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Abstract: Uniaxial strain hardening exponent is not suitable for describing the strain hardening behaviors of the anisotropic materials, 
especially when material deforms in the multi-axial stress states. In this work, a novel method was proposed to estimate the 
equivalent strain hardening exponent of anisotropic materials based on an equivalent energy method. By performing extensive finite 
element (FE) simulations of the spherical indentation on anisotropic materials, dimensionless function was proposed to correlate the 
strain hardening exponent of anisotropic materials with the indentation imprint parameters. And then, a mathematic expression on the 
strain hardening exponent of anisotropic materials with the indentation imprint was established to estimate the equivalent strain 
hardening exponent of anisotropic materials by directly solving this dimensionless function. Additionally, Meyer equation was 
modified to determine the yield stress of anisotropic materials. The effectiveness and reliability of the new method were verified by 
the numerical examples and by its application on the TC1M engineering material. 
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1 Introduction 
 

Anisotropic plastic properties are widely observed 
in the industrial materials, especially in the aviation,  
such as anisotropic alloys, composite materials and 
coatings [1]. Uniaxial test is one of the classical methods 
to measure anisotropic properties of materials. However, 
this testing method is not applicable for the specimens 
with finite volumes. Nano-indentation, as an alternative 
approach, has received great attention for its obvious 
advantages, e.g. easy sample preparation [2]. Nano- 
indentation has shown the ability to nondestructively 
measure the local properties of the exceedingly small 
sub-volumes of specimens [3,4], such as elastic  
modulus [5], residual stress [6,7], fracture toughness [8,9], 
as well as the strain hardening exponent in crystal 
plasticity [10]. 

TABOR [11] proposed the representative stress and 
strain method firstly to extract the stress−strain curves 
from indentation test. MOUSSA et al [12] proposed a 
method for the determination of strain hardening law of 
materials using the load−displacement curve of a 
spherical indentation test. Although some theories and 

methods have been well established, techniques in the 
relevant fields are still in the developing stages [13−17]. 

Strain hardening exponent is an important  
parameter, which essentially represents the ability of 
material to resist the further strain hardening in metal 
forming process. For the anisotropic materials, Hill’48 
yield criterion was widely used, for its simple form. 
However, the strain hardening of the Hill’48 yield 
criterion is usually assumed as isotropic hardening, using 
the Hollomon hardening law. Besides, in some 
conventional FE softwares (e.g. ABAQUS), although the 
yield stresses along different orthogonal directions are 
different, the strain hardening of materials was assumed 
to be isotropic. In fact, the uniaxial strain hardening 
exponent is suitable for isotropic materials or the 
anisotropic materials along different uniaxial directions. 
When dealing with multi-axial stress problems, uniaxial 
exponent cannot take other directions into consideration. 
Therefore, an equivalent strain hardening exponent is 
needed to describe the strain hardening behaviors of the 
anisotropic materials. 

In practice, it is quite difficult to compute the 
residual imprint in indentation test because the shape 
cannot be captured accurately [18]. The development of  
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FEM (finite element method) provides a very versatile 
approach to explore the relationship between the residual 
imprint and the mechanical properties. It is able to avoid 
many uncertainties in indentation experiments, e.g. the 
existence of measuring error [19]. Furthermore, it gives 
more complete and accurate predictions than the plastic 
deformation theory [20], such as the complicated 
multi-axial stress strain states and the pile-up effect [21]. 

In this work, a new method is suggested to estimate 
the equivalent hardening exponent n by only using the 
residual imprint of spherical indentation. The advantage 
of this method is that it does not need to know the entire 
indentation loading history [22]. The residual imprint 
profile contains the essential deformation characteristics 
of a material, and it is closely related to the material 
hardening exponent [21]. When a rigid spherical indenter 
is penetrated into the surface of in-plane anisotropic 
specimens, the residual imprint is different among 
orthogonal directions. Inspirited by that, dimensionless 
function between mechanical properties parameters and 
residual imprint is established [2]. Because it only 
considers in-plane anisotropy and uses dimensionless 
function, this approach is quite simple. Furthermore, the 
effectiveness of the method is verified by the numerical 
experiment and the effectiveness of the equivalent strain 
hardening exponent is verified by the experimental 
results of TC1M anisotropic materials. 
 
2 Numerical approach 
 
2.1 Material model 

The anisotropic theory used in the indentation 
simulation is introduced. There are many criteria to 
describe the plastic deformation behaviors of anisotropic 
materials. Here, the Hill’48 criterion [23] is considered, 
for its simple form. Hill’s theory is expressed as Eq. (1): 
 
F(σy−σz)

2+G(σx−σy)
2+H(σx−σy)

2+ 
 

2 2 22 2 2yz zx xyL M N    =1                 (1) 
 
where F, G, H, L, M and N are anisotropic parameters, σx, 
σy, σz, τzy, τxy and τzx are the normal stresses and shear 
stresses along three axes. The material coordinate is 
shown in Fig. 1. 

Figure 1 describes the material coordinate used in 
the present work, xy plane is the in-plane that 
characterizes the anisotropic properties. Three normal 
stresses and three shear yield stresses along the 
orthogonal axes (x, y, z), are defined as τxy, τyz, τzx and  
σyx, σyy, σyz, respectively. 

Since the materials exhibit in-plane anisotropic 
properties, their stress strain curve is expressed as 
 
σy =σyy =σyz <σyx                                (2) 

where σy is the yield strength. 
 

y

3
xy yz zx


                               (3) 

 
And m is defined as the ratio σyx/σyy, that is,   

σyx=mσyy                                         (4) 
 

The present work considers the materials which 
obey Holloman hardening law, as shown in the following 
equations: 
 
σ=Eε (σ<σy)                                  (5) 
 
σ=Kεn (σ>σy)                                 (6) 
 

n is the strain hardening exponent, E is the elastic 
modulus and K is the work-hardening strength.  

y
y

n
E

K 


 
   

 
                               (7) 

 
Holloman hardening law is able to describe the 

hardening behavior of most materials [24−26]. Figure 2 
shows the stress−strain curves of anisotropic materials 
that obey the Holloman hardening law. When E is known 
in advance, two parameters need to be identified, which 
are σy and n. In the present work, we focus on the strain 
hardening exponent n, independently, and we also extend 
 

 
Fig. 1 Material coordinate system 

 

 

Fig. 2 Stress−strain curves of anisotropic materials 
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the approach to estimate the yield stress in anisotropic 
materials. 
 
2.2 Finite element model in spherical indentation of 

anisotropic materials 
The one-quarter finite element (FE) model of 

spherical indentation test is built with ABAQUS  
software [27], as shown in Fig. 3. The longitudinal 
direction is along 1-direction, transverse direction is 
along 2-direction, and 3-direction is the indenter 
loading−unloading direction. 
 

 

Fig. 3 FE model used in indentation simulation 

 
This model comprises 17200 elements, and refined 

meshes are created around the local contact region 
between indenter and specimen, as shown in Fig. 3. The 
specimen is modeled using C3D8R element type. 
Contact friction coefficient between the surfaces of these 
two bodies is defined to be 0.1 [28]. Because the contact 
friction coefficient between diamond and metals is 
around this value, and it is a minor factor in   
indentation [29,30]. The displacement of bottom nodes 
of specimen is fixed, and the axisymmetric boundary 
constraints are applied on the center axis of specimen. 
The surfaces of the specimens are assumed as a planar 
plate and the indenter load can only move vertically to 
penetrate the specimen, and the ratios between maximum 
indentation depth and indenter radius hm/R are fixed to  
be 0.1. 

The elastic−plastic properties used for the extensive 
FE simulations are listed in Table 1. Poisson ratio v was 
fixed at 0.3 because its influence on the inden-     
tation response was small [31−34]. The ratio range of 

75<E/σy<1000, contains most metallic materials. The 
ratio m varies from 1.0 (isotropic material) to 2.0. In 
addition, the hardening exponent n varies from 0 to 0.5. 
Totally 180 cases were calculated to obtain the data of 
residual imprint. Figure 4 shows the residual imprint of 
the specimen after indenter withdrawal. 

 
2.3 Effect of anisotropic plasticity on residual imprint 

Figure 5 shows the indentation response of in-plane 
anisotropic materials, of which E=100 GPa, σy=400 MPa 
and n=0.1, anisotropic parameter m varies from 1.0, 1.2, 
1.5, 1.8 to 2.0. The maximum load increases as m 
increases, but the differences are small. This indicates 
that it is difficult to evaluate the anisotropy of in-plane 
anisotropic materials using solely the load−displacement 
curves. So, we suggested here to use the residual imprint 
as useful indentation information. When the spherical 
indenter penetrates into the specimen, the specimen will 
deform as the indenter moves, and an imprint will be left 
after indenter withdrawal. Figure 6 shows the simulated 
residual imprints of specimens with different m values. 
The maximum pile-up value varies obviously as m value 
changes. The pile-up height in the low yield stress 
direction becomes larger than that in the high yield stress 
direction, which is coincident with the results of 
YONEZU et al [2]. This indicates that, the shape of the 
residual imprint relies on the plastic anisotropic 
properties. Consequently, the relationship between 
residual imprint and the hardening exponent n should be 
investigated. 

The schematic diagram of the residual imprint is 
shown in Fig. 7. a is defined as the contact radius under 
the fully unloaded state. The contact radii along different 
directions are equal for isotropic materials while the 
contact radii are different for anisotropic materials. 
Different contact radii are influenced by the pile-up or 
the sinking-in effect. Actually, these differences are 
caused by the plastic anisotropy, such as the yield stress 
and strain hardening exponent in different directions. So, 
it is reasonable to connect the residual imprint with 
plastic properties. 

Further, the influence of strain hardening exponent 
on the shape of the residual imprint was investigated.  

 
Table 1 Elastic−plastic properties used in FE simulations 

Specimen No. E/GPa σy/GPa n m=σyx/σyy E/σy

1 60 0.1 0, 0.1, 0.2, 0.3, 0.4, 0.5 1.0, 1.2, 1.5, 1.8, 2.0 600 

2 60 0.4 0, 0.1, 0.2, 0.3, 0.4, 0.5 1.0, 1.2, 1.5, 1.8, 2.0 150 

3 60 0.8 0, 0.1, 0.2, 0.3, 0.4, 0.5 1.0, 1.2, 1.5, 1.8, 2.0 75 

4 100 0.1 0, 0.1, 0.2, 0.3, 0.4, 0.5 1.0, 1.2, 1.5, 1.8, 2.0 1000

5 100 0.4 0, 0.1, 0.2, 0.3, 0.4, 0.5 1.0, 1.2, 1.5, 1.8, 2.0 250 

6 100 0.8 0, 0.1, 0.2, 0.3, 0.4, 0.5 1.0, 1.2, 1.5, 1.8, 2.0 125 
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Fig. 4 Residual imprint after spherical indentation 
 

 

Fig. 5 Indentation curves of five materials 
 

 

Fig. 6 Residual imprints of specimens with different m values 
after indenter withdrawal 
 

 

Fig. 7 Schematic diagram of residual imprint in spherical 
indentation 

Figure 8 shows the changes of the residual imprints at 
different n and m values. The height of pile-up and the 
contact radius decrease as n increases and then the 
mathematic relationship between contact radius a and 
hardening exponent n is explored. 

 

 
Fig. 8 Residual imprints for materials with three m values:   

(a) m=1.0; (b) m=1.2; (c) m=1.5 

  
The equivalent indentation work was used to 

characterize the anisotropic parameters of materials, of 
which the elastic deformation was assumed in the 
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unloaded stage. The load−depth curve in indentation test 
is shown in Fig. 9, where hm is the maximum indentation 
depth, Fm is the maximum indentation force. The area 
surrounded by loading curve and x-axis is defined as the 
total work Wt, the area surrounded by unloading curve 
and x-axis is the elastic recover work We, and the 
difference of Wt and We is plastic work Wp. 
 

 

Fig. 9 Schematic diagram of relation curve between indentation 

force and depth (hr is residual displacement, hp is plastic 

displacement) 

 

Important displacement variables include the 
maximum displacement hm, the contact depth hc, the 
elastic displacement he, and the residual displacement hr. 
In the indentation test, the materials are assumed that 
only elastic deformation happens in the unloading stage. 
The profile of the imprint is shown in Fig. 10. According 
to Hertz’s contact theory [35], for rigid spherical indenter 
and flat non-rigid specimen, the indentation depths can 
be described as 
 

e m r m r
c m m2 2 2

h h h h h
h h h

 
                 (8) 

 
In current literature, the relationship between 

indentation work and depth in the dimensionless form is 
described as [36] 
 

pr

m t

Wh

h W
                                   (9) 

 
According to the indentation geometry, the 

relationship between contact depth h and contact radius 
can be described as 
 

2 2h R R a                               (10) 
 
where R is the radius of rigid indenter. 

So Eq. (9) can be rewritten as 
 

2 2
p r

2 2
t m m

W h R R a

W h R R a

 
 

 
                    (11) 

 

 

Fig. 10 Schematic diagram of geometrical relationships among 

contact radius and characteristic depths 

 
Anisotropic materials are also assumed to obey   

Eq. (11), but a2 should be written as 2a . As for 
orthogonal anisotropic materials, there are two different 
directions. And the projection of the residual imprint is 
ellipse, which has two contact radii. 2a  is defined and 
described as 
 

2
x ya a a                                  (12) 

 
When the indentation depth is fixed, the maximum 

contact radius and the indenter radius are constant 
parameters. The equivalent expression can be described 
as 
 

2 2
x ya a a a                               (13) 

2 2π π π x ya a a a                            (14) 
 

Equation (14) can be regarded as the same 
proportion of the normal imprint for isotropic and 
anisotropic materials. Here, π x ya a  represents the area 
of the ellipse in Fig. 11. 

As for anisotropic materials, the nominal imprint 
after indenter withdrawal is ellipse while it is a circle for 
isotropic materials. For further illustration, the contact 
radii in orthogonal direction are different, ax<ay, because 
the yield stress in x direction (longitudinal direction) is 
higher than that in y direction (transverse direction). As 
assumed early, hardening exponent is an isotropic 
parameter, the ellipse anisotropic imprint will be 
replaced by an isotropic imprint, which can be regarded 
as the isotropic response under the same load. Here, 
equivalent circular imprint is proposed to replace the real 
imprint such as shown in Fig. 11. The proportion of real 
imprint is equal to the equivalent imprint and the radius 
of the equivalent imprint is defined as a , which is 
regarded as the representative radius of the two axis 
(x-axis and y-axis) of the ellipse. 
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Fig. 11 Schematic diagram of equivalent imprint 

 
3 Dimensionless analysis and numerical 

computation 
 

In this section, the method is proposed to evaluate 
the in-plane strain hardening exponent n based on 
dimensional analysis and numerical computation. 
Dimensionless function is explored which can correlate 
the exponent n with the impression geometry.   
theorem [37] is a useful tool to establish functional 
relation between independent parameters. Contact radius 
can be expressed by the following function: 
 

1 i i y

2 i i y

( ,  ,  ,  ,  ,  ,  ,  ,  )

( ,  ,  ,  ,  ,  ,  ,  ,  )

x

y

a E E R m n h

a E E R m n h

   

   


 

        (15) 

 
where subscript i refers to the corresponding indenter, 
and   is the Poisson ratio. 

The reduced elastic modulus E* can be expressed as 
 

22
i

*
i

11 1

E EE

 
                           (16) 

 
Indenter is regarded as rigid body, and the elastic 

modulus of indenter is infinite. So, Eq. (16) can be 
rewritten as 
 

2

*

1 1

EE


                                 (17) 

 
When R, h and   are fixed, 1  and 2  

functions can be simplified to 3  and 4  functions, 
as shown in the following equation: 
 

3 y

4 y

( ,  ,  ,  ,  ,  )

( ,  ,  ,  ,  ,  )

x

y

a E m n h R

a E m n h R

 

 


 

                (18) 

 
As stated in Section 2.3, the residual imprint 

strongly depends on the strain hardening exponent n, and 
the function is established based on this relation. Contact 
radius contains all the characters, such as load depth, and 
pile-up or sinking-in effects. The values of the contact 
radius are different by changing the material characters, 

such as yield stress σy, anisotropic parameter m, elastic 
modulus E and strain hardening exponent n. 

In order to establish the relationship between the 
imprint and material properties, indentation depth is 
fixed as hm/R=0.1. By using the  theorem, the 
parameter /a R  can be expressed as 
 

5
y

,  ,  
a E

m n
R




 
   

 
                         (19) 

 
In Eq. (19), 5  reveals that the value of /a R  

depends on the plastic properties (E/σy, m, n). 
TABOR [11] suggested the following relationship 

between flow stress and strain in uniaxial tension and the 
parameters in spherical indentation: 
 

t 2

1

π

F

a



                                 (20) 

t 0.2
a

R
                                   (21) 
 
where σt and εt are flow stress and strain in uniaxial 
tension, respectively, ψ is the plastic constraint factor 
(taken as 3 in Tabor’s work). Inserting Eqs. (20) and (21) 
into Eq. (6) gives 
 

y2
3 (0.2 )

π
nF a

Ra
                           (22) 

 
When the test condition (load depth) is fixed, the 

indentation load F is a constant. The relationship 
between ln( / )a R  and hardening exponent n at different 
plastic strains is shown in Fig. 12. From the results in all 
the FEM data, Fig. 12 shows a close relationship 
between ln( / )a R and hardening exponent n, in spite of 
the small deviation in anisotropic parameters m from 1.0 
to 2.0. For simple mathematical expressions, FEM data 
are fitted as 
 
ln( / )a R =An2+Bn+C                          (23) 
 
where A, B and C are regression coefficients. 

In Fig. 12, the curves are similar under different 
strains. ln( / )a R is linearly related to the strain hardening 
exponent n. The values of coefficients A, B and C used in 
Eq. (23) are listed in Table 2. 

Coefficients A, B and C are strongly denpendent on 
the strain value. Their relationships are fitted by Eq. (24), 
(25) and (26), respectively: 
 

5.071

17

y

3.36 10 0.1199
E

A


  
    

 
             (24) 

5.071

16

y

1.632 10 0.3396
E

B


  
     

 
           (25) 

0.3548

y

1.461 0.5932
E

C



 

    
 

               (26) 
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Fig. 12 Dimensionless function of 5  at hm/R=0.1 and different E/σy values: (a) E/σy=75; (b) E/σy =125; (c) E/σy =150;         

(d) E/σy= 250; (e) E/σy =600; (f) E/σy =1000 

 

Table 2 Coefficients A, B and C used in Eq. (23) 

E/σy A B C 

75 0.1241 −0.3389 −0.8977 

125 0.1331 −0.367 −0.8863 

150 0.1525 −0.4521 −0.8351 

250 0.1202 −0.3069 −0.7836 

600 0.1024 −0.3518 −0.7395 

1000 0.1766 −0.6067 −0.7258 

 

4 Results and discussion 
 
4.1 Numerical verification 

In this section, the new approach will be employed 
to estimate the strain hardening exponent of anisotropic 
materials using several numerical cases, and results are 
shown in Table 3. The effectiveness of the approach is 
verified by comparing the “input” hardening exponent in 
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the FE simulation with those identified by the established 
numerical method. 

 
Table 3 Representative numerical cases for effectiveness 

verification of strain hardening exponent of anisotropic 

materials 

Numerical 

case 

No. 

Input material property Identified 

n 

Difference

of n E/GPa σy/GPa m n 

Case 1 60 0.1 1.2 0.40 0.3829 −0.0172

Case 2 60 0.4 1.0 0.50 0.5810 0.081 

Case 3 100 0.4 1.5 0.30 0.2845 −0.0155

Case 4 60 0.8 2.0 0.30 0.2701 −0.0299

Case 5 100 0.8 1.5 0.20 0.2065 0.0065 

Case 6 100 0.4 1.4 0.10 0.1170 0.017 

Case 7 60 0.1 1.6 0.35 0.3486 −0.0014

Case 8 80 0.3 1.7 0.25 0.3023 0.0523 

 

It can be seen from Table 3 that the strain hardening 
exponent identified by the present method shows good 
agreement with the FE “input” hardening exponent 
values, and the maximum difference is 0.081. This 
indicates that the new approach is reliable and has 
satisfactory accuracy. 

 
4.2 Modified Mayer’s relationship for estimation of 

yield strength of anisotropic materials 
In Section 3, we have established the method to 

directly estimate the strain hardening exponent of 
anisotropic materials, but the yield stress is still  
unknown. In this section, the modified Mayer’s 
relationship will be proposed to estimate the yield 
strength of anisotropic materials. In the spherical 
indentation, the relationship between the indentation 
contact force and the depth was obtained [38]: 
 

2

12

k
F d

A
Dd


   
 

                            (27) 

 
where d is the contact diameter, A1 is a regression 

coefficient, D is the diameter of the rigid indenter, and k 
is the fitting exponent. However, this equation is only 
suitable for the isotropic materials. Here, the equation for 
the anisotropic material is rewritten, as shown in the 
following forms: 
 

2

12

2

12

x

y

k
x

x
x

k
y

y
y

dF
A

Dd

dF
A

Dd





    
 


 

  
 

                        (28) 

 
GEORGE et al [39] proposed the following 

equation to correlate the constant A1 with yield stress 
 
σy=cA1                                       (29) 
 
where c is a constant that varies with the specific 
material class. In this study, the c value of Ti alloys was 
known to be 0.3 [40]. Similarly, Eq. (29) can also be 
extended to Eq. (30): 
 

y 1

y 1

x x

y y

cA

cA






 

                                (30) 

 
Equations (24)−(26) require a single yield stress to 

calculate the fitting coefficients A, B and C. While for the 
anisotropic materials considered in the present study, 
there are two yield stress values along different 
orthogonal directions, and they can be obtained from  
Eq. (30). Here, we defined the equivalent yield stress 

y , for the anisotropic materials, by using the concept of 
equivalent contact diameter d , which are written as 
follows: 
 

2d a                                     (31) 
 

y 1cA                                     (32) 
 

Table 4 shows the comparison of the equivalent 
yield stress estimated by using spherical indentation with 
those from the tensile tests. From Table 4, it can be seen 
that good agreement can be found, indicating that the 
modified Mayer’s relation in the present study is 
effective. 

 

Table 4 Equivalent yield stress estimated from spherical indentation and those from tensile tests 

Material 
Input yield stress/MPa Identified yield stress/MPa Equivalent 

yield stress/MPa x-direction y-direction x-direction y-direction 

Ti−5Al−2.5Sn 885.57 737.98 948.6 794.1 872.1 

Ti−6Al−4V 830.00 691.67 996.9 876.6 934.5 

Ti−6Al−6V−2Sn 1009.23 841.03 1007.4 917.4 996.0 

TC1M 740.00 597.00 713.0 605.0 652.5 
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4.3 Application of equivalent strain hardening 

exponent in multi-axial stress fields 
In this section, the effectiveness of the equivalent 

strain hardening exponent is verified by its application in 
the TC1M anisotropic material. The multi-axial stress 
strain field is calculated by separately using the uniaxial 
direction strain hardening exponent and equivalent strain 
hardening exponent. The material parameters of TC1M 
titanium alloys in five different directions are listed in 
Table 5. 

The equivalent strain hardening exponent of TC1M 
material calculated by Eq. (25) is 0.078. Figure 13 shows 
the comparison of FE simulation results using different  

directions of the strain hardening exponent. The stress− 
strain curves are extracted from the representative point 
beneath the indenter. This representative data acquisition 
point is defined as the optimal data acquisition point, 
 
Table 5 Tensile experimental data of TC1M titanium alloys 

Direction/(°) σy/MPa n K/MPa 

0 605 0.118 1123 

22.5 577 0.103 986 

45.0 583 0.078 854 

67.5 658 0.062 864 

90.0 740 0.06 965 
 

 

 

Fig. 13 Comparison of stress−strain curves of TC1M between uniaxial tests and those calculated by using equivalent strain hardening 
exponent, respectively, in different directions: (a) 0°; (b) 22.5°; (c) 45.0°; (d) 67.5°; (e) 90.0° 



Yu HUI, et al/Trans. Nonferrous Met. Soc. China 29(2019) 77−87 

 

86
 
r/a=0.8 and l/D=10%, at which the frictional effect can 
be ignored and the maximum strain for a given 
indentation depth can be obtained [41]. 

Figure 13 shows three stress−strain curves that are 
separately calculated by using the uniaxial strain 
hardening exponent along different reference directions 
(the longitudinal direction is regarded as the reference 
direction in this work), the equivalent strain hardening 
exponent, and the tensile experimental data. It can be 
seen from Fig. 13 that, the stress−strain curves calculated 
by equivalent strain hardening exponent show better 
agreement than those calculated by uniaxial strain 
hardening exponent in the four directions (22.5°, 45.0°, 
67.5° and 90.0° (except 0° direction). This is because the 
uniaxial strain hardening exponent can only give 
relatively accurate results in its own direction, while it 
gives coarse results in other directions. For the 
anisotropic materials, the equivalent strain hardening 
exponent is calculated by the parameters in different 
directions, thus it takes into account the strain hardening 
in all the directions. This explains why the equivalent 
strain hardening exponent gives more accurate results. 
 
5 Conclusions 
 

(1) Equivalent strain hardening exponent is suitable 
for describing the anisotropic materials in the multi-axial 
stress states. 

(2) The established dimensionless function 
effectively correlates the equivalent strain hardening 
exponent with the residual contact radius of the 
anisotropic materials. The effectiveness of the proposed 
approach is numerically verified by its application on a 
series of numerical cases. 

(3) The application of the equivalent strain 
hardening exponent is verified by its application in the 
TC1M engineering material. 
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基于球形压痕响应的各向异性材料等效应变硬化指数 
 

惠 钰，吴建军，王明智，展学鹏，樊 赫 
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摘  要：针对各向异性材料，讨论单一方向的应变硬化指数对复杂应力问题求解的局限性，提出了一种基于等效

能量法计算各向异性材料等效应变硬化指数的新方法。首先，设置一系列有限元仿真实验，得出残余压痕参数与

等效应变硬化指数的无量纲函数关系式；其次，使用此无量纲函数建立等效应变硬化指数与残余压痕的数学表达

式；最后，通过对比数值试验结果验证该方法的有效性。另外，为了确定各向异性材料的屈服强度，对其 Meyer

关系进行扩展。通过数值实例及对 TC1M 钛合金的实际应用验证了该新方法的有效性和可靠性。 

关键词：等效应变硬化指数；各向异性材料；球形压痕；残余压痕 
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