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Abstract: Uniaxial strain hardening exponent is not suitable for describing the strain hardening behaviors of the anisotropic materials,
especially when material deforms in the multi-axial stress states. In this work, a novel method was proposed to estimate the
equivalent strain hardening exponent of anisotropic materials based on an equivalent energy method. By performing extensive finite

element (FE) simulations of the spherical indentation on anisotropic materials, dimensionless function was proposed to correlate the

strain hardening exponent of anisotropic materials with the indentation imprint parameters. And then, a mathematic expression on the
strain hardening exponent of anisotropic materials with the indentation imprint was established to estimate the equivalent strain
hardening exponent of anisotropic materials by directly solving this dimensionless function. Additionally, Meyer equation was
modified to determine the yield stress of anisotropic materials. The effectiveness and reliability of the new method were verified by
the numerical examples and by its application on the TC1M engineering material.
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1 Introduction

Anisotropic plastic properties are widely observed
in the industrial materials, especially in the aviation,
such as anisotropic alloys, composite materials and
coatings [1]. Uniaxial test is one of the classical methods
to measure anisotropic properties of materials. However,
this testing method is not applicable for the specimens
with finite volumes. Nano-indentation, as an alternative
approach, has received great attention for its obvious
advantages, e.g. easy sample preparation [2]. Nano-
indentation has shown the ability to nondestructively
measure the local properties of the exceedingly small
sub-volumes of specimens [3,4], such as elastic
modulus [5], residual stress [6,7], fracture toughness [8,9],
as well as the strain hardening exponent in crystal
plasticity [10].

TABOR [11] proposed the representative stress and
strain method firstly to extract the stress—strain curves
from indentation test. MOUSSA et al [12] proposed a
method for the determination of strain hardening law of
materials using the load—displacement curve of a
spherical indentation test. Although some theories and

methods have been well established, techniques in the
relevant fields are still in the developing stages [13—17].

Strain hardening exponent is an important
parameter, which essentially represents the ability of
material to resist the further strain hardening in metal
forming process. For the anisotropic materials, Hill’48
yield criterion was widely used, for its simple form.
However, the strain hardening of the Hill’48 yield
criterion is usually assumed as isotropic hardening, using
the Hollomon hardening law. Besides, in some
conventional FE softwares (e.g. ABAQUS), although the
yield stresses along different orthogonal directions are
different, the strain hardening of materials was assumed
to be isotropic. In fact, the uniaxial strain hardening
exponent is suitable for isotropic materials or the
anisotropic materials along different uniaxial directions.
When dealing with multi-axial stress problems, uniaxial
exponent cannot take other directions into consideration.
Therefore, an equivalent strain hardening exponent is
needed to describe the strain hardening behaviors of the
anisotropic materials.

In practice, it is quite difficult to compute the
residual imprint in indentation test because the shape
cannot be captured accurately [18]. The development of
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FEM (finite element method) provides a very versatile
approach to explore the relationship between the residual
imprint and the mechanical properties. It is able to avoid
many uncertainties in indentation experiments, e.g. the
existence of measuring error [19]. Furthermore, it gives
more complete and accurate predictions than the plastic
deformation theory [20], such as the complicated
multi-axial stress strain states and the pile-up effect [21].

In this work, a new method is suggested to estimate
the equivalent hardening exponent n by only using the
residual imprint of spherical indentation. The advantage
of this method is that it does not need to know the entire
indentation loading history [22]. The residual imprint
profile contains the essential deformation characteristics
of a material, and it is closely related to the material
hardening exponent [21]. When a rigid spherical indenter
is penetrated into the surface of in-plane anisotropic
specimens, the residual imprint is different among
orthogonal directions. Inspirited by that, dimensionless
function between mechanical properties parameters and
residual imprint is established [2]. Because it only
considers in-plane anisotropy and uses dimensionless
function, this approach is quite simple. Furthermore, the
effectiveness of the method is verified by the numerical
experiment and the effectiveness of the equivalent strain
hardening exponent is verified by the experimental
results of TC1M anisotropic materials.

2 Numerical approach

2.1 Material model

The anisotropic theory used in the indentation
simulation is introduced. There are many criteria to
describe the plastic deformation behaviors of anisotropic
materials. Here, the Hill’48 criterion [23] is considered,
for its simple form. Hill’s theory is expressed as Eq. (1):

F (ay—az)z-i- G(ax—ay)2+H (ax—ay)z-i-

2Lz, +2M72 +2N7,, =1 (1)

where F, G, H, L, M and N are anisotropic parameters, o,
0y, 0., Ty, Ty, and ., are the normal stresses and shear
stresses along three axes. The material coordinate is
shown in Fig. 1.

Figure 1 describes the material coordinate used in
the present work, xy plane is the in-plane that
characterizes the anisotropic properties. Three normal
stresses and three shear yield stresses along the
orthogonal axes (x, y, z), are defined as 7, 7,., 7., and
Oyy, Oyy, Oy, Tespectively.

Since the materials exhibit in-plane anisotropic
properties, their stress strain curve is expressed as

Oy =0Oyy =0y: <Oy (2)

where o, is the yield strength.
T, =T, =0, =—F— 3)

And m is defined as the ratio o,,/0y,, that is,
Oy=M0y, 4)

The present work considers the materials which
obey Holloman hardening law, as shown in the following
equations:

o=L¢ (0<0y) %)
o=K¢" (0>0,) (6)

n is the strain hardening exponent, E is the elastic
modulus and KX is the work-hardening strength.

K=o, [i] ™

Oy

Holloman hardening law is able to describe the
hardening behavior of most materials [24—26]. Figure 2
shows the stress—strain curves of anisotropic materials
that obey the Holloman hardening law. When E is known
in advance, two parameters need to be identified, which
are oy and n. In the present work, we focus on the strain
hardening exponent #, independently, and we also extend

y
Fig. 1 Material coordinate system
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Fig. 2 Stress—strain curves of anisotropic materials
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the approach to estimate the yield stress in anisotropic
materials.

2.2 Finite element model in spherical indentation of

anisotropic materials

The one-quarter finite element (FE) model of
spherical indentation test is built with ABAQUS
software [27], as shown in Fig. 3. The longitudinal
direction is along 1-direction, transverse direction is
along 2-direction, and 3-direction is the indenter
loading—unloading direction.

3

Indenter ‘/1\\
/ 1 2

Fig. 3 FE model used in indentation simulation

This model comprises 17200 elements, and refined
meshes are created around the local contact region
between indenter and specimen, as shown in Fig. 3. The
specimen is modeled using C3D8R element type.
Contact friction coefficient between the surfaces of these
two bodies is defined to be 0.1 [28]. Because the contact
friction coefficient between diamond and metals is
around this value, and it is a minor factor in
indentation [29,30]. The displacement of bottom nodes
of specimen is fixed, and the axisymmetric boundary
constraints are applied on the center axis of specimen.
The surfaces of the specimens are assumed as a planar
plate and the indenter load can only move vertically to
penetrate the specimen, and the ratios between maximum
indentation depth and indenter radius 4,,/R are fixed to
be 0.1.

The elastic—plastic properties used for the extensive
FE simulations are listed in Table 1. Poisson ratio v was
fixed at 0.3 because its influence on the inden-
tation response was small [31—34]. The ratio range of

Table 1 Elastic—plastic properties used in FE simulations

79

75<E/0,<1000, contains most metallic materials. The
ratio m varies from 1.0 (isotropic material) to 2.0. In
addition, the hardening exponent n varies from 0 to 0.5.
Totally 180 cases were calculated to obtain the data of
residual imprint. Figure 4 shows the residual imprint of
the specimen after indenter withdrawal.

2.3 Effect of anisotropic plasticity on residual imprint

Figure 5 shows the indentation response of in-plane
anisotropic materials, of which £=100 GPa, 6,=400 MPa
and n=0.1, anisotropic parameter m varies from 1.0, 1.2,
1.5, 1.8 to 2.0. The maximum load increases as m
increases, but the differences are small. This indicates
that it is difficult to evaluate the anisotropy of in-plane
anisotropic materials using solely the load—displacement
curves. So, we suggested here to use the residual imprint
as useful indentation information. When the spherical
indenter penetrates into the specimen, the specimen will
deform as the indenter moves, and an imprint will be left
after indenter withdrawal. Figure 6 shows the simulated
residual imprints of specimens with different m values.
The maximum pile-up value varies obviously as m value
changes. The pile-up height in the low yield stress
direction becomes larger than that in the high yield stress
direction, which is coincident with the results of
YONEZU et al [2]. This indicates that, the shape of the
residual imprint relies on the plastic anisotropic
properties. Consequently, the relationship between
residual imprint and the hardening exponent » should be
investigated.

The schematic diagram of the residual imprint is
shown in Fig. 7. a is defined as the contact radius under
the fully unloaded state. The contact radii along different
directions are equal for isotropic materials while the
contact radii are different for anisotropic materials.
Different contact radii are influenced by the pile-up or
the sinking-in effect. Actually, these differences are
caused by the plastic anisotropy, such as the yield stress
and strain hardening exponent in different directions. So,
it is reasonable to connect the residual imprint with
plastic properties.

Further, the influence of strain hardening exponent
on the shape of the residual imprint was investigated.

Specimen No. E/GPa o,/GPa n m=0y,/0y, Elo,
1 60 0.1 0,0.1,0.2,0.3,0.4,0.5 1.0,1.2,1.5,1.8,2.0 600
2 60 0.4 0,0.1,0.2,0.3,0.4,0.5 1.0,1.2,1.5,1.8,2.0 150
3 60 0.8 0,0.1,0.2,0.3,0.4,0.5 1.0,1.2,1.5,1.8,2.0 75
4 100 0.1 0,0.1,0.2,0.3,0.4,0.5 1.0,1.2,1.5,1.8,2.0 1000
5 100 0.4 0,0.1,0.2,0.3,0.4,0.5 1.0,1.2,1.5,1.8,2.0 250
6 100 0.8 0,0.1,0.2,0.3,0.4,0.5 1.0,1.2,1.5,1.8,2.0 125
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_~ Residual imprint

Fig. 4 Residual imprint after spherical indentation

400 -
350+
300 -
250 -
200 -

Load, L/N

150 -
100 -
50

IIISS
(R
[\S JYSEIELIELNLN

0

0.02 0.04 0.06 008 0.10 0.12
Displacement, #/mm

Fig. 5 Indentation curves of five materials
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Figure 8 shows the changes of the residual imprints at
different n and m values. The height of pile-up and the
contact radius decrease as n increases and then the
mathematic relationship between contact radius ¢ and
hardening exponent # is explored.
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Fig. 8 Residual imprints for materials with three m values:
(a) m=1.0; (b) m=1.2; (c) m=1.5

The equivalent indentation work was used to
characterize the anisotropic parameters of materials, of
which the elastic deformation was assumed in the



Yu HUI, et al/Trans. Nonferrous Met. Soc. China 29(2019) 77-87 81

unloaded stage. The load—depth curve in indentation test
is shown in Fig. 9, where 4, is the maximum indentation
depth, F,, is the maximum indentation force. The area
surrounded by loading curve and x-axis is defined as the
total work W, the area surrounded by unloading curve
and x-axis is the elastic recover work W, and the
difference of W, and W, is plastic work W,

F
o

W=WstW, /

Loaded !

Unloaded w, '

o h h

Fig. 9 Schematic diagram of relation curve between indentation
force and depth (h, is residual displacement, A, is plastic
displacement)

Important displacement variables include the
maximum displacement 4, the contact depth 4., the
elastic displacement /., and the residual displacement #,.
In the indentation test, the materials are assumed that
only elastic deformation happens in the unloading stage.
The profile of the imprint is shown in Fig. 10. According
to Hertz’s contact theory [35], for rigid spherical indenter
and flat non-rigid specimen, the indentation depths can
be described as

h hy—h  h,+h

he=hy ——2=p, —m e I T 8
2 M2 2 ®)

In current literature, the relationship between
indentation work and depth in the dimensionless form is
described as [36]

i:% 9)
ey W,

According to the indentation geometry, the
relationship between contact depth 4 and contact radius
can be described as

h=R-\R>-d* (10)

where R is the radius of rigid indenter.
So Eq. (9) can be rewritten as

(11

Fig. 10 Schematic diagram of geometrical relationships among
contact radius and characteristic depths

Anisotropic materials are also assumed to obey
Eq. (11), but &* should be written as a’. As for
orthogonal anisotropic materials, there are two different
directions. And the projection of the residual imprint is
ellipse, which has two contact radii. @ is defined and
described as
a’= a.a, (12)

When the indentation depth is fixed, the maximum
contact radius and the indenter radius are constant
parameters. The equivalent expression can be described

a=a’*=aua (13)

na* =na’ = ma.a, (14)

Equation (14) can be regarded as the same
proportion of the normal imprint for isotropic and
anisotropic materials. Here, ma,a, represents the area
of the ellipse in Fig. 11.

As for anisotropic materials, the nominal imprint
after indenter withdrawal is ellipse while it is a circle for
isotropic materials. For further illustration, the contact
radii in orthogonal direction are different, a,<a,, because
the yield stress in x direction (longitudinal direction) is
higher than that in y direction (transverse direction). As
assumed early, hardening exponent is an isotropic
parameter, the ellipse anisotropic imprint will be
replaced by an isotropic imprint, which can be regarded
as the isotropic response under the same load. Here,
equivalent circular imprint is proposed to replace the real
imprint such as shown in Fig. 11. The proportion of real
imprint is equal to the equivalent imprint and the radius
of the equivalent imprint is defined as a , which is
regarded as the representative radius of the two axis
(x-axis and y-axis) of the ellipse.

y
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Real imprint

f\\
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Fig. 11 Schematic diagram of equivalent imprint

a
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3 Dimensionless analysis and numerical
computation

In this section, the method is proposed to evaluate
the in-plane strain hardening exponent n based on
dimensional analysis and numerical computation.
Dimensionless function is explored which can correlate
the exponent n with the impression geometry. [/
theorem [37] is a useful tool to establish functional
relation between independent parameters. Contact radius
can be expressed by the following // function:

{ax :Hl(Ea Eia v, y;, R’ m, n, O-y’ h)

15
a,=[1L(E, E, v, v, R, m, n, o, h) (15

where subscript i refers to the corresponding indenter,
and o is the Poisson ratio.
The reduced elastic modulus £* can be expressed as

= +— 16
E E E, (16

Indenter is regarded as rigid body, and the elastic
modulus of indenter is infinite. So, Eq. (16) can be
rewritten as

1 1-0°

~
~

an

5

E E

When R, h and v are fixed, [/, and [/,
functions can be simplified to //; and //, functions,
as shown in the following equation:

{ax =[I(E, m, n, oy, h, R)
(18)
a, =[14,(E, m, n, o, h, R)

As stated in Section 2.3, the residual imprint
strongly depends on the strain hardening exponent », and
the function is established based on this relation. Contact
radius contains all the characters, such as load depth, and
pile-up or sinking-in effects. The values of the contact
radius are different by changing the material characters,

such as yield stress oy, anisotropic parameter m, elastic
modulus £ and strain hardening exponent 7.

In order to establish the relationship between the
imprint and material properties, indentation depth is
fixed as h,/R=0.1. By using the [/ theorem, the
parameter a/R can be expressed as

4o {
R

In Eq. (19), [/5 reveals that the value of a/R
depends on the plastic properties (E/ay, m, n).

TABOR [11] suggested the following relationship

between flow stress and strain in uniaxial tension and the
parameters in spherical indentation:

£, m, n] (19)
o

y

1 F

o =——5 (20)
Y ma
a

& = 0'2§ ©3))

where o, and ¢, are flow stress and strain in uniaxial
tension, respectively, y is the plastic constraint factor
(taken as 3 in Tabor’s work). Inserting Egs. (20) and (21)
into Eq. (6) gives
F a.,
5= 30,(0.2 R) (22)
When the test condition (load depth) is fixed, the
indentation load F is a constant. The relationship
between In(a/R) and hardening exponent n at different
plastic strains is shown in Fig. 12. From the results in all
the FEM data, Fig. 12 shows a close relationship
between In(a/R) and hardening exponent n, in spite of
the small deviation in anisotropic parameters m from 1.0
to 2.0. For simple mathematical expressions, FEM data
are fitted as

In(@/R) =An*+Bn+C (23)

where A, B and C are regression coefficients.

In Fig. 12, the curves are similar under different
strains. In(a/R) is linearly related to the strain hardening
exponent n. The values of coefficients 4, B and C used in
Eq. (23) are listed in Table 2.

Coefficients 4, B and C are strongly denpendent on
the strain value. Their relationships are fitted by Eq. (24),
(25) and (26), respectively:

£ 5.071
A:3.36><10_17{—J +0.1199 (24)
Oy
g 5.071
B:—1.632x1016[—J -0.3396 (25)
O
y
£ —0.3548
C=—1.461(—j -0.5932 (26)
O
y
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Fig. 12 Dimensionless function of [/ at h,/R=0.1 and different E/o, values: (a) E/o,=75; (b) Elo, =125; (c) Elo, =150;
(d) E/oy=250; (e) E/o, =600; (f) E/o, =1000

Table 2 Coefficients 4, B and C used in Eq. (23)

Elo, 4 B c

75 0.1241 -0.3389 -0.8977
125 0.1331 -0.367 ~0.8863
150 0.1525 ~0.4521 -0.8351
250 0.1202 ~0.3069 ~0.7836
600 0.1024 -0.3518 -0.7395
1000 0.1766 ~0.6067 -0.7258

4 Results and discussion

4.1 Numerical verification

In this section, the new approach will be employed
to estimate the strain hardening exponent of anisotropic
materials using several numerical cases, and results are
shown in Table 3. The effectiveness of the approach is
verified by comparing the “input” hardening exponent in
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the FE simulation with those identified by the established
numerical method.

Table 3 Representative numerical cases for effectiveness

verification of strain hardening exponent of anisotropic

materials

Numerical  nput material property Identified Difference
;?Ze E/GPa ¢/GPa m n n ofn
Case 1 60 0.1 12 040 03829 -0.0172
Case 2 60 0.4 1.0 0.50 0.5810 0.081
Case 3 100 0.4 1.5 030 0.2845 —0.0155
Case 4 60 0.8 2.0 030 0.2701 —0.0299
Case 5 100 0.8 1.5 0.20 0.2065 0.0065
Case 6 100 04 14 0.10 0.1170 0.017
Case 7 60 0.1 1.6 035 0348  —0.0014
Case 8 80 0.3 1.7 0.25 0.3023 0.0523

It can be seen from Table 3 that the strain hardening
exponent identified by the present method shows good
agreement with the FE “input” hardening exponent
values, and the maximum difference is 0.081. This
indicates that the new approach is reliable and has
satisfactory accuracy.

4.2 Modified Mayer’s relationship for estimation of

yield strength of anisotropic materials

In Section 3, we have established the method to
directly estimate the strain hardening exponent of
anisotropic materials, but the yield stress is still
unknown. In this section, the modified Mayer’s
relationship will be proposed to estimate the yield
strength of anisotropic materials. In the spherical
indentation, the relationship between the indentation
contact force and the depth was obtained [38]:

k-2
Ly [i) @

where d is the contact diameter, 4; is a regression

coefficient, D is the diameter of the rigid indenter, and k&
is the fitting exponent. However, this equation is only
suitable for the isotropic materials. Here, the equation for
the anisotropic material is rewritten, as shown in the
following forms:

P Y
?2141)( )

X

k-2
F_ 4 [d_yj ’

2 y
d, D

GEORGE et al [39] proposed the following
equation to correlate the constant 4, with yield stress

(28)

oy=cA (29)

where ¢ is a constant that varies with the specific
material class. In this study, the ¢ value of Ti alloys was
known to be 0.3 [40]. Similarly, Eq. (29) can also be
extended to Eq. (30):

Oy = cA,, (30)
oy, =c4y,

Yy

Equations (24)—(26) require a single yield stress to
calculate the fitting coefficients 4, B and C. While for the
anisotropic materials considered in the present study,
there are two yield stress values along different
orthogonal directions, and they can be obtained from
Eq. (30). Here, we defined the equivalent yield stress
oy , for the anisotropic materials, by using the concept of
equivalent contact diameter d , which are written as
follows:

d=2a (31)

5, = cd, (32)

Table 4 shows the comparison of the equivalent
yield stress estimated by using spherical indentation with
those from the tensile tests. From Table 4, it can be seen
that good agreement can be found, indicating that the
modified Mayer’s relation in the present study is
effective.

Table 4 Equivalent yield stress estimated from spherical indentation and those from tensile tests

) Input yield stress/MPa Identified yield stress/MPa Equivalent
Material .
x-direction y-direction x-direction y-direction yield stress/MPa
Ti—5A1-2.5Sn 885.57 737.98 948.6 794.1 872.1
Ti—6Al-4V 830.00 691.67 996.9 876.6 934.5
Ti—6A1-6V—2Sn 1009.23 841.03 1007.4 917.4 996.0
TCIM 740.00 597.00 713.0 605.0 652.5
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4.3 Application of equivalent strain hardening directions of the strain hardening exponent. The stress—
exponent in multi-axial stress fields strain curves are extracted from the representative point
In this section, the effectiveness of the equivalent beneath the indenter. This representative data acquisition
strain hardening exponent is verified by its application in point is defined as the optimal data acquisition point,
the TCIM anisotropic material. The multi-axial stress
strain field is calculated by separately using the uniaxial Table S Tensile experimental data of TC1M titanium alloys
direction strain hardening exponent and equivalent strain Direction/(°) o,/MPa n K/MPa
hardening exponent. The material parameters of TC1M 0 605 0.118 1123
titanium alloys in five different directions are listed in 225 577 0.103 986
Table 5.
_ , , 45.0 583 0.078 854
The equivalent strain hardening exponent of TC1M
. . . 67.5 658 0.062 864
material calculated by Eq. (25) is 0.078. Figure 13 shows
the comparison of FE simulation results using different 90.0 740 0.06 965
1000 1000
(b)
800 800 -
< <
s s
» 600 » 600
g g
L N . : L N Tensile experiment results
E 400 L Ezrsllsllllt: zﬁlegrlgrlleig;irﬁsstlrt:m E 400 —— Resultg using uniaxial strain
>~ hardening exponent >~ hardening exponent )
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Fig. 13 Comparison of stress—strain curves of TC1M between uniaxial tests and those calculated by using equivalent strain hardening
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r/a=0.8 and //D=10%, at which the frictional effect can
be ignored and the maximum strain for a given
indentation depth can be obtained [41].

Figure 13 shows three stress—strain curves that are
separately calculated by using the uniaxial strain
hardening exponent along different reference directions
(the longitudinal direction is regarded as the reference
direction in this work), the equivalent strain hardening
exponent, and the tensile experimental data. It can be
seen from Fig. 13 that, the stress—strain curves calculated
by equivalent strain hardening exponent show better
agreement than those calculated by uniaxial strain
hardening exponent in the four directions (22.5°, 45.0°,
67.5° and 90.0° (except 0° direction). This is because the
uniaxial strain hardening exponent can only give
relatively accurate results in its own direction, while it
gives coarse results in other directions. For the
anisotropic materials, the equivalent strain hardening
exponent is calculated by the parameters in different
directions, thus it takes into account the strain hardening
in all the directions. This explains why the equivalent
strain hardening exponent gives more accurate results.

5 Conclusions

(1) Equivalent strain hardening exponent is suitable
for describing the anisotropic materials in the multi-axial
stress states.

(2) The established dimensionless function
effectively correlates the equivalent strain hardening
exponent with the residual contact radius of the
anisotropic materials. The effectiveness of the proposed
approach is numerically verified by its application on a
series of numerical cases.

(3) The application of the equivalent strain
hardening exponent is verified by its application in the
TC1M engineering material.
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