. It seems to indicate that 
 

 
Fig.1 Comparison of barrel profiles obtained by one-step and 
incremental FE simulation 

the one-step FE approach has a tendency to 
underestimate the barreling effect. These discrepancies 
maybe mainly result from the employment of simplified 
method to deal with frictional work. 

Fig.2 presents the comparison of equivalent stress 
from the center to the outside of the billet along the 
width and height directions by one-step and incremental 
FE simulations. The average errors along the width and 
height directions are 0.57% and 2.21%, respectively. 
These discrepancies maybe mainly derive from the 
employment of deformation theory, large step kinematic 
description and simple method to deal with boundary 
condition. However, the result of one-step FE approach 
is still acceptable. 
 

  
Fig.2 Comparison of equivalent stress distributions obtained by 
one-step and incremental FE simulations at height reduction of 
33% 
 

Fig.3 presents the comparison of equivalent plastic 
strain contours by one-step and incremental FE 
simulations. It can be seen that the strain distributions by 
both methods are in good agreement on the whole. 

The computing step number and the computing time 
at height reduction of 33% by the two methods are 
compared in Table 1. All the one-step computations adopt 
 

 
Fig.3 Comparison of equivalent plastic strain contours by 
one-step (upper) and incremental (lower) FE simulations at 
height reduction of 33% 
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Table 1 Comparison of computing step number and computing 
time between one-step and incremental FE approaches 

Adopted method Increment Iteration Time/s 

One-step FEM 1 9 0.42 

Incremental FEM 13 43 1.50 

 
one increment step, and the iteration number is less. The 
calculation is executed on a personal computer with 
Pentium(R) 4 CPU 3.0 GHz and 1 GB memory. 
Apparently, one-step FEM is more efficient than 
incremental FEM. The average time saving is up to about 
72%. 

One-step FE approach deals with the total amount 
of deformation between two configurations by the 
principle of extremum work, whereas the effect of 
deformation history is only implicit. The calculated 
results of one-step simulation for compression are quite 
accurate, which may be attributed to the approximation 
of linear strain path in the process. From Fig.4, we can 
see that the ratio of the principal true strain for 
compression of square rod is almost constant during 
deformation. 
 

 
Fig.4 Deformation paths of compression of square rod and 
rolling of flat plate 
 
3.2 Rolling of flat plate 

Rolling of flat plate is a basic metal manufacturing 
technique, in which the deformation path is almost linear 
(Fig.4) and friction plays an important role as it is the 
only mechanism by which the plate is pulled through the 
roll stand. Thus, it encounters both opportunity and 
challenge to perform one-step calculation. 

There are discontinuous effects of friction on 
deformation during the plate rolling. The contact 
situation of metal in the deformation zone is shown in 
Fig.5. Initially, the plate is drawn by the roller. When the 
plate contacts with the roller, the plate moves slower 
than the roller surface. The plate presents a relative  

 

 
Fig.5 Metal contact situation in zone of deformation 
 
slip in the backward direction in this zone. It is called 
backward slip zone. As the plate is drawn into the zone 
under the roller, it is pushed out of the backward slip 
zone and moves faster than the roller surface. This 
causes the relative slip of plate in the forward direction. 
This region is called forward slip zone. 

In order to handle such friction condition, an 
equivalent treatment of friction in plate rolling is 
presented, which is suitable for one-step forward 
calculation. As we know, when friction is in the opposite 
direction of displacement, the frictional work makes 
potential energy of the system increase, which results in 
the positive frictional work item in .eπ  Contrarily, 
when friction is in the same direction of displacement, 
the frictional work item in eπ  is negative. Accordingly, 
for this case, the frictional work items in eπ  of the 
backward and forward slip zone are negative and 
positive, respectively. Then, the total frictional work of 
the whole process can be estimated by taking the contact 
history into account in terms of the position of boundary 
nodes in the final configuration. 

As shown in Fig.5, the zone between x0 and x2 is the 
deformation zone. Also, it is the frictional zone. The 
demarcation point of backward and forward slip zone is 
assumed to be the geometrical center of the frictional 
zone. As for nodal points of the final configuration in 
different zones, each equivalent frictional work is 
defined as follows. 
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where e

xu , e
1xu  and e

2xu  represent actual frictional 
displacement, backward slip and forward slip 
displacement of contacted boundary nodal point 
respectively; e

xS , e
1xS  and e

2xS  represent actual 
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contact boundary surface, backward slip and forward slip 
boundary surface, respectively. 

By means of above simplified method, the frictional 
work considering the contact history is calculated 
reasonably, which is important in successful one-step 
simulation of plate rolling. 

The rolling of flat plate is analyzed by one-step FE 
forward simulation. The width is negligible and such 
deformation problems can be considered to be in plain 
strain. The length and thickness of plate are 224 mm and 
20 mm, respectively. It is reduced to a 10 mm in height 
by rolling through one roll stand. The radius of the roller 
is 175 mm. The material hardening behaviour is assumed 
to be .0.10 2.0εσ = The shear friction with a friction 
factor of f=0.3 is assumed between the roller and the 
plate. The cross section of the geometry is discretized by 
the four-node quadrilateral elements. There are 246 
elements and 294 nodes in the FE models. 

Fig.6 presents the comparison of deformed meshes 
and equivalent stress distributions by one-step and 
incremental FE simulation, respectively. It can be seen 
that the deformed meshes and equivalent stress contours 
by one-step simulation are similar compared with those 
by incremental simulation. The error of equivalent stress 
extremum is 7.65%. 
 

 
Fig.6 Comparison of deformed meshes and equivalent stress 
(MPa) contours obtained by one-step (a, b) and incremental (c, 
d) FE simulation for rolling of flat plate: 1—1.10; 2—1.92; 3—
2.81; 4—3.74; 5—4.55; 6—5.48; 7—6.26; 8—7.19; 9—8.07; 
10—0.92; 11—1.69; 12—2.46; 13—3.23; 14—4.01; 15—4.79; 
16—5.55; 17—6.32; 18—7.09; 19—7.87; 20—8.64 

 
For this plate rolling process, one-step computation 

also adopts one time step, whereas the incremental FE 
simulation involves 46 time steps under the static 
implicit FE software environment of ABAQUS/Standard. 
The time saving is considerable. 

 
4 Conclusions 
 

1) The bulk metal forming processes are simulated 
by using a one-step FE approach based on deformation 
theory of plasticity. This approach can give a reasonably 
accurate answer with less computational efforts 
compared with incremental FE approach.  

2) One-step forward simulations for square rod 
compression and flat plate rolling processes are 
performed. Numerical simulation results by both 
one-step and incremental FE approach are compared, 
which verify the feasibility and validity of the proposed 
method. 
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