2019 年 1 月 January 2019

DOI: 10.19476/j.ysxb.1004.0609.2019.01.25

羊栖菜对水环境中 Cd²⁺的吸附特性

张晓梅¹,毕诗杰¹,苏 红¹,郭 芮¹,刘红英²
(1.河北农业大学 食品科技学院,保定 071000;
2.河北农业大学 海洋学院,秦皇岛 066000)

摘 要:以非活性羊栖菜粉为吸附剂,研究羊栖菜对水溶液中 Cd²⁺的吸附特性。结果发现:在最佳吸附 pH 为 5, 温度为 313.15 K,吸附剂浓度为 1 g/L,Cd²⁺初始浓度为 40 mg/L 左右时,羊栖菜对镉离子的去除率的最大值为 92.54%,且吸附 10 min 时,即达到最大去除率 93.95%;在 60 min 时,基本达到吸附平衡,羊栖菜对 Cd²⁺的去除 具有快速、去除率高的特点。动力学实验数据符合准二级动力学模型,Langmuir 对热力学实验平衡数据的拟合 较高,最大理论吸附容量为 68.49 mg/g。通过方程拟合和 SEM 分析发现吸附过程发生了离子交换。FTIR 分析显 示,羟基、羧基等官能团在吸附过程中发挥了作用,通过解吸可以实现羊栖菜粉的再生和循环利用。

关键词: 羊栖菜; 镉离子; 环境因子; 吸附机理; 解吸

文章编号: 1004-0609(2019)-01-0211-11 中图分类号: X703.1 文献标志码: A

随着现代工业的不断快速发展,镉矿床的开采、 有色金属的冶炼、电镀、玻璃、油漆以及陶瓷、化纤 等大量工业废水的排放造成了水域环境的镉污染[1]。 与空气、土壤等污染相比,重金属造成的水域污染日 益严重[2-3]。镉及其化合物可溶于水, 目镉类化合物具 有很高的脂溶性、生物富集性和毒性,能在动植物和 水生生物体内富集,参与食物链循环,最终危害人类 生命健康^[1,4-5]。镉可经皮肤渗透、呼吸系统、食物链 进入人体,在肝脏、肾脏和骨质中累积,尤其对肾脏 有明显的损害作用[6-7],同时,会严重损害儿童的记忆 能力^[8]。在重金属的去除方面,海藻作为生物吸附剂 具有高效廉价、适应性好、选择性强、易获得等优 势^[9],近年来,海藻在重金属去除方面的研究受到了 广泛的关注。迄今为止,我国用于研究镉污染的海藻 类型覆盖了褐藻、红藻、绿藻等各领域,其中主要的 有海带^[10]、鼠尾藻^[11]、江蓠^[12]、龙须菜^[13]、小球藻^[14]、 浒苔[15]等,研究发现,褐藻对金属的吸附量比红藻和 绿藻高[16-17],且相关研究多数集中于环境因素对吸附 过程的影响,而对海藻-金属相互作用机理的探讨认 识仍处于初级阶段。相对于活性藻体的生物积累而言, 非活性藻体的生物吸附具有吸附容量大、速度快、选 择性好、适应性强等优势[18-19]。生物吸附中藻体对重 金属的去除机制包括离子交换、表面络合、螯合、吸附、静电作用、微沉淀等,海藻对金属离子的吸附过程是一个复杂的物理化学过程,是多种机理共同作用的结果^[20-21]。海藻与重金属的相互作用是吸附研究中不可或缺的一部分,本文作者在充分考察环境因素对吸附影响的基础上,研究了羊栖菜(*Sargassum fusiforme*, *S.fusiforme*)对镉离子吸附的动力学和热力学,通过扫描电镜(Scanning electron microscope, SEM)、傅里叶变换红外光谱(Fourier transform infrared spectroscopy, FTIR)初步分析羊栖菜对 Cd²⁺的吸附机理,并以 HNO₃和 EDTA-2Na 为解吸助剂,研究了羊栖菜对 Cd²⁺的解吸效果,以期为羊栖菜在水环境重金属的去除方面提供基础资料。

1 实验

1.1 材料与试剂

羊栖菜在渤海养殖。

高纯镉(99.999%)购自济南众标科技有限公司;浓 硝酸、浓盐酸为国产优级纯试剂;氢氧化钠、氯化钠、 氯化钙、乙二胺四乙酸二钠为国产分析纯试剂。

基金项目:河北省食品科学与工程"双一流"建设资金项目(2016SPGCA18);河北省科技计划资助项目(17227117D)

收稿日期: 2017-10-23; 修订日期: 2017-12-25

通信作者:刘红英,教授,博士;电话: 0335-3150261; Email: liu066000@sina.com

1.2 仪器与设备

FD-1 型冷冻干燥机:北京德天佑科技发展有限公司; HZQ-F 全温振荡培养箱:哈尔滨市东联电子技术 开发有限公司; ZEEnit 700P 原子吸收光谱仪:德国耶 拿分析仪器股份公司。

1.3 实验方法

1.3.1 吸附剂的制备

将羊栖菜冲洗沥干,用脱脂滤纸除去表面水分, 适当剪切后置于冷冻干燥托盘,样品厚度不超过 1 cm,预冻后真空冷冻干燥。样品取出后磨粉,过孔 径为 150 μm 的标准筛,用自封袋收集,于内置有效 干燥剂的干燥器中保存。

1.3.2 实验方法

采用 Batch 平衡法^[22],将冻干过筛后的羊栖菜粉 与不同性质的吸附溶液混合,振荡一定时间后,离心 分离上清液,测定吸附后上清溶液中目标金属离子 浓度。

环境因子实验:采用控制变量法,在 1~7 范围内 调节吸附液 pH 以确定最佳 pH;在 0.5~10 g/L 范围内 确定最佳的吸附剂浓度;在 10~100 mg/L 之间调节 Cd²⁺初始浓度,将吸附剂的吸附效果最大化;在不同 的温度下进行吸附,比较温度对吸附平衡的影响;改 变溶液中其他离子的种类和浓度,考察不同离子及其 强度对吸附效果的影响。

动力学模拟实验:改变吸附温度或 Cd²⁺初始浓度, 按 Batch 平衡法进行动力学模拟实验。用 Lagergren 准 一级动力学模型、准二级动力学模型、Elovich 方程拟 合所得实验数据,考察羊栖菜粉对镉离子的吸附动力 学特性。

热力学模拟实验: 配制浓度分别为 10、20、40、 60、80、100 mg/L 的 Cd²⁺溶液,在不同温度下,按 Batch 平衡法进行热力学模拟实验,用 Langmuir 模型、 Freundich 模型、Tempkin 模型及 Dubinin-Radushkevich(D-R)模型考察羊栖菜粉对镉离子的吸 附热力学特性。

解吸实验:分为吸附和解吸两个过程,解吸助剂 选择无机试剂 HNO₃、有机试剂 EDTA-2Na,采用控 制变量法考察解吸助剂种类及浓度对解吸效果的影 响。

羊栖菜粉表面特征分析:将吸附 Cd²⁺前后的羊栖 菜粉干燥后,喷金,采用 15 kV 的加速电压进行扫描, 分析羊栖菜粉的表面形态;对比吸附前后的能谱图, 根据金属离子含量变化进行定性分析。

羊栖菜粉红外光谱分析:将吸附 Cd²⁺前后的羊栖

菜粉进行干燥,粉碎,过筛。将干燥后的样品粉末和 KBr 粉末按质量比为 1:100,在玛瑙研钵中研磨成细 粉,压制成厚度均匀的透明薄片,扫描样品的红外吸 收图谱。

1.4 数据处理与分析

通过式(1)计算去除率 $R_{\rm E}$ (%),式(2)计算吸附容量 $Q(mg/g)^{[20,23]}$,采用式(3)计算解吸效率 $R_{\rm de}$ (%)^[24]:

$$R_{\rm E} = \frac{\rho_0 - \rho_{\rm e1}}{\rho_0} \times 100\% \tag{1}$$

$$Q = \frac{(\rho_0 - \rho_{e1})V}{m} \tag{2}$$

$$R_{\rm de} = \frac{(\rho_{\rm e2} - \rho_{\rm e1})}{(\rho_0 - \rho_{\rm e1})} \times 100\%$$
(3)

式中: ρ_0 为调节 pH 后吸附前 Cd²⁺的初始浓度; ρ_{e1} 为 吸附完成后的溶液中 Cd²⁺的浓度, ρ_{e2} 为解吸完成后溶 液中 Cd²⁺的浓度,单位均为 mg/L; *V* 为吸附溶液的 体积,单位为 L; *m* 为添加的吸附剂质量,单位为 g。

本文图中数据及拟合均用 Origin 8.6 进行处理, 其中红外光谱图是以光谱扫描结果保存 TXT 格式数 据,转换 CVS 格式后导入 Origin 8.6 作图而得。

2 结果与分析

2.1 环境因素实验

2.1.1 吸附液 pH

图 1 所示为羊栖菜粉对 Cd²⁺去除率随吸附液体系 pH 的变化趋势图, pH 会同时影响吸附剂表面的吸附 位点和溶液中金属离子的理化状态,往往对吸附效率

图 1 pH 值对羊栖菜吸附 Cd²⁺的影响

Fig. 1 Effect of pH value on biosorption of Cd²⁺ by *S.fusiforme*

变化呈显著影响^[25]。吸附体系 pH 由 2 上升至 4 左右 时, R_E 呈上升趋势,且速度快,在偏酸的吸附体系中 时,羊栖菜粉表面有限的吸附位点被大量的 H⁺占据, 会阻碍 Cd²⁺的靠近,随着 pH 的增大,溶液中 H⁺浓度 逐渐减小,离子结合位点(比如—COO、PO₄³⁻等)与 Cd²⁺接触量增加,可提高金属离子去除率^[26];pH 在 4~6 时,去除率 R_E 处于平台期,当 pH 继续增大,去 除率出现小幅度下降,可能是因为溶液中 OH⁻浓度的 不断增大,使吸附过程与沉淀过程同时存在,导致吸 附剂实际吸附量下降。实验选取 5 作为该吸附液体系 的最佳 pH。

2.1.2 吸附剂浓度

图 2 所示为 Cd²⁺吸附液浓度为 10、50、100 mg/L 下,不同吸附剂浓度对 Cd²⁺去除率的影响。在低 Cd²⁺ 浓度(10 mg/L)下,随吸附剂浓度的不断增大,镉离子 的 RE 均在 91.77%以上,但其吸附容量下降迅速,可 选取 0.5 g/L 作为最佳吸附剂浓度;在中 Cd²⁺浓度 (50 mg/L)下,吸附剂浓度由 0.5 g/L 增大至 1.0g/L 时, 羊栖菜粉对 Cd²⁺的去除率上升迅速,且吸附容量有一 定程度的增大,后随吸附剂浓度增大,R_E变化进入平 台期,但吸附容量下降迅速,因此,中 Cd²⁺浓度时, 选择 1.0 g/L 为最佳吸附剂浓度; 以 100 mg/L 的浓度 进行实验,在保证较高去除率的情况下,尽量选取有 较大吸附容量的点,选择 2.5 g/L 作为最佳吸附剂浓 度。在吸附液浓度一定时,羊栖菜粉对 Cd²⁺的去除率 随吸附剂浓度的增大而增大,但吸附容量一般随之降 低,在吸附液 Cd²⁺浓度较高时,吸附容量呈先增大后 减小的趋势,可能是因为有限的吸附剂在过高的金属 浓度下,对金属离子的总吸附量受到限制。随着 Cd²⁺ 初始浓度的增大,需要适当增大吸附剂浓度来保证较 高的去除率。

2.1.3 Cd²⁺初始浓度

在吸附剂浓度一定的情况下,羊栖菜粉对 Cd²⁺的 去除率随金属离子初始浓度的增大而降低,但吸附容 量逐渐增大,直至羊栖菜粉表面结构的吸附位点对金 属离子的吸附与解吸逐渐趋于动态平衡。Cd²⁺浓度由 40 mg/L 上升至 60 mg/L 时,羊栖菜粉对 Cd²⁺的去除 率下降程度最大(6.04%),而吸附容量的增大程度非最 大值,综合考虑去除率及吸附容量,在保证羊栖菜粉 对 Cd²⁺的去除率在 90%以上的条件下,选取 40 mg/L 作为 Cd²⁺最佳初始浓度。

2.1.4 温度

调节吸附过程的温度由 293.15 K 变化至 333.15 K, 羊栖菜粉对 Cd²⁺的去除率总体上呈先上升后下降

Fig. 2 Effect of absorbent concentration on biosorption of Cd^{2+} by *S.fusiforme*

的趋势,但幅度变化十分微小,最大值出现在 313.15 K,说明适当升高温度有助于吸附过程的进行,其原 因可能是温度的适当升高可以使羊栖菜粉颗粒膨胀, 吸附剂比表面积增大,物理吸附作用加强^[27]。温度由 313.15 K继续上升,去除率有一定程度下降,可能是 由于温度过高使得吸附剂表面参与吸附的官能团发生 变化^[28]。综合考虑升温所需要的能源消耗和去除率上 升程度较小,可选择以常温作为实验温度。

图3 金属离子初始浓度ρ₀对吸附效果的影响

Fig. 3 Effect of initial concentration of metal ions on adsorption

Fig. 4 Effect of temperature on biosorption of Cu^{2+} by

S.fusiforme

2.1.5 离子强度

2.1.5.1 干扰离子

图 5 表明,吸附液中存在 Na⁺、Ca²⁺时,会严重 降低羊栖菜粉对 Cd²⁺的去除率,干扰离子浓度越大对 Cd²⁺的去除干扰程度越大,且相同浓度下 Ca²⁺对 Cd²⁺ 去除率的干扰性大于 Na⁺。图 6 所示为对干扰离子强 度与吸附容量的关系进行分析^[20],发现吸附量与相应 的离子强度的平方根之间存在一定程度的线性关系, 其 线 性 方 程 分 别 为 *Q*(Na⁺)=0.2515-0.1467*I*^{1/2}, *Q*(Ca²⁺)=0.2084-0.0254*I*^{1/2},*R*²均在 0.94 以上。 2.1.5.2 共存离子

以单一 Cd^{2+} 体系为参照,比较其他共存金属离子 对 Cd^{2+} 的吸附效果。由图 5 可以看出,吸附液体系中 有其他金属共存时,会严重干扰羊栖菜粉对 Cd^{2+} 的吸 附,大大降低其去除率。单一体系中,羊栖菜对 Cd^{2+} 的 R_E 为 65.10%,有相同浓度 Pb^{2+} 存在时, R_E 下降了 28.17%;当相同浓度的 Cu^{2+} 存在时, R_E 下降了 46.64%; 两种离子同时存在时, $R_{\rm E}$ 下降了 51.69%。 Cu^{2+} 对 Cd^{2+} 吸附的干扰性大于对 Pb^{2+} 吸附的干扰性,说明 Cu^{2+} 对 Cd^{2+} 吸附位点的竞争力比 Pb^{2+} 的强^[16],且吸附液中两

图5 干扰离子种类及浓度 I 对吸附效果的影响

图 6 干扰离子强度与吸附容量的关系

Fig. 6 Relationship between interference ion intensity and adsorption capacity

图 7 共存金属离子对吸附效果的影响

种金属离子同时存在时,对 Cd²⁺吸附的干扰性大于单 一金属离子的干扰性。在吸附剂浓度一定时,其表面所 存在的金属离子的结合位点有限,吸附液中其他金属离 子浓度的增加,会加剧金属离子和目标离子对有限吸附 位点的竞争,降低目标金属离子的去除率,且共存离子 种类的不同对目标金属离子的干扰性存在差异。离子强 度表现 出的不同影响特征,可能是金属离子自身性质 不同导致了与藻类表面吸附位点的结合出现差异性,反 映出藻类在吸附不同金属离子时主要吸附机制的差异 性^[20]。

2.2 吸附动力学分析

常用于描述生物吸附体系动力学数据的模型有准 一级动力学方程^[29]、准二级动力学方程^[30]和 Elovich 方程^[20,23],其计算公式如下:

准一级动力学方程:

$$\lg(q_{\rm e} - q_t) = \lg q_{\rm e} - \frac{k_1}{2.303}t \tag{4}$$

准二级动力学方程:

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e} t$$
(5)

Elovich 方程:

$$q_t = \alpha \beta \ln t \tag{6}$$

式中: q_i 、 q_e 分别为吸附时间为 t 时和吸附平衡时的吸 附容量, mg/g; k为动力学速率常数; α 、 β 为叶洛维 奇常数。

以上述 3 种方程对动力学实验数据进行拟合发现 (见表 1),一级动力学方程相关性系数范围为 0.7023~0.9344, Elovich 方程相关性系数范围为 0.7990~0.8723,均相对较小,说明羊栖菜对 Cd²⁺的吸 附不符合该两种方程。准二级动力学方程对数据的拟 合度较高,其相关性系数均在 0.9993 及以上,且由该

表1 动力学方程拟合参数

Table 1	Fitting parameters	of kinetic equation
---------	--------------------	---------------------

方程计算的理论吸附量与实验实际吸附量基本一致。 根据准二级动力学方程的假设:速率控制步骤是化学 反应,该机理涉及吸附剂官能团与金属离子的电子共 享或电子得失^[23],说明羊栖菜对 Cd²⁺的吸附过程发生 了离子交换反应。在 Cd²⁺初始浓度为 40 mg/L 的条件 下,吸附环境温度由 298.15 K 改变为 313.15 K 时,羊 栖菜粉对 Cd²⁺的吸附量由 26.93 mg/g 上升至 29.62 mg/g,说明适当升高吸附环境的温度有助于羊栖菜粉 对 Cd²⁺的吸附,这与温度因素所得的结论相一致。相 同条件下,随金属离子初始浓度的升高,羊栖菜对 Cd²⁺ 的吸附量增大(见图 8(a)); K₂随着初始浓度的增大而

图 8 羊栖菜吸附 Cd²⁺的准二级动力学方程拟合

Fig. 8 Pseudo-second-order model simulation of Cd²⁺ adsorption by *S.fusiforme*

$ ho_0/$ $(\text{mg}\cdot\text{L}^{-1})$ T_{i}	<i>T</i> III	Quasi-first-order dynamic equation		Qua	asi-second-or	Elovich equation			
	<i>T</i> /K	$k_1/$ min ⁻¹	R^2	$q_{ m e}^{ m a}/$ (mg·g ⁻¹)	$q_{\rm e}^{\rm b/}$ (mg·g ⁻¹)	$k_2/$ (g·mg ⁻¹ ·min ⁻¹)	R^2	$\beta/$ (mg·g ⁻¹ ·min ⁻¹)	R^2
10	298.15	0.0130	0.9192	7.3482	7.3584	0.1113	0.9999	7.2129	0.8862
40	298.15	0.0195	0.7691	26.9283	26.9397	0.0499	0.9999	2.0822	0.8227
40	313.15	0.0164	0.9344	29.6168	29.4638	0.0981	0.9999	2.2102	0.7990
100	298.15	0.0149	0.7023	49.6026	49.2611	0.0056	0.9993	0.3539	0.8723

Note: q_e^a is actual equilibrium adsorption capacity; q_e^b is calculated value.

中国有色金属学报

逐渐变小,说明到达吸附平衡所用的时间逐渐变长(见图 8(b))。

2.3 吸附热力学分析

用于描述固体吸附剂吸附重金属的等温线模型主要有 Langmuir 模型^[31]、Freundlich 模型^[32]、 Tempkin 模型^[33]及 Dubinin-Radushkevich(D-R)模型^[34],其计算 公式分别为

Langmuir 模型:

$$q_{\rm e} = \frac{k_{\rm L} q_{\rm m} \rho_{\rm e}}{1 + k_{\rm L} \rho_{\rm e}}; \quad R_{\rm L} = \frac{1}{1 + k_{\rm L} \rho_{\rm 0}}$$
(7)

Freundlich 模型:

$$q_e = k_{\rm F} \rho_e^{-1/n} \tag{8}$$

Tempkin 模型:

$$q_{\rm e} = \frac{RT}{b} \ln A + \frac{RT}{b} \ln \rho_{\rm e} ; \quad B = \frac{RT}{b}$$
(9)

D-R 模型:

$$q_{\rm e} = q_{\rm m} \exp(-k\varepsilon^2); \quad \varepsilon = RT \ln(1 + \frac{1}{\rho_{\rm e}}); \quad E = \frac{1}{(2k)^{1/2}}$$
(10)

式中: q_e 为重金属平衡吸附容量, mg/g(式(7)~(9)中) 或 mol/L(式(10)中); ρ_e 为金属离子平衡浓度, mg/L; q_m 为理论饱和吸附容量, mg/g(式(7)~(9)中)或 mol/L(式 (10)中); ρ_0 为金属离子初始浓度, mg/L; R_L 为分离因 子; k_L 、 k_F 、k 分别为 Langmuir 常数、Freundlich 常数 和 D-R 常数; A、B 为 Tempkin 常数; n 为非均相因子; R 为普式气体常数, 8.3145 J/(mol·K); T 为热力学温度, K; ε 为 Polanyi 电位; 分离因子 R_L ^[24]用于判断吸附是 否趋向于有利吸附平衡, $R_L>1$ 为不利吸附, $R_L=1$ 为 线性吸附, $0 < R_L < 1$ 为有利吸附; $R_L=0$ 为不可逆吸附。 E 为吸附自由能^[20, 24], kJ/mol。E 的大小可用于判断吸 附过程是物理吸附还是化学吸附, 若 E < 8 kJ/mol, 则 吸附过程为物理吸附; 若 8 kJ/mol< E < 16 kJ/mol, 则 吸附过程为化学吸附, 发生离子交换(见图 9)。

以上述 4 种模型对热力学实验数据进行拟合,结 果见表 2。由表 2 中数据可知,Langmuir 模型对数据 的拟合度较高,其相关性系数为 0.9860~0.9913,理论 最大吸附容量为 68.49 mg/g,高于改性甘蔗渣(12.38 mg/g)^[35]、改性板栗内皮(51.28 mg/g)^[36]等,说明羊栖 菜对具有较高的吸附容量。由 K_L 计算的 R_L 为 0.0630 和 0.1046,均在 0~1 之间,说明吸附过程为有利吸附。 Freundlich 模型中 n 值大于 1,表明吸附过程易于进行。

图 9 羊栖菜吸附 Cd²⁺的热力学方程拟合

Fig. 9 Thermodynamic equation fitting of Cd^{2+} adsorption by *S.fusiforme*: (a) Langmuir; (b) Freundlich; (c) Tempkin; (d) Dubinin-Radushkevich (D-R)

表2 等温吸附模型及拟合参数

 Table 2
 Simulation of isotherm models and corresponding parameters

Langmuir		Freundlich			Tempkin			Dubinin-Radushkevich(D-R)						
T/\mathbf{K}	$q_{ m m}$ /	$k_{\rm L}/$	л	n ²	$k_{\rm F}/({\rm mg}^{(1+1/n)})$		n ²	A/	n	n ²	$Q_{ m m}$ /	<i>K</i> /	E/	\mathbf{p}^2
	$(mg \cdot g^{-1})$	$(L \cdot mg^{-1})$	$\kappa_{\rm L}$	ĸ	$g^{-1} \cdot L^{-1/n})$	n	ĸ	$(L \cdot mg^{-1})$	В	ĸ	$(mol \cdot L^{-1})$	$(mol^2 \cdot kJ^{-2})$	$(kJ \cdot mol^{-1})$	ĸ
209.15	49 2160	0 2720	0.0620	0.0012	12 1016	2 4012	0 9467	5 5001	0.0212	0.0461	1.7535	3.2531	12 2076	0.0011
298.13	6 48.2160 0.3720 0.0630 0.99	0.9913	13.1910 2.4813	313 0.8407 5.3881	81 8.9212 0.9401	$ imes 10^{-3}$	$ imes 10^{-9}$	12.3970	0.8811					
212 15	(9.4022	0.2140	0.1046	0.0000	10 4020	1 0 2 7 4	0.05(0	05(0 2.8285 12		50 0 0505	3.8860	3.8684	11 2(00	0.0712
313.15 68.49	08.4932	0.2140	2140 0.1046	1040 0.9800	12.4838	1.82/4 0.9569	2.8285 13.5258	238 0.9383	$ imes 10^{-2}$	$ imes 10^{-9}$	11.3690	0.9713		

Tempkin 模型 R^2 低于 Langmuir 等温模型,说明 Tempkin 等 温 线 不 适 用 于 描 述 该 吸 附 过 程; 由 Dubinin-Radushkevich(D-R)模型参数 k 值计算吸附自由能 E, 其值为 12.3976 kJ/mol 和 11.3690 kJ/mol,均在 8~16 kJ/mol 范围内,说明羊栖菜粉对 Cd²⁺的吸附以化学吸 附为主,发生了离子交换,该结果与吸附动力学中得 到的结论一致。

2.4 电镜及能谱分析

通过 SEM 像可以看出(见图 10), 羊栖菜粉表面微 观结构在吸附前后有明显不同,吸附前,羊栖菜粉表 面有部分聚集物,但整体平整;吸附后,羊栖菜粉表面 凹凸不平,结构多孔,可能是由于在吸附过程中发生 了硝化,但更多官能团的暴露有利于吸附过程的进行。 以能谱图对羊栖菜粉吸附重金属前后的元素变化进行 定性分析(见图 11),发现吸附前,羊栖菜粉中含有 C、

图 10 Cd²⁺吸附前后羊栖菜的 SEM 像 Fig. 10 SEM images of Cd²⁺ before and after adsorption by *S.fusiforme*

图 11 能量色散 X 射线光谱对羊栖菜的化学分析

Fig. 11 Chemical analysis of *S.fusiforme* by energydispersive X-ray spectroscopy: (a) Before adsorption; (b) After adsorption

O、Na、Mg、Al、Si、K、S、Cl、I、Ca等元素,未 检测出Cd元素;吸附后,羊栖菜粉中元素为C、O、 Na、Mg、Al、S、Ca、Cl、Cd,说明Cd成功吸附到 了羊栖菜表面。吸附前后K、I等离子含量有变化(见 表3),在一定程度上说明吸附过程发生了离子交换。

2.5 红外光谱分析

由 FTIR 图谱可发现(见图 12),9 处相对明显的吸收峰,对比羊栖菜吸附 Cu²⁺前后的主要吸收峰的变化,发现吸附后主要吸收峰的峰强有不同程度的增大,且

表3 羊栖菜吸附 Cd ²	*前后能谱分析的元素组成
--------------------------	--------------

Table 3	Energy spectrum	analysis	of element	composition	of
S.fusiform	e before and afte	r Cd ²⁺ abs	orption		

Element	Before at	osorption	After absorption		
Element	w/%	<i>w</i> /% <i>x</i> /%		<i>x</i> /%	
С	56.47	66.31	40.26	52.72	
0	33.54	29.57	43.26	42.47	
Na	0.88	0.54	1.48	1.01	
Mg	0.63	0.36	0.47	0.3	
Al	0.18	0.09	0.47	0.27	
Si	0.21	0.11	-	-	
S	3.19	1.4	1.54	0.75	
K	3.44	1.24	-	-	
Ca	0.9	0.32	1.98	0.78	
Cl	-	_	0.67	0.3	
Ι	0.55	0.06	-	-	
Cd	-	-	9.93	1.39	
Total	100	100	100	100	

图 12 羊栖菜吸附 Cd²⁺前后红外光谱图

多处谱带发生位移,其中特征区^[9, 24, 37]:伸缩振动 v_{O-H} 由3373 cm⁻¹移动至3379 cm⁻¹; $v_{C=O}$ 由1620 cm⁻¹ 移动至1614 cm⁻¹; v_{C-C} 由1419 cm⁻¹移动至1423 cm⁻¹; v_{C-O} 由1253 cm⁻¹移动至1261 cm⁻¹;指纹区基本无 变化,说明参与吸附过程的主要官能团有一OH、 —COO⁻。

2.6 解吸实验

选取不同浓度的无机试剂 HNO₃ 和有机试剂 EDTA-2Na 作为解吸剂,考察不同解吸助剂种类及浓度对解吸效果的影响(见图 13)。以 HNO₃ 为解吸助剂, *R*_{de}随 HNO₃ 浓度的升高而升高,最高为 86.20%,但

采用 0.10 mol/L 或更高浓度的 HNO₃ 作为解吸助剂时, 容易发生硝化反应,不利于吸附剂的再生和循环利用。 有学者研究发现,有机配位体可以与吸附剂表面基团 竞争溶液中的重金属离子,从而到达解吸的目的,同 时,有机配位体也可以与目标金属离子结合后再次以 结合物状态与吸附剂表面结合位点进行络合,增大目 标金属离子的吸附容量^[38-39]。本实验以 EDTA-2Na 为 解吸助剂,其解吸率(R_{de})随浓度的升高呈先升高后降 低的趋势,但整体变化不明显,以 0.1 mol/L 和 0.3 mol/L 的 EDTA-2Na 为解吸助剂时,解吸率有一定程 度的降低,可能是因为溶液中 EDTA-2Na 和金属离子 的结合物与吸附剂结合位点相结合的缘故。0.05 mol/L EDTA-2Na 的 R_{de} 最高(86.86%), 与 0.5 mol/L HNO₃ 的 R_{de}(86.20%)基本相当。综合考虑,选取 0.05 mol/L EDTA-2Na 作为解吸助剂具有相对较大的优势。 EDTA-2Na 上的有机配体在一定浓度时可以与吸附剂 表面参与吸附的官能团共同竞争溶液中的金属离子, 有效促使羊栖菜上吸附的金属离子重新释放到溶液中 去,从而减小金属离子吸附量,达到解吸的目的,促 进吸附剂的再生。

图 13 解吸助剂种类及浓度对解吸效果的影响

Fig. 13 Effects of desorption promoter type and concentration on desorption

3 结论

1) 羊栖菜粉对的吸附过程受到多种环境因素的 影响,其中 pH 的影响较大。在最佳吸附 pH 为 5、温 度 313.15 K 条件下, 1g/L 的羊栖菜粉对 40 mg/L Cd²⁺ 的去除率有最大值 92.54%,且吸附 10 min 时即达到 最大去除率的 93.95%,在 60 min 时基本达到吸附平 衡。适当升高温度有利于吸附过程的进行。

2) 溶液中其他离子,尤其是金属离子的存在会严 重干扰羊栖菜粉对 Cd²⁺的吸附,且浓度越大,干扰性 越大,共存离子种类的不同对目标金属离子的干扰性 存在差异。目标离子的吸附量与相应的离子强度的平 方根之间存在一定程度的线性关系。

3) 动力学实验数据符合准二级动力学模型, Langmuir 可以很好地拟合热力学实验得到平衡数据, 最大理论吸附容量为 68.49 mg/g。通过方程拟合和 SEM 分析发现吸附过程发生了离子交换。FTIR 分析 显示羟基、羧基等官能团在吸附过程中发挥了作用。

4) 解吸实验结果显示,0.05 mol/L EDTA-2Na 对 羊栖菜粉上 Cd²⁺的解吸率为 86.86%,通过解吸可实现 羊栖菜吸附剂的再生和循环利用。羊栖菜可以有效地 去除水环境中的镉离子,吸附容量大,可再生,具有 开发为镉离子吸附剂的潜能。

REFERENCES

- [1] 戴世明, 吕锡武. 镉污染的水处理技术研究进展[J]. 安全与 环境工程, 2006, 13(3): 63-65.
 DAI Shi-ming, LU Xi-wu. Advances on cadmium pollution water treatment technology[J]. Safety and Environmental Engineering, 2006, 13(3): 63-65.
- [2] KUMAR S R, AGRAWAL M, MARSHALL F. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India[J]. Ecotoxicology & Environmental Safety, 2007, 66(2): 258–266.
- [3] 岳 霞,刘 魁,林夏露,周 琪,毛国传,邹宝波,赵进顺. 中国七大主要水系重金属污染现况[J].预防医学论坛, 2014(3): 209-213.
 YUE Xia, LIU Kui, LIN Xia-lu, ZHOU Qi, MAO Guo-chuan, ZOU Bao-bo, ZHAO Jin-shun. Current situation of heavy metal pollution in seven major water systems in China[J]. Prev Med Trib, 2014(3): 209-213.
- [4] ULUTURHAN E, KUCUKSEZGIN F. Heavy metal contaminants in *Red Pandora (Pagellus erythrinus)* tissues from

the Eastern Aegean Sea, Turkey[J]. Water Research, 2007, 41(6): 1185–1192.

- [5] MCGEER J C, SZEBEDINSZKY C, MCDONLD D G,WOOD C M. Effects of chronic sublethal exposure to waterborne Cu, Cd or Zn in rainbow trout. 1: Iono-regulatory disturbance and metabolic costs[J]. Aquatic Toxicology, 2000, 50(3): 231–243.
- [6] 肖春文,罗秀云,田 云,卢向阳.重金属镉污染生物修复的研究进展[J].化学与生物工程,2013,30(8):1-4.
 XIAO Chun-wen, LUO Xiu-yun, TIAN Yun, LU Xiang-yang. Research progress of bioremediation of heavy metal cadmium pollution[J]. Chemistry & Bioengineering, 2013, 30(8):1-4.
- [7] 龚建军. 重金属污染及其分析方法研究进展[J]. 绿色科技, 2017(4): 94-96.
 GONG Jian-jun. Research progress and analyzing methods of heavy metal pollution[J]. Journal of Green Science and Technology, 2017(4): 94-96.
- [8] 王 岙. 食品中铅、镉污染状况分析及控制对策研究[D]. 长春: 吉林大学, 2006: 6.
 WANG Ao. Study on pollution of Pb and Cd in food and controlling countermeasures[D]. Changchun: Jilin University, 2006: 6.
- [9] 丁 洋,靖德兵,周连碧,杨晓松,吴亚君.板栗内皮对水溶 液中镉的吸附研究[J].环境科学学报,2011,31(9):1933-1941.
 DING Yang, JING De-bing, ZHOU Lian-bi, YANG Xiao-song, WU Ya-jun. The adsorption of aquatic cadmium (II) by chestnut inner shell[J]. Acta Scientiae Circumstantiae, 2011, 31(9): 1933-1941.
- [10] 苏 峰. 海带对镉离子的生物吸附研究[D]. 长沙: 湖南大学,
 2009: 19.
 SU Feng. Study on cadmium (II) biosorption on *Laminaris*

japonica[D]. Changsha: Hunan University, 2009: 19.
 [11] 吴海一, 詹冬梅, 刘洪军, 丁 刚, 刘 玮, 李美真. 鼠尾藻
 对重金属锌、镉富集及排放作用的研究[J]. 海洋科学, 2010,

34(1): 69-74.

WU Hai-yi, ZHAN Dong-mei, LIU Hong-jun, DING Gang, LIU Wei, LI Mei-zhen. Study on accumulation and degradation of heavy metals by the Brown alga Sargassum thunbergii[J]. Marine Sciences, 2010, 34(1): 69–74.

[12] 黄鹤忠. 江蓠对 N、P 和重金属 Cd~(2+)、Cr~(6+)、Cu~(2+)、 Ni~(2+)污染的去除效应及其生理生化响应[D]. 扬州:扬州 大学, 2013: 20-21.

HUANG He-zhong. The bioremoval of nitrogen, phosphorus, cadmium, chromium, copper and nickel by *Gracilaria* and its physiological and biochemical responses[D]. Yangzhou: Yangzhou University, 2013: 20–21.

 [13] 王增焕,林 钦,李刘冬,王许诺.大型海藻对重金属镉、铜 的富集动力学研究[J]. 中国环境科学, 2013, 33(1): 154-160.
 WANG Zeng-huan, LIN Qin, LI Liu-dong, WANG Xu-nuo.
 Kinetic study on the bioconcentration of cadmium and copper by large-sized seaweed *Gracilaria lemaneiformis*[J]. China Environmental Science, 2013, 33(1): 154–160.

[14] 陈和祥, 谭凤仪, 邓 丹, 赵春宝. 预处理对小球藻吸附 Cd(II)、Pb(II)和 Cu(II)的影响[J]. 环境科学与技术, 2015(4): 160-165.

CHEN He-xiang, TAN Feng-yi, DENG Dan, ZHAO Chun-bao. Effect of pretreatment of *Chlorella vulgaris Beijerinck* biomass on adsorption of Cd(II), Pb(II)and Cu(II)[J]. Environmental Science &Technology, 2015(4): 160–165.

[15] 郭赣林,朱 明,徐军田,徐 静,陈建华. 浒苔对重金属 Cu²⁺、Cd²⁺的生物吸附及其生理反应[J]. 海洋环境科学,2011, 30(6): 850-852.

GUO Gan-lin, ZHU Ming, XU Jun-tian, XU Jing, CHEN Jian-hua. Biosorption of Cu²⁺ and Cd²⁺ by *Enteromorpha prolifera* and their physiological responses[J]. Marine Environmental Science, 2011, 30(6): 850–852.

- [16] ROMERA E, GONZÁLEZ F, BALLESTER A, BLÁZQUEZ M L, MUÑOZ J A. Biosorption with algae: A statistical review[J]. Critical Reviews in Biotechnology, 2006, 26(4): 223.
- [17] BRINZA L, DRING M J, GAVRILESCU M. Environmental engineering and management journal marine micro and macro algal species as biosorbents for heavy metals[J]. Environmental Engineering & Management Journal, 2007, 6(3): 237–251.
- [18] 刘学虎,张 清. 非活性藻类吸附重金属的研究[J]. 山东化工, 2002(3): 15-17.
 LIU Xue-hu, ZHANG Qing. Research on the biosorption of heavy metals by nonliving algae[J]. Shandong Chemical Industry. 2002(3): 15-17.
- [19] 李 靖. 非活体藻类生物吸附及海带生物吸附剂的初步研究
 [D]. 长沙: 中南林业科技大学, 2009: 3-8.
 LI Jing. Preliminary study on biosorption of nonliving algae and kelp bio-adsorbent[D]. Changsha: Central South University of Forestry and Technology, 2009: 3-8.
- [20] 王建龙,陈 灿. 重金属生物吸附[M]. 北京: 科学出版社, 2015: 475-480.
 WANG Jian-long, CHEN Can. Heavy metal biosorption[M]. Beijing: Science Press, 2015: 475-480.
- [21] 邓莉萍,苏营营,苏华,王新亭,朱校斌.大型海藻吸附水体中重金属离子的机理及影响因素[J].海洋科学,2008,32(8):91-96.
 DENG Li-ping, SU Ying-ying, SU Hua, WANG Xin-ting, ZHU Xiao-bin. Mechanism and influence factors of biosorption heavy metal ions by macroalgae[J]. Marine Sciences, 2008, 32(8):91-96.
- [22] DO D D. Adsorption analysis: Equilibria and kinetics[M]. London: Imperial College Press, 1998: 2.
- [23] 高宝玉,许 醒,岳钦艳. 阴离子生物质吸附材料[M]. 北京:
 科学出版社, 2015: 289-230, 236-245.
 GAO Bao-yu, XU Xing, YUE Qin-yan. Anion biomass

adsorption material[M]. Beijing: science Press, 2015: 289-230, 236-245.

[24] 黄灵芝. 黑藻生物吸附剂吸附水体中重金属离子的研究[D]. 长沙: 湖南大学, 2011: 34.

HUANG Ling-zhi. Adsorption of heavy metal ions from aqueous solution onto *Hydrilla verticillata*[D]. Changsha: Hunan University, 2011: 34.

- [25] 徐鲁荣, 王 宪, 陈丽丹, 李文权. 环境因子对海藻吸附重金 属的影响[J]. 厦门大学学报(自然版), 2003, 42(6): 772-776. XU Lu-rong, WANG Xian, CHEN Li-dan, LI Wen-quan. The effects of environmental factors on macroalgae biosorption of heavy metals[J]. Journal of Xiamen University(Natural Science), 2003, 42(6): 772-776.
- [26] 李彩云.北方水体中藻类富集 Cd²⁺的研究[D].西安:西北农 林科技大学, 2015: 6.

LI Cai-yun. Study on Cd²⁺ accumulation on algae in north water[D]. Xi'an: Northwest Agriculture and Forestry University, 2015: 6.

- [27] HOLAN Z R, VOLESKY B, PRASETYO I. Biosorption of cadmium by biomass of marine algae[J]. Biotechnology & Bioengineering, 1993, 41(8): 819–825.
- [28] 董彩娥. 三种褐藻对重金属 Cu²⁺, Zn²⁺, Cr³⁺, Ni²⁺的吸附研究[D]. 广州: 广州大学, 2015: 21, 38. DONG Cai-e. Studies on the absorption of heavy metal Cu²⁺, Zn²⁺, Cr³⁺, Ni²⁺ by three brown algal biomass[D]. Guangzhou: Guangzhou University, 2015: 21, 38.
- [29] 孙小莉,曾庆轩,冯长根. 多胺型阴离子交换纤维吸附铬(VI)的动力学[J]. 物理化学学报,2009,25(10):1951-1957.
 SUN Xiao-li, ZENG Qing-xuan, FENG Chang-gen. Kinetics of adsorption of chromium (VI) by polyamine anion exchange fibers[J]. Journal of Physical Chemistry, 2009, 25(10): 1951-1957.
- [30] 代群威,董发勤, NOONAN M J,张 伟.面包酵母菌在铅铜 模拟废水中的吸附动力学[J].中国有色金属学报,2010,20(4): 788-794.

DAI Qun-wei, DONG Fa-qin, NOONAN M J, ZHANG Wei. Adsorption kinetics of bread yeast in Pb-Cu simulated wastewater[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(4): 788–794.

- [31] SLEWWAND B G N, VITHANAGE M, WIJESEKARA S S R M, RAJAPAKSHA A U, JAYARATHNA D G L M, MOWJOOD M I M. Characterization of aqueous Pb(II) and Cd(II) biosorption on native and chemically modified alstonia macrophylla saw dust[J]. Bioremediation Journal, 2012, 16(2): 12.
- [32] SAEED A, LGBAL M, AKHTAR M W. Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk)[J]. Journal of Hazardous Materials, 2005, 117(1): 65–73.

Press, 2016.

- [33] AZIAM R, CHIBAR M, EDDAOUDI H, SOUDANI A, ZERBET M, SINAN F. Kinetic modeling, equilibrium isotherm and thermodynamic studies on a batch adsorption of anionic dye onto eco-friendly dried Carpobrotus edulisplant[J]. The European Physical Journal Special Topics, 2017, 226(5): 977–992.
- [34] DUBININ M M. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces[J]. Chemical Reviews, 1960, 60(2): 235–241.
- [35] 熊佰炼. 甘蔗渣吸附废水中 Cd²⁺和 Cr³⁺的研究[D]. 重庆: 西南大学, 2009: 42.
 XIONG Bai-lian. Investigation of the adsorption characteristics of the bagasses to Cd²⁺ and Cr³⁺ in wastewater[D]. Chongqing: Xinan University, 2009: 42.
- [36] 杨娜娜. 改性板栗内皮对水溶液中 Pb²⁺和 Cd²⁺的吸附与解析 研究[D]. 保定:河北农业大学, 2015: 53.

YANG Na-na. Lead and cadmium adsorption and dissociation from water using modified chestnut endothelium[D]. Baoding: Agricultural University of Hebei, 2015: 53.

- [37] 高金波, 吴 红. 分析化学实验指导[M]. 北京: 中国医药科技出版社, 2016.
 GAO Jin-bo, WU Hong. Experimental guidance of analytical chemistry[M]. Beijing: China Medical Science and Technology
- [38] PARDO M T. Sorption of lead, copper, zinc, and cadmium by soils: Effect of nitriloacetic acid on metal retention[J]. Communications in Soil Science & Plant Analysis, 2000, 31(1/2): 31–40.
- [39] SHUMAN L M. Effects of nitrilotriacetic acid on metal adsorption isotherms for two soils[J]. Soil Science, 1995, 160(2): 92–100.

Adsorption characteristics of *Sargassum fusiforme* on cadmium ion in water environment

ZHANG Xiao-mei¹, BI Shi-jie¹, SU Hong¹, GUO Rui¹, LIU Hong-ying²

College of Food Science and Technology, Agricultural University of Hebei, Baoding 071000, China;
 Cocean College, Hebei Agricultural University, Qinhuangdao 066000, China)

Abstract: The adsorption characteristics of Cd^{2+} in aqueous solution were studied by using inactive *Sargassum fusiforme*(*S.fusiforme*) as adsorbent. The results show that the maximum removal rate of Cd^{2+} is 92.54% under condition of the optimum adsorption pH 5, the temperature 313.15 K, the concentration of adsorbent 1 g/L and the initial concentration of Cd^{2+} about 40 mg/L, and when the adsorption is carried out for 10 min, the maximum removal rate is 93.95%, the adsorption reaches equilibrium at 60 min. The removal of Cd^{2+} is rapid and the removal rate is high. The kinetic experiment data conforms to the quasi-second-order kinetics model, Langmuir has a high fitting degree for the equilibrium data of thermodynamic experiments, and the maximum theoretical adsorption capacity is 68.49 mg/g. By means of equation fitting and SEM analysis, it is found that the ion exchange occurs during the adsorption process. FTIR analysis show that hydroxyl, carboxyl and other functional groups play a role in the adsorption process. The regeneration and cyclic utilization of *S.fusiforme* can be achieved by desorption.

Key words: Sargassum fusiforme(S.fusiforme); Cd²⁺; environmental factor; adsorption mechanism; desorption

Received date: 2017-10-23; Accepted date: 2018-12-25

Corresponding author: LIU Hong-ying; Tel: +86-335-3150261; E-mail: liu066000@sina.com

(编辑 李艳红)

Foundation item: Project(2016SPGCA18) supported by the Hebei Province Food Science and Engineering "Double First-Class" Construction Fund Project, China; Project(17227117D) supported by the Science and Technology Plan of Hebei Province, China