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Abstract: To obtain the damage effect in the process of elasto-plasticity deformation of quasi-brittle materials, the isotropic damage
loading-unloading function and damage variable were introduced to non-continuous bifurcation. The critical bifurcation orientation
and its corresponding hardening modulus for quasi-brittle materials were derived considering the effect of stiffness degradation and
volumetric dilatancy under the assumption of isotropic damage. The relationships of localized orientation angle and maximal
hardening modulus dependent on degree of damage and initial Poisson’s ratio of rock were explored. Comparative analyses were
conducted to study the bifurcation of uniaxial tension-compression samples under the conditions of plane stress and plane strain. It is
shown that as the initial Poisson’s ratio or degree of damage increases, the localization orientation angle of the plane uniaxial
compression sample tends to be initiated to decrease. However, the localization orientation angle of the plane uniaxial tension sample
tends to be initiated to increase. The sum of orientation angle under tension and compression conditions is 90°. There are plane stress

and plane strain cases of the maximum hardening modulus that is independent of the uniaxial compression and tension.
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1 Introduction

A bifurcation occurs when a small smooth change
made to the parameter values of a system causes a
sudden ‘qualitative’ or topological change in its
behaviour[1]. It is characterized by the phenomenon that
after the material undergoes a definite amount of equal
deformation, suddenly it gets into a stage of deformation
when the deformation of high localization takes place.
HILL[2], RUDNICKI and RICE[3—4], OTTOSEN and
RUNESSON[5], NEILSEN[6] studied on bifurcation and
instability of materials from the
elasto-plasticity. However, the effects of damage of
materials on bifurcation and instability were not taken
into consideration. LI and YE[7], ZEND et al[8], ZHAO
et al[9] and LU et al[10] analyzed the damage
localization bifurcation model for rock-like materials
under different conditions. LIANG et al[l11] gave the
characteristics of fractal and percolation of rock

viewpoint  of

subjected to uniaxial compression during their failure
process. CHAI et al[12] obtained the characteristics of
stability-losing of post-failure rock. In fact, there is also
dilatancy of the quasi-brittle material along with
presentation of a large quantity of microcosmic defects.
At this time, Poisson’s ratio is increased and strength and
stillness of the material are decreased. Therefore, in
analyses of bifurcation and instability of quasi-brittle
materials, the two nonlinear deformation features of
clasto-plasticity and damage should be taken into
consideration simultaneously. In this work, the isotropic
damage loading-unloading function and damage variable
are introduced into non-continuous bifurcation. The
critical bifurcation orientation and its corresponding
hardening modulus for quasi-brittle materials are derived
considering the effect of stiffness degradation and
volumetric dilatancy under the assumption of isotropic
damage. The relationships of localized orientation angle
and maximal hardening modulus depended on degree of
damage and initial Poisson’s ratio of rock are explored.
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Comparative analyses are conducted to study the
bifurcation of uniaxial tension-compression samples
under the conditions of plane stress and plane strain.

2 Theory derivation of damage constitutive
functions

Traditionally, the constitutive relationship for
isotropic damage may be expressed as
;= Dijkl‘("kl (D)
cC:D=1, (2)

where C denotes flexibility tensor of material; I, is
fourth-order unit tensor; g is total second order strain
tensor; Dy, = (1- d)ngz , is elastic damage modulus of
material which is progressively degraded along with the
development of microcosmic defects[13].

Their derivatives can be written as

' 10 50
D, =-dDy,, Cyy=dCy, (3)

where ng, is initial elastic damage modulus; Cgkl
denotes initial flexibility tensor of material; and d is the
isotropic variable depended only on the plastic strain
history.

There is no change of damage modulus in the
process of elastic loading and unloading and neutral
loading. d= 1/(1—d). Therefore,

: od | .
d—[%)sp (4)

where ¢, is the characteristic plastic strain.

The damage loading-unloading function is
introduced:
F(6,;,2)=0 (5)

where A is an inner variable in elastic domain. The
material will further be damaged and degraded when the
inner stress level of the material satisfies yield function
F=0. Let G be damage potential function of material, and
The incremental constitutive relationship of material is

0",‘,‘ = Dijkl (&n — é/?l) (6)

be damage strain due to the degradation of material.

When potential function differs from yield function
and using non-associated flow rule, it gives
) : oG
&y =8> Bu=— (7)
ooy,
where g, is gradient function of damage potential
function G in stress domain.
According to the identity condition of plasticity, the
rate-format of Eq.(5) is

. OF . oF : . :
anal/+a/lzfl/al/—Hﬂ=0 (8)
where  f;; :6_F , H :_6_F , are hardening and

do; oA

softening moduli, respectively; and A is damage gene.
Eq.(2) may be expressed by rate format as

Dy, =-D, Crprs D %)

iipq ™~ pqrs

By introducing flexibility tensor, the flow rule is
expressed as

Cypy =My, &5,=C, 0 (10)

pq — S pgrs¥rs

where My, is the initial flexibility tensor.
From Eqgs.(7) and (10), the following equation is
attained:

8 =M0oy (11)

From Eqgs.(6), (7) and (8), the following equations
are attained:

| .
A :ZfijDijklgkl (12)

A :H+quqursMrsuvauv 0 (13)

Substitution of Egs.(12) and (13) into Egs.(6) and (7), the
isotropic damage constitutive relation in incremental
form can be written as

6; =D, (14)

where D;gl is elastic-damage tangential modulus
matrix.

D,,,, Elastic loading

ijkl >
ed _
Dy, = .
Dijkl_ZDijkl M 1046 cq fry Dy, Damage loading
(15)
The damage loading-unloading criterion follows
Kuhn-Tucker reciprocal condition:

F=0, A=0, F1=0 (16)

where damage gene, A= d=d /(1-d)* , and initial
flexibility tensor, M, = C;/)-kl , are proposed by CAROL
et al[14].

Then g; of Eq.(11) can be rewritten as

0 0
8 =Ciuou =¢; (17)

Thus, the general expression of hardening modulus
is

OF __¥(w'.d) o)

- (18)
oA od od
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And the gradient function of loading function is

0 5 0 5
o _ YD) o SO

fij:ao.ij ow® GHOK =5 0

(19)

where damage loading-unloading function, F:f(wO c?)—
r(a?) , is proposed by CAROL et al[14]; w° = o- Cyk,

oy and f (wo,a?) are equivalent extendlng and
driving force of cracks, respectively. r(a?) is
representative radius of yield plane of damage. This
denotes that the cracking and yielding of material depend
on current accumulative damage.
Substituting  Eqs.(17)—(19)
considering Eq.(3), it gives

into Eq.(13), and

o (w’, d) 6r(d)

0 (W, d)
0

A=— +2(1-d)yw (20)
od od ow

Finally, the elasto-plastic damage tangential

modulus is expressed as
(1-d)*(f1ow®)
ljkl (1 d)Dukl or _af WOio—ljo—kl
od od 0
21

3 Damage localized bifurcation

The condition of non-continuous bifurcation of
damaged material is depended on singularity of the
following damage localized tensor QS , and QS is
defined as

Qz/ =n; Dyklnk (22)

where n; (=1, 2, 3) is outer unit normal vector of
characteristic plane of localized zone. The necessary
condition when non-continuous bifurcation appears in
the material is

det[@31=0 (23)

The condition can be regarded as necessary
condition that nonlinear uniform algebraic function of
unit normal vector of characteristic plane of localization
obtains non singular solution. Therefore, corresponding
algebraic functions of uniform linearity should be
considered.

Thus, the following eigen-value problem is to be
considered:

Qd (i) —

Considering that Dyk[ is symmetric and positively
definite, it can be proved that Qy is positive as well. Its
inverse matrix is (Q,,) Pl}i. So, Eq.(24) may be
rewritten as

=999y (i=1,2,3) (24)

By =200 (=1,2.3) (25)
where B; :Pqu = P dpa,,a,=f, D° n
gl JiZil A Ji%i% s L — I mn ™ mnkl"™k >
b =n Dyvtgvt
Considering P§ and QY are non-singular, and the

singularity of Bj; is nonsingular, it is indicated that =1 is
an eigen-value with a multiplicity of two for the
eigen-value problem in Eq.(25). Associated this with the
properties of matrix, the third eigen-value can be attained
as
A =1 —%a,P;bJ (26)
To make Bj; singular, at least one eigen-value should
be equal to zero. Then A¥=0. Considering Eq.(13), the
hardening modulus in accordance with occurrence of
localization can be attained as

- _f;:/'Dijklgkl +njDijstgstPi;1fmannklnk (27)

Assuming ngl =Dy, where Dy, is isotropic
elastic tensor of material, from Eq.(3) it gives

d

Dy, = =2G¢ ——0;0y +— (5lk5 1040 ) (28)

where G'=(1-d)G and v? =20 1=20)d
3-(1-2vy)d

damage shear modulus and Poisson’s ratio, respectively,
of material[14]. G and v, are prior-damage shear
modulus and Poisson’s ratio, respectively, of material.

are post-

0f =G 12vd oy +8,)
1 (29)

; Gd( m”i”ﬁéu)

Among the orientations along which localization is
possible to occur, only the orientation corresponding to
the maximum hardening modulus firstly satisfies the
condition of localization, so it is the orientation along
which localization occurs first. Therefore, the orientation
that makes hardening modulus attain the maximum value
H'= maxH(n;) is the critical localized orientation.

Arrangement of the above equations reaches the
following expression:

i 2n fugyn; +

2G
Vd
I—Vd [ni (gss.fij +fivsgg‘j)n_/ _.fiigss]_
1
S8y =g mifynmegum (30)
_ 1 _ _
where f, = fi;; Ji =1y _géy‘fVQ & =4 &=
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[, f; and g, g; are the first invariables and deviatoric
tensors of gradient function of yield function and
damage function, respectively; & =[0f W, d)/ w1

Assuming fl (=1, 2, 3) to be the main values of f
and

3 —
r=oUf, 48, k=32 42 of? 31)
i1

Substituting above equations into Eq.(30), the
unitary hardening modulus can be rewritten as

3, ~ 3 2
1 =Z(f,5+rfm)ni—w(2flan -k (32)
=1

4G4 o
@ and y inEqgs.(31) and (32) are
1+v4 1

- 33
6(1-v%)’ (33)

ETE

respectively.
Considering geometric restrained conditions of unit

3
vector Z njz-
Jj=1

=1, to obtain the maximum value of

hardening modulus for the extremum problem with
restrained conditions, the Lagrange’s multiplier method
is employed to establish the extremum problem without
restrained conditions:

(Z n; —1] (34)

4§Gd =

where S is the Lagrangian multiplier to be determined.
The extremum of hardening modulus A in Eq.(34)

is to be determined by the following extremum

conditions:
3
L pam =0, oS n 1|0 (35)
on; op j=1
where
- - - 3 -
A= f7 +if = 2ymf = . m=3 fin] (36)
i=1
The symmetric Hessian H; of L is
pers Hy, H,, Hiy
i onon. Hy, Hy Hy (37

Y Hy  H;, Hiys

where H; =24,8; —8yf, f,mn; (i=1,2,3).

Considering n,70, it can be seen from the first
condition of Eq.(36) that 4; =0, i.e.

FRk bl [7ede s
VVERENEYEY Lo e PO AR L
L K R n3 fE+rfs=p

If hi:[jinl fan, f3”3], it gives Hy=

—8yh h,.

Assuming f, = f, = f; and f,; #0, it can be
obtained from Eq.(36) that
B =F)==hl(fi = 1) (39)
B~ 1) ==hFs(h=F5) (40)

1) When ]_”1 > fz > f3 , Eq.(39) and Eq.(40) are not
able be satisfied simultaneously. For this case, no
maximum of Eq (34) exists.

2) When f1 f2 > f3 , for this case, from Eqs.(39)
and (40), obviously f=-f,f;. When f;#0 and
/73 #0, from assumptions before and Eq.(38), the
following equation is obtained:

I N R P
Si(ng +ny)+ fimg =E(.f1+f3 +7) (41)
From Eq.(41) and to associate with the equation

ni +n? =1-n?, it gives

n32:_f3+(1—_21//)_f1+r (42)
2y (/i = f3)
As 0= n32 =1, the following equations are

obtained:
fi+(0=20)f; +r =<0, fi+(1-2p)f5+r=0 (43)

3) When f] >f2 =f3 , for this case, ,B=—]_”1]_”3
as well, then

fi+(1=2p)fs +
n12=—f1 ( _l//)_f3 r’ n22+n32=1—n

2 (fi—13)

ol )

(44)

fi+0=20)f;+r=0, fi+(1-2p)fs+r=0 (45)

The expression of maximum hardening modulus for
occurrence of non-continuous localization bifurcation
can be derived from the above equations as

H® =Gy (fi+ f3+1)° = fifs k] (46)

As shown in Fig.1, if »=<0 and f] < fz < ]_"3 and
assuming 7,=0, the orientation angle 6. along which
localized damage occurs may be represented by the angle
formed by the outer normal vector n of localized
characteristic plane and the direction of x; axis, and is
given by
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/H

Fig.1 Orientation angle of localization for plane problems

2g N HA=200]+24f,
T LU=+ 2,

tan

47

4 Analysis of localization of uniaxial sample

The theories of analyses on isotropic damage
localized bifurcation illustrated above are used to
concretely calculate and analyze the localization of
uniaxial compression-tension testing samples under
plane strain and plane stress conditions. The damage
loading and unloading function F=w’" —r[c;l]
proposed by JU[15] is used in the following analysis.
The results are shown in Table 1.

The dependence of orientation angle of the normal
vector of localized characteristic plane on degree of
damage and initial Poisson’s ratio are obtained by
calculations, as shown in Figs.2 and 3, respectively.

1) Whether under plane stress or strain condition,
variation of orientation angle of localization is depended
on initial Poisson’s ratio and degree of damage. Under
the condition of uniaxial compression, the larger the
initial Poisson’s ratio or the degree of damage is, the
smaller the orientation angle of localization is, and the
slower the tendency of progressive decrease of
orientation angle becomes. Under the condition of
uniaxial tension, the larger the initial Poisson’s ratio or
the degree of damage is, the larger the orientation angle
of localization is, and the slower the tendency of
progressive increase of orientation angle becomes. When
d=1 or v=0.5, the orientation angle keeps unchanged and
reaches the minimum value under the condition of

uniaxial compression.

2) When d=1 or v=0.5, the orientation angle keeps
unchanged and reaches the maximum value under the
condition of uniaxial tension. Under plane strain uniaxial
compression condition, the orientation angle of
localization 6.=45°; and under plane stress uniaxial
compression condition, the orientation angle of
localization 6.=54.7°; under plane strain uniaxial tension
condition, the orientation angle of localization 6.=45°;
and under plane stress uniaxial tension condition, the
orientation angle of localization 6,=35°.

The dependence of maximum hardening modulus
on degree of damage and initial Poisson’s ratio are
obtained by calculations, as shown in Fig.4. It can be
seen that:

1) Whether under plane stress or plane strain
condition, when v  0.35, the maximum hardening
modulus decreases and reaches zero with the increase of
degree of damage. The smaller the initial Poisson’s ratio
is, the slower the tendency of progressive decrease of
maximum hardening modulus becomes. When v=0.35,
at the beginning, maximum hardening modulus increases,
then decreases and reaches zero with the increase of
degree of damage. The smaller the initial Poisson’s ratio is,
the smaller the maximum hardening modulus becomes.

2) When v 0.20, the extension of effective value of
the degree of damage is different with the change of
initial poisson’s ration. The larger the initial poisson’s
ratio is, the large the extension of effective value is.
Under different degrees of damage, the -effective
extension of Poisson’s ratio is different. The larger the
degree of damage is, the larger the extension is. When
v=0.50, the maximum hardening modulus keeps
unchanged and reaches zero.

For comparing characteristic of bifurcation under
plane strain and plane stress condition simultaneously,
the change relation of maximum hardening modulus and
orientation angle of the normal vector of localized
characteristic plane on degree of damage under two
conditions are given in Figs.5—8 for v;=0.3 or d=0.5. It
can be seen that the declining rate of localized
orientation angle is lower under compression condition

Table 1 Result statistics of damage localization of uniaxial sample under plane condition

Damage Plane loading conditions
Parameters  loading and Plane strain Plane stress
localization  unloading o ) o ) o ) o )
function F Uniaxial tension Uniaxial compression Uniaxial tension Uniaxial compression
unction
Orientation
¢ W) arctan | ot(=2vo)d arctan [3(1=vy)—2d(1-2vy) arctan |20+ (1=2v0)d aretan | 3= (1=2v0)d
0 3(1-vy) —2d(1-2vy) V' 3vp+(-2vp)d 3—(1-2vy)d 3ve+(1-2v)d
localization
Maximum
hardeni W G O HED? =51 o g 20D 60D 2 1 ) DTSV L] g 2000 6 4 20
ardening 180: — 1) 1 189 +1)? ' 180: 1) ‘ 180/9 +1)? '

modulus
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50 90
(a) (b) I — =0
2— =01
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30 70 6 —1=0.5
3 3
Ey Ey
2 20 1 — =0 < 60
2—v=0.1
3—v=02
10 4 — =03 50
5 — =04
6 —v=0.5
0 ' : . . 40 ' : . .
0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
Degree of damage, d Degree of damage, d
40 90
© o
30 80
2 20 2 70
= =
- 1 — =0 <
2 —v=0.1
o it
5— =04
6 —v=0.5
0 L " " L 50 " L L "
0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
Degree of damage, d Degree of damage, d

Fig.2 Dependency of orientation of localization on degree of damage for different Poisson’s ratios: (a) Plane-strain uniaxial tension;
(b) Plane-strain uniaxial compression; (c) Plane-stress uniaxial tension; (d) Plane-stress uniaxial compression

50 @ 90
(b) | —d=0
2 —d=0.25
40 80} 3 —d=0.50
4 —d=0.75
5—d=1.00
o: 30 C 70
5 3
zh )
= =
< 20 1 —d=0 < 60
2 —d=0.25
3 —d=0.50
10 4 —d=0.75 s0F
5—d=1.00
0 . . . . 40 . . . .
0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Poisson’s ratio, v Poisson’s ratio, v
40— 90
(c) (d) | — =0
2 —d=0.25
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5 —d=1.00
U 1 1 1 1 50 L L L L
0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Poisson’s ratio, v Poisson’s ratio, v

Fig.3 Dependency of orientation of localization on Poisson’s ratios for different degrees of damage: (a) Plane-strain uniaxial tension;

(b) Plane-strain uniaxial compression; (c) Plane-stress uniaxial tension; (d) Plane-stress uniaxial compression
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0 0.1 0.4

Fig.4 Dependency of maximum hardening modulus ratio on damage degree and Poisson’s ratio: (a) Plane strain condition; (b) Plane

stress condition; (c) Plane strain condition; (d) Plane stress condition

80 — . " -
= — Uniaxial tension of plane strain
. » — Uniaxial compression of plane strain
701 » — Uniaxial tension of plane stress
60
1
= 50
<
40r

L v 1

— Uniaxial compression of plane stress
0.2 0.3 0.4
Poisson’s ratio, v

0 0.1 0.5
Fig.5 Comparison of dependency of localization orientation on
Poisson’s ratio under different conditions

than that under tension condition. And the localized
orientation angle will be larger with the same degree of
damage or initial Poisson’s ratio. Under condition of
plane strain, the localized orientation angle will increase,
if initial Poisson’s ratio or the degree of damage
increases. Under tension condition, the increasing rate of

= — Uniaxial tension of plane strain

e — Uniaxial compression of plane strain
+ — Uniaxial tension of
plane stress

64[

Ln
=3
T

Angle/(%)
=y
o0

¥ — Uniaxial compression of
plane stress

.
=)

0 0.2

0.4 0.6
Degree of damage, d
Fig.6 Comparison of dependency of localization orientation on
degree of damage under different conditions

localized orientation angle is higher than that under
compression condition. And the localized orientation
angle will increase with the same degree of damage or
initial Poisson’s ratio. The sum of localized orientation
angle under tension and compression conditions is 90°.
Secondly, there are plane stress and plane strain cases of
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the maximum hardening modulus that is independent of
compression and tension. Maximum hardening modulus
will increase when degree of damage or initial Poisson’s
ratio increases. Under plane stain condition, the
increasing rate of maximum hardening modulus is higher
than that under plane stress condition. And maximum
hardening modulus will increase with the same degree of
damage or initial Poisson’s ratio, so does the effective
range of Poisson’s ratio.

0.15
= — Plane strain d=0.5
4 * — Plane stress
= 0.12f
-
[=]
£
=11}
£ 0.09+
=]
[-*]
=
=
= 0.06f
—]
£
5 0.03}
s
0 0.1 0.2 0.3 0.4 0.5

Poisson’s ratio, v
Fig.7 Comparison of dependency of maximum hardening modulus
on Poisson’s ratio under different conditions

0.15
= — Plane strain v=0.3
2 * — Plane stress
= 0.12f
=
(=]
g
2 0.09t
5
i=
Z 0.06}
E Ao
=1
£
Z 0.03
b=
0 02 04 06 08 10

Degree of damage, d

Fig.8 Comparison of dependency of maximum hardening
modulus on degree of damage under different conditions

5 Conclusions

Taking damage degradation and dilatancy into
consideration, the maximum hardening modulus and
orientation angle at occurrence of bifurcation and
instability of rock-like materials are deduced.

1) The orientation angle of localization at
occurrence of instability is depended on degree of

damage and initial Poisson’s ratio. The sum of localized
orientation angle under tension and compression
conditions is 90°.

2) There are plane stress and plane strain cases of
the maximum hardening modulus that is independent of
the uniaxial compression and tension.
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