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Abstract: To obtain the damage effect in the process of elasto-plasticity deformation of quasi-brittle materials, the isotropic damage 
loading-unloading function and damage variable were introduced to non-continuous bifurcation. The critical bifurcation orientation 
and its corresponding hardening modulus for quasi-brittle materials were derived considering the effect of stiffness degradation and 
volumetric dilatancy under the assumption of isotropic damage. The relationships of localized orientation angle and maximal 
hardening modulus dependent on degree of damage and initial Poisson’s ratio of rock were explored. Comparative analyses were 
conducted to study the bifurcation of uniaxial tension-compression samples under the conditions of plane stress and plane strain. It is 
shown that as the initial Poisson’s ratio or degree of damage increases, the localization orientation angle of the plane uniaxial 
compression sample tends to be initiated to decrease. However, the localization orientation angle of the plane uniaxial tension sample 
tends to be initiated to increase. The sum of orientation angle under tension and compression conditions is 90˚. There are plane stress 
and plane strain cases of the maximum hardening modulus that is independent of the uniaxial compression and tension. 
Key words: isotropic damage; orientation of localization; maximum hardening modulus; bifurcation; uniaxial sample 
                                                                                                             
 
 
1 Introduction 
 

A bifurcation occurs when a small smooth change 
made to the parameter values of a system causes a 
sudden ‘qualitative’ or topological change in its 
behaviour[1]. It is characterized by the phenomenon that 
after the material undergoes a definite amount of equal 
deformation, suddenly it gets into a stage of deformation 
when the deformation of high localization takes place. 
HILL[2], RUDNICKI and RICE[3−4], OTTOSEN and 
RUNESSON[5], NEILSEN[6] studied on bifurcation and 
instability of materials from the viewpoint of 
elasto-plasticity. However, the effects of damage of 
materials on bifurcation and instability were not taken 
into consideration. LI and YE[7], ZEND et al[8], ZHAO 
et al[9] and LÜ et al[10] analyzed the damage 
localization bifurcation model for rock-like materials 
under different conditions. LIANG et al[11] gave the 
characteristics of fractal and percolation of rock 

subjected to uniaxial compression during their failure 
process. CHAI et al[12] obtained the characteristics of 
stability-losing of post-failure rock. In fact, there is also 
dilatancy of the quasi-brittle material along with 
presentation of a large quantity of microcosmic defects. 
At this time, Poisson’s ratio is increased and strength and 
stillness of the material are decreased. Therefore, in 
analyses of bifurcation and instability of quasi-brittle 
materials, the two nonlinear deformation features of 
elasto-plasticity and damage should be taken into 
consideration simultaneously. In this work, the isotropic 
damage loading-unloading function and damage variable 
are introduced into non-continuous bifurcation. The 
critical bifurcation orientation and its corresponding 
hardening modulus for quasi-brittle materials are derived 
considering the effect of stiffness degradation and 
volumetric dilatancy under the assumption of isotropic 
damage. The relationships of localized orientation angle 
and maximal hardening modulus depended on degree of 
damage and initial Poisson’s ratio of rock are explored. 
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Comparative analyses are conducted to study the 
bifurcation of uniaxial tension-compression samples 
under the conditions of plane stress and plane strain. 
 
2 Theory derivation of damage constitutive 

functions 
 

Traditionally, the constitutive relationship for 
isotropic damage may be expressed as 
 

klijklij εDσ =                       ( 1 ) 

4: IDC =                       ( 2 ) 
 
where C denotes flexibility tensor of material; I4 is 
fourth-order unit tensor; εkl is total second order strain 
tensor; 0)1( ijklijkl d DD −= , is elastic damage modulus of 
material which is progressively degraded along with the 
development of microcosmic defects[13]. 

Their derivatives can be written as 

0
ijklijkl dDD && −= , 0ˆ

ijklijkl dCC =                 (3) 

where 0
ijklD  is initial elastic damage modulus; 0

ijklC  
denotes initial flexibility tensor of material; and d is the 
isotropic variable depended only on the plastic strain 
history.  

There is no change of damage modulus in the 
process of elastic loading and unloading and neutral 
loading. =d̂ 1/(1−d). Therefore, 
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where εp is the characteristic plastic strain. 

The damage loading-unloading function is 
introduced: 

 
0),( =λijF σ                    (5) 

 
where λ is an inner variable in elastic domain. The 
material will further be damaged and degraded when the 
inner stress level of the material satisfies yield function 
F=0. Let G be damage potential function of material, and 

d
ijε&  be damage strain due to the degradation of material. 

The incremental constitutive relationship of material is 
 

)( d
klklijklij εεDσ &&& −=                      ( 6 ) 

 
When potential function differs from yield function 

and using non-associated flow rule, it gives 
 

klkl gε λ&& =d , 
kl

kl
G
σ

g
∂
∂

=                  (7) 
 
where klg is gradient function of damage potential 
function G in stress domain. 

According to the identity condition of plasticity, the 
rate-format of Eq.(5) is 

0=−=
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where 
ij

ij
F
σ

f
∂
∂

= ,
λ∂
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−=
FH , are hardening and 

softening moduli, respectively; and λ&  is damage gene. 
Eq.(2) may be expressed by rate format as 

 
rsklpqrsijpqijkl DCDD && −=                       (9) 

 
By introducing flexibility tensor, the flow rule is 

expressed as 
 

ijklijkl MC λ&& = , rspqrspq σCε && =d          (10) 
 
where Mijkl is the initial flexibility tensor. 

From Eqs.(7) and (10), the following equation is 
attained: 

klijklij σMg =                      (11) 

From Eqs.(6), (7) and (8), the following equations 
are attained: 

klijklijA
ελ && Df1

=                  (12) 

uvrsuvpqrspqHA σMDf+= ＞0           (13) 

Substitution of Eqs.(12) and (13) into Eqs.(6) and (7), the 
isotropic damage constitutive relation in incremental 
form can be written as 

ijijklij εDσ && ed=                      (14) 

where ed
ijklD  is elastic-damage tangential modulus 

matrix. 
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The damage loading-unloading criterion follows 
Kuhn-Tucker reciprocal condition: 
 
F&≤0, λ& ≥0, 0 =λ&&F                 (16) 
 
where damage gene, 2)1/(ˆ ddd −== &&&λ , and initial 
flexibility tensor, 0

ijklijkl CM = , are proposed by CAROL 
et al[14]. 

Then gij of Eq.(11) can be rewritten as  
00
ijklijklij εσCg ==                  (17) 

 
Thus, the general expression of hardening modulus 

is  
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And the gradient function of loading function is 
 

0
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0 )ˆ ,()ˆ ,(
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where damage loading-unloading function, F=f(w0, −)d̂  

)ˆ(dr , is proposed by CAROL et al[14]; ⋅= 00

2
1

ijklijw Cσ  

klσ  and )ˆ ,( 0 dwf  are equivalent extending and 
driving force of cracks, respectively. )ˆ(dr  is 
representative radius of yield plane of damage. This 
denotes that the cracking and yielding of material depend 
on current accumulative damage. 

Substituting Eqs.(17)−(19) into Eq.(13), and 
considering Eq.(3), it gives 
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Finally, the elasto-plastic damage tangential 

modulus is expressed as 
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3 Damage localized bifurcation 
 

The condition of non-continuous bifurcation of 
damaged material is depended on singularity of the 
following damage localized tensor 

d
ilQ , and d

ilQ  is 
defined as 

kijkljil nDnQ edd =                  (22) 

where nj (j=1, 2, 3) is outer unit normal vector of 
characteristic plane of localized zone. The necessary 
condition when non-continuous bifurcation appears in 
the material is 
 

0]det[ d =ilQ                   (23) 
 

The condition can be regarded as necessary 
condition that nonlinear uniform algebraic function of 
unit normal vector of characteristic plane of localization 
obtains non singular solution. Therefore, corresponding 
algebraic functions of uniform linearity should be 
considered. 

Thus, the following eigen-value problem is to be 
considered: 

 
)(d)()(d i

lil
ii

lil yy QQ λ=  (i=1, 2, 3)                   (24) 
 

Considering that ed
ijklD  is symmetric and positively 

definite, it can be proved that d
ilQ is positive as well. Its 

inverse matrix is d1d )( ilil PQ =− . So, Eq.(24) may be 
rewritten as  

)()()( i
j

ii
ljl yy λ=B  (i=1, 2, 3)               (25) 

 

where lijijliljijl ab
A

ddd 1 PQPB −== δ , kmnklmnla nDf 0= , 
 

stijstjib gDn 0= . 
 

Considering d
ilP and d

ilQ are non-singular, and the 
singularity of Bjl is nonsingular, it is indicated that λ=1 is 
an eigen-value with a multiplicity of two for the 
eigen-value problem in Eq.(25). Associated this with the 
properties of matrix, the third eigen-value can be attained 
as  

jijiA
bPa e)3( 11−=λ                      (26) 

 
To make Bji singular, at least one eigen-value should 

be equal to zero. Then λ(3)=0. Considering Eq.(13), the 
hardening modulus in accordance with occurrence of 
localization can be attained as 
 

kmnklmnilstijstjklijklijH nDfPgDngDf d+−=       (27) 
 

Assuming ,e0
ijklijkl DD = where e

ijklD is isotropic 
elastic tensor of material, from Eq.(3) it gives 
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where Gd=(1−d)G and 
d
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damage shear modulus and Poisson’s ratio, respectively, 
of material[14]. G and 0ν  are prior-damage shear 
modulus and Poisson’s ratio, respectively, of material.  
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Among the orientations along which localization is 

possible to occur, only the orientation corresponding to 
the maximum hardening modulus firstly satisfies the 
condition of localization, so it is the orientation along 
which localization occurs first. Therefore, the orientation 
that makes hardening modulus attain the maximum value 
Hd= maxH(ni) is the critical localized orientation. 

Arrangement of the above equations reaches the 
following expression:   

+= jijklkG
H ngfn2

2 d  
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where ;iiv ff = ;
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vijijij fδff −= ;vv fg ξ=  ijij fg ξ= . 
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fv, fij and gv, gij are the first invariables and deviatoric 
tensors of gradient function of yield function and 
damage function, respectively; 100 ]/)ˆ ,([ −∂∂= wdwfξ . 
Assuming if  (i=1, 2, 3) to be the main values of ijf  
and  

)( vvr gf +=ϕ , 2
3

1

2

3
2

2
1

v
i

ik ff ϕ+= ∑
=

          (31) 
 

Substituting above equations into Eq.(30), the 
unitary hardening modulus can be rewritten as  
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ϕ  and ψ  in Eqs.(31) and (32) are 
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respectively. 
Considering geometric restrained conditions of unit 

vector 1
3

1

2 =∑
=j

jn , to obtain the maximum value of 

hardening modulus for the extremum problem with 
restrained conditions, the Lagrange’s multiplier method 
is employed to establish the extremum problem without 
restrained conditions:  
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where β is the Lagrangian multiplier to be determined. 

The extremum of hardening modulus H in Eq.(34) 
is to be determined by the following extremum 
conditions:  
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The symmetric Hessian Hij of L is   
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where jijiijiij ffAH nnψδ 82 −= (i=1, 2, 3). 

Considering ni≠0, it can be seen from the first 
condition of Eq.(36) that 0≡iA , i.e. 
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If ],[ 332211 nfnfnfi =h  it gives Hij= 

.8 T
ji hhψ−  

Assuming 1f ≥ 2f ≥ 3f and ,01 ≠f  it can be 
obtained from Eq.(36) that 

 
)()( 212121 ffffff −−=−β                (39) 

 
)()( 313131 ffffff −−=−β                (40) 

 
1) When 321 fff >> , Eq.(39) and Eq.(40) are not 

able be satisfied simultaneously. For this case, no 
maximum of Eq.(34) exists. 

2) When 321 fff >= , for this case, from Eqs.(39) 
and (40), obviously 31 ff−=β . When 01 ≠f  and 

03 ≠f , from assumptions before and Eq.(38), the 
following equation is obtained: 
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From Eq.(41) and to associate with the equation 

2
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2
1 1 nnn −=+ , it gives 
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As 0 ≤ 2

3n ≤ 1, the following equations are 
obtained:  

rff +−+ 13 )21( ψ ≤0, rff +−+ 31 )21( ψ ≥0    (43) 
 

3) When 321 fff => , for this case, 31 ff−=β  
as well, then 
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rff +−+ 13 )21( ψ ≤0, rff +−+ 31 )21( ψ ≥0         (45) 

The expression of maximum hardening modulus for 
occurrence of non-continuous localization bifurcation 
can be derived from the above equations as  

])([ 31
2

31
ddb kffrffGH −−++= ψξ                       (46) 

 
As shown in Fig.1, if r≤0 and 321 fff <<  and 

assuming n2=0, the orientation angle θcr along which 
localized damage occurs may be represented by the angle 
formed by the outer normal vector n of localized 
characteristic plane and the direction of x1 axis, and is 
given by 
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Fig.1 Orientation angle of localization for plane problems 
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4 Analysis of localization of uniaxial sample 
 

The theories of analyses on isotropic damage 
localized bifurcation illustrated above are used to 
concretely calculate and analyze the localization of 
uniaxial compression-tension testing samples under 
plane strain and plane stress conditions. The damage 
loading and unloading function ]ˆ[0 drwF −=  
proposed by JU[15] is used in the following analysis. 
The results are shown in Table 1. 

The dependence of orientation angle of the normal 
vector of localized characteristic plane on degree of 
damage and initial Poisson’s ratio are obtained by 
calculations, as shown in Figs.2 and 3, respectively. 

1) Whether under plane stress or strain condition, 
variation of orientation angle of localization is depended 
on initial Poisson’s ratio and degree of damage. Under 
the condition of uniaxial compression, the larger the 
initial Poisson’s ratio or the degree of damage is, the 
smaller the orientation angle of localization is, and the 
slower the tendency of progressive decrease of 
orientation angle becomes. Under the condition of 
uniaxial tension, the larger the initial Poisson’s ratio or 
the degree of damage is, the larger the orientation angle 
of localization is, and the slower the tendency of 
progressive increase of orientation angle becomes. When 
d=1 or ν=0.5, the orientation angle keeps unchanged and 
reaches the minimum value under the condition of 

uniaxial compression. 
2) When d=1 or ν=0.5, the orientation angle keeps 

unchanged and reaches the maximum value under the 
condition of uniaxial tension. Under plane strain uniaxial 
compression condition, the orientation angle of 
localization θcr=45˚; and under plane stress uniaxial 
compression condition, the orientation angle of 
localization θcr=54.7˚; under plane strain uniaxial tension 
condition, the orientation angle of localization θcr=45˚; 
and under plane stress uniaxial tension condition, the 
orientation angle of localization θcr=35˚. 

The dependence of maximum hardening modulus 
on degree of damage and initial Poisson’s ratio are 
obtained by calculations, as shown in Fig.4. It can be 
seen that: 

1) Whether under plane stress or plane strain 
condition, when ν＞ 0.35, the maximum hardening 
modulus decreases and reaches zero with the increase of 
degree of damage. The smaller the initial Poisson’s ratio 
is, the slower the tendency of progressive decrease of 
maximum hardening modulus becomes. When ν≤0.35, 
at the beginning, maximum hardening modulus increases, 
then decreases and reaches zero with the increase of 
degree of damage. The smaller the initial Poisson’s ratio is, 
the smaller the maximum hardening modulus becomes. 

2) When ν＜0.20, the extension of effective value of 
the degree of damage is different with the change of 
initial poisson’s ration. The larger the initial poisson’s 
ratio is, the large the extension of effective value is. 
Under different degrees of damage, the effective 
extension of Poisson’s ratio is different. The larger the 
degree of damage is, the larger the extension is. When 
ν=0.50, the maximum hardening modulus keeps 
unchanged and reaches zero. 

For comparing characteristic of bifurcation under 
plane strain and plane stress condition simultaneously, 
the change relation of maximum hardening modulus and 
orientation angle of the normal vector of localized 
characteristic plane on degree of damage under two 
conditions are given in Figs.5−8 for ν0=0.3 or d=0.5. It 
can be seen that the declining rate of localized 
orientation angle is lower under compression condition  

 
Table 1 Result statistics of damage localization of uniaxial sample under plane condition 

Plane loading conditions 
Plane strain Plane stress Parameters 

localization 

Damage 
loading and 
unloading 
function F 

Uniaxial tension Uniaxial compression Uniaxial tension Uniaxial compression
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Fig.2 Dependency of orientation of localization on degree of damage for different Poisson’s ratios: (a) Plane-strain uniaxial tension; 
(b) Plane-strain uniaxial compression; (c) Plane-stress uniaxial tension; (d) Plane-stress uniaxial compression 
 

 
Fig.3 Dependency of orientation of localization on Poisson’s ratios for different degrees of damage: (a) Plane-strain uniaxial tension; 
(b) Plane-strain uniaxial compression; (c) Plane-stress uniaxial tension; (d) Plane-stress uniaxial compression 
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Fig.4 Dependency of maximum hardening modulus ratio on damage degree and Poisson’s ratio: (a) Plane strain condition; (b) Plane 
stress condition; (c) Plane strain condition; (d) Plane stress condition 
 

 
Fig.5 Comparison of dependency of localization orientation on 
Poisson’s ratio under different conditions 
 
than that under tension condition. And the localized 
orientation angle will be larger with the same degree of 
damage or initial Poisson’s ratio. Under condition of 
plane strain, the localized orientation angle will increase, 
if initial Poisson’s ratio or the degree of damage 
increases. Under tension condition, the increasing rate of  

 
Fig.6 Comparison of dependency of localization orientation on 
degree of damage under different conditions 
 
localized orientation angle is higher than that under 
compression condition. And the localized orientation 
angle will increase with the same degree of damage or 
initial Poisson’s ratio. The sum of localized orientation 
angle under tension and compression conditions is 90˚. 
Secondly, there are plane stress and plane strain cases of 
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the maximum hardening modulus that is independent of 
compression and tension. Maximum hardening modulus 
will increase when degree of damage or initial Poisson’s 
ratio increases. Under plane stain condition, the 
increasing rate of maximum hardening modulus is higher 
than that under plane stress condition. And maximum 
hardening modulus will increase with the same degree of 
damage or initial Poisson’s ratio, so does the effective 
range of Poisson’s ratio. 
 

 
Fig.7 Comparison of dependency of maximum hardening modulus 
on Poisson’s ratio under different conditions 
 

 
Fig.8 Comparison of dependency of maximum hardening 
modulus on degree of damage under different conditions 
 
5 Conclusions 
 

Taking damage degradation and dilatancy into 
consideration, the maximum hardening modulus and 
orientation angle at occurrence of bifurcation and 
instability of rock-like materials are deduced. 

1) The orientation angle of localization at 
occurrence of instability is depended on degree of 

damage and initial Poisson’s ratio. The sum of localized 
orientation angle under tension and compression 
conditions is 90˚. 

2) There are plane stress and plane strain cases of 
the maximum hardening modulus that is independent of 
the uniaxial compression and tension. 
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