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摘  要：锂硫电池被广泛认为最具潜力的下一代储能体系，但是锂硫电池的技术瓶颈使其实用化过程遇到诸多困

难。全球“材料基因组”计划的开展促进第一性原理在储能材料领域的广泛应用。综述近年来第一性原理在锂硫

电池正极材料中的应用，从 4 个方面分析多硫化物的吸附作用、充放电机理、锂离子的扩散及电子结构对锂硫电

池的穿梭效应、容量、循环稳定性等问题的影响。通过第一性原理计算将宏观性能与微观本质相关联，展望其在

锂硫电池中的应用前景，为进一步设计硫正极材料提供参考。 
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锂硫电池因其能量密度高、成本低以及无污染等

优点，被认为是极有潜力的继锂离子电池之后的下一

代高能量密度储能体系。单质硫正极的理论比容量高

达 1675 mA∙h/g，由金属锂和单质硫组成的锂硫电池体

系理论能量密度高达 2600 Wh/kg，是目前商业化锂离

子电池理论能量密度的 5 倍。同时，锂硫电池体系具

有优异的过充保护特征，工作温度范围宽，无记忆效

应，为锂硫电池的发展提供了良好的基础[1−4]。尽管锂

硫电池拥有如此优点，其仍然存在着硫及其还原产物

Li2S 的电子、离子电导率差，充放电过程电极体积膨

胀，充放电中间产物在电解液中的溶解以及伴随的“穿

梭效应”等问题，导致锂硫电池产业化进程缓慢[5−9]。

为解决这些问题，研究者尝试将各种维度的导电材料

与单质硫复合增加正极的导电性，从物理吸附或化学

方法固硫，来提高锂硫电池整体性能[10−11]。 

除了大量的实验研究外，近几年，基于密度泛函

理论的第一性原理计算在锂硫电池中得到广泛应用。

通过自洽场理论计算某些正极材料的相关的物理化学

性能，进而可以指导正极材料的筛选并且预测相关正

极材料的电化学性能。目前，第一性原理计算已成为

选择和设计锂电池正极材料的有效指导方法，在电极

材料的设计研发筛选、结合实验现象与微观机理的解

释方面发挥更重要作用[12−13]。 

本文作者总结了近三年来第一性原理计算在锂硫

电池正极材料中的应用，从原子层面角度分析多硫化

物(S8，Li2Sx，x=1，2，4，6，8)的吸附作用、充放电

机理、锂离子扩散、正极材料的电子结构 4 个方面对

“穿梭效应”、容量、循环寿命、倍率、导电性等电

化学性能的影响，为深一步探索锂硫电池正极材料的

发展提供新的研究思路。 

 

1  多硫化物相互作用 

 

1.1  碳质材料 

碳质材料具有高导电性、质轻、高比表面积，是

电极活性材料的理想载体[14]。为提高正极材料的导电

性和电极结构稳定性，已有研究者已综述过将单质硫

与各种不同结构维度的碳质材料复合，如多孔碳(微

孔、介孔、炭壳、多级孔炭材料)[15−16]、碳纳米管

(CNTs)[17]、碳纤维[18]、石墨烯[19]和氧化石墨烯[20]等，

非极性的纯碳质材料限域多硫化物效果较差，固硫能

力有限，纯碳质材料不能作为理想的基底，需进一步

修饰碳与硫之间的界面[21−22]，针对碳材料进行改善碳

质材料性能的方法是通过引入缺陷和元素掺杂等，通

过物理作用或化学作用抑制穿梭效应，优化活性材料 
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的分散，提高锂硫电池的容量和循环寿命。 

1.1.1  缺陷 

纯碳质材料缺陷影响研究多围绕石墨烯开展。

ZHAO等[23]利用第一原理研究缺陷对石墨烯吸附多硫

化物的影响，采用了广义梯度近似 (Generalized 

gradient approximation，GGA)[24]的 PW91 泛函计算了

4 种石墨烯结构(本征态、Stone-Wales 缺陷、单空位缺

陷、双空位缺陷)对硫和锂的吸附作用，结果显示空位

缺陷可以有效抓固硫分子并使其分散开，但是由于碳

基底和硫原子的物理吸附作用，使硫贡献的所有的电

子态都远离了费米能级，降低了硫的化学活性，微观

上解释了实验所制备的电池容量降低的内在原因。

LIANG 等[25]研究缺陷对石墨烯吸附多硫化物的影响，

结果发现双空位缺陷有利于锂离子吸附和扩散在石墨

烯表面。JAND 等[26]计算研究了 Stone-Wales 缺陷、单

空位缺陷、双空位缺陷等对石墨烯吸附多硫化物性能

的影响，发现石墨烯与多硫化物之间的相互作用主要

为物理吸附的色散相互作用，吸附强弱与多硫化物分

子的大小以及石墨烯的缺陷类型有关，这些缺陷中

Stone-Wales 缺陷一定程度能增加石墨烯与多硫化锂

相互作用，但不能显著提高石墨烯捕获多硫化物的能

力。这些结果都说明了碳材料的缺陷会增加与多硫化

锂之间物理吸附作用强度起一定限域作用，但不能有效

抑制穿梭效应，需进一步考虑对碳材料进行化学改性。 

1.1.2  掺杂 

将非金属化学元素掺杂到各种维度碳材料复合硫

正极的策略，使之与多硫化物的结合能力增强，兼具

物理吸附和化学吸附作用，缓解多硫化物的溶解及扩

散，减少活性材料的损失。目前掺杂碳质材料方式：

单元素(以氮为主)、双元素掺杂及多元素掺杂，主要

分析改性后碳质材料与多硫化物的相互作用。 

通过单元素掺杂改性碳基底变为极性材料，

PENG 等[27]利用密度泛函理论(DFT)研究掺杂元素的

纳米碳基底(CNTs、OCNTs、NCNTs)与多硫化锂的相

互作用，发现同主客体之间(掺杂 N 的 C/S 界面)相互

作用增强，掺杂 O、N 元素后碳基底与多硫化物变为

化学键合作用；而且多硫化锂在吡啶氮和四分氮掺杂

区域内的沉积明显减少，提高了活性物质利用率；实

验制备的 NCNT-S 正极电池比未掺杂可逆循环稳定性

提升。HOU 等[28]研究了氮掺杂在不同边界结构对石墨

烯纳米带吸附多硫化锂的影响，结果发现吡咯型石墨

烯纳米带与多硫化锂结合能略高与吡啶型氮掺杂，四

分氮型石墨烯纳米带更有利于吸附活性物质，总体上

掺杂氮元素对石墨烯纳米带锚定多硫化锂有积极作

用。从路易斯碱角度研究掺杂氮元素对介孔碳与多硫

化物吸附行为的影响，结果显示 3 种氮掺杂下介孔碳

吸附多硫化物，吡啶氮和吡咯氮较强于四分氮型介孔

碳[29]。YOO 等[30]利用碳纳米管表面自组装成共价有

机骨架(COF)，利用共轭 π 键形成三维杂化碳硫复合

正极，计算发现 CNT 与 COF 协同效应吸附有利于多

硫化物。YIN 等[31]研究 13 种不同氮位掺杂的石墨烯

与多硫化锂间的吸附作用，在计算方法中考虑分子间

的范德瓦尔斯相互作用(vdW)，全面地研究各种掺氮

型碳材料与多硫化锂之间的有效锚定作用，结果发现

吡啶型氮掺杂的石墨烯团簇更有效抓固多硫化锂(见

图 1(a))，其他研究者也发现氮掺杂石墨烯有利于吸附

多硫化物得到相似结论[32−33]。另外发现石墨烯中氧元

素存在也有利于多硫化锂的吸附[34−35]。 

碳质材料的双掺杂多数在 N、B、O、P 等元素中

筛选。LI 等[36]计算 N、B 共掺杂石墨烯复合正极对多

硫化物的吸附过程发现在Li-N和S-B间形成强相互作

用，有效抑制穿梭效应(见图 1(b))。当 N、O 共掺杂石

墨烯复合后研究发现放电过程中有利于短链多硫化物

形成，有效减缓穿梭效应[37]；GU 等[38]将 N、P 共掺

杂石墨烯发现也有类似结论。针对碳纳米管，JIN 等[39]

用 B、O 共掺杂复合到 CNT 计算发现双掺杂后可提

供丰富吸附位点，与多硫化物形成很强化学吸附作用。 

多元素碳质材料掺杂研究较少，CHEN 等[40]研究

含 C、O、N、P 官能团对石墨烯吸附多硫化锂的影响，

形成了 C—S、O—S、P—S 化学键，对多硫化锂有较

强化学键合作用。HOU 等[41]研究掺杂异质元素(包含

N、B、F、O、S、P、Cl )对纳米带吸附多硫化锂的影

响，由于引入异质元素，使碳材料表面极化并产生强

耦合相互作用，与极性多硫化物形成偶极子静电作用，

采用非解析的“火山型曲线”图找出了结合能与掺杂

元素电负性之间的规律，发现掺杂氮或氧元素改善纳

米碳材料性能，对多硫化物的吸附作用得到显著提高

(见图 1(c))。 

 

1.2  金属化合物 

改性后的碳材料通过物理限域或化学键合对多硫

化物抑制“穿梭效应”有一定效果，但十分有限的吸

附位点和掺杂引起的共轭结构被破使导电性降低等问

题，引起研究者寻求更有效的固硫策略，考虑到金属

化合物(氧化物、硫化物、碳化物、氮化物等)一般对

极性多硫化锂有强吸附能力，而且部分金属化合物具

有良好的导电性和催化作用，将金属化合物以层状的

二维材料或是体相三维材料复合作为锂硫电池正极或

许可以解决现在的瓶颈，为锂硫电池的研发提供一个

新思路。 
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图 1  不同氮位掺杂石墨烯吸附多硫化物[31, 36]和构型和空间构型以及杂原子掺杂纳米碳吸附 Li2S4火山型曲线[41] 

Fig. 1  Configurations ((a), (b), (c)) of different nitrogen sites doped graphene adsorbed polysulfides[31, 36] and heteroatoms doped 

nanocarbon adsorbed Li2S4 volcano curve (d)[41] 

 

1.2.1  二维材料 

二维材料[42](2D)由于拥有不同寻常的电子、机械

和光学性质，片层堆叠结构可控，近十年受到广泛关

注，尤其当石墨烯产业化后，2D 材料的层状结构不易

形变，引入二维材料作为抓固材料吸附多硫化锂，有

利于解决锂硫电池中的穿梭效应问题。SEH 等[43]用

TiS2、ZrS2、VS2复合锂硫电池正极，发现这三个二维

层状材料对多硫化物均有强键合作用，对 Li2S 的吸附

能由小到大依次为 ZrS2(2.70 eV)、VS2(2.94 eV)、

TiS2(2.99 eV)，实验上制备这三种材料复合硫正极后

的电池电化学性能优异。在原子尺度下揭示出对多硫

化锂的作用，ZHANG 等[44]采用包含范德瓦尔斯修正

第一原理方法系统地研究九种二维层状材料：氧化物

(V2O5、MoO3)、硫化物(TiS2、VS2、ZrS2、NbS2、MoS2)

和氯化物(TiCl2、ZrCl2)，计算三大类别层状材料与多

硫化锂的吸附类型，结果发现，类石墨烯碳基底不能

有效抓固多硫化锂由于是物理吸附，“皇冠”S8 与这

些抓固材料间产生比碳基底更强的物理吸附作用；处

于锂化阶段的 Li2S6 和 Li2S8，硫化物(NbS2 与 TiS2、

VS2和 ZrS2)比氧化物和氯化物有较强的抓固作用，且

为化学吸附。 

过渡族金属碳化物、氮化物和碳化物(MXenes)[42]

目前已成为研究热点。SIM 等[45]研究带有官能团氮化

钛基 MXenes 用作锂硫电池中的导电抓固材料，该组

计算 Ti2CF2和 Ti2CO2与多硫化锂之间吸附作用，发现

Ti2CO2 吸附多硫化物后由半导体性变为金属性，而

Ti2CF2 本为金属材料，这样有利于电子传导，使多硫

化物更倾向于抓固在带有 F 或 O 官能团的 Ti2C 基

MXene 基底上，有效抑制穿梭效应，可做为导电抓固

材料提高锂硫电池整体性能。导电的 TiC@石墨烯复

合硫正极与多硫化物化学键合，结果显示 TiC 促进多

硫化物的液固相之间的转化，抑制多硫化物的溶解与

扩散 [46]。SALEM 等 [47]计算长链的 Li2S8 吸附在

WC(0001) 面和 TiC(111) 面的吸附能各自为 3.56 

eV/atom 和 3.68 eV/atom 远大于在石墨烯上的吸附能，

同时强吸附作用是由于形成了金属碳键(Wδ+–Cδ−和

Tiδ+–Cδ−)。研究者也引入氮化物的复合硫正极，导电

性良好的 VN/与 Li2S6结合能为 3.75 eV，显著增强对

多硫化锂的吸附作用[48]；将 TiN 与硫正极复合，计算

出 TiN 与 S8的结合能为 6.60 eV 远大于石墨的结合能

(0.76 eV)、TiO2 的结合能(1.78 eV)、Ti4O7 的结合能

(1.28 eV)，发现添加 TiN 有利于稳定短链多硫化物，

而且协助长链多硫化物碎化为短链多硫化物，有利于

放电过程中第二电压平台的出现[49]。二维层状材料中

的金属氧化物、硫化物、碳化物、氮化物均表现出对

多硫化锂的强吸附作用。 
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1.2.2  三维材料 

体相的三维(3D)金属化合物与多硫化锂的形成能

或吸附能一般采用 GGA-PBE 方法计算，同时考虑

vdW 修正方法。计算 TiO2与 Ti4O7与多硫化锂相互作

用，发现导电的 Magnéli 相 Ti4O7作为基底能更有效吸

附多硫化物，由于表面原子具有多配位点多硫化物吸

附更帮助[50]。WANG 等[51]计算 MnO2与多硫化锂的作

用，S8与 MnO2的吸附能为 1.60 eV 二者间相互作用

较弱，而 Li2S8与 MnO2吸附能为 4.68 eV，其它多硫

化物的吸附能范围为 3.86 eV~5.15 eV，多硫化锂与

MnO2 吸附能大源于相互作用过程中产生 S=O 和  

Li—O 化学键合，该组制备出 MnO2 复合硫正极的电

池进行测试，证实由于添加 MnO2 确实可提升电池循

环性能。CHEN 等[52]利用原子沉积法超薄的 Al2O3复

合到硫正极，发现对高阶多硫化物有吸附作用。TAO

等[53]计算金属氧化物纳米粒子(MgO、Al2O3、CeO2、

La2O3和 CaO)与多硫化锂的吸附能，结果显示对 Li2S8

吸附能由大到小仪次为 Al2O3、CeO2、MgO、La2O3、

CaO，与多硫化锂间相互作用为化学吸附，同时采用

简单生物合成方法制备这五种绝缘纳米级金属氧化物

粒子修饰的碳片复合硫正极，其中 MgO/C、CeO2/C、

La2O3/C 纳米片的复合硫正极材料显示出较高容量和

较好循环性能。 

相对于金属氧化物，过渡族元素体相硫化物具有

更佳的导电性能，被研究者也引入硫正极材料。ZHOU

等[54]计算了 6 个过渡金属硫化物(VS2、CoS2、TiS2、

FeS、SnS2 和 Ni2S3)与 li2S6 之间的吸附能由大到小依

次为 VS2(1.04 eV)、TiS2(1.02 eV)、CoS2(1.01 eV)、

FeS(0.87 eV)、SnS2(0.80 eV)、Ni2S3(0.72 eV)，这 6 种

硫化物对多硫化锂的吸附能较比石墨烯稍大(0.67 

eV)，二者之间为化学吸附，作者认这 6 种硫化物在电

池充放电过程中有一部分催化剂作用 (见图 2)。

NAZAR 等[55]采用类石墨烯复合硫正极，采用基于密

度泛函理论研究对 Li2S2 的吸附能由大到小依次为

Co9S8(008) 面 (6.06 eV) 、 Co9S8(202) 面 (3.29 eV) 、

Co9S8(002)面(2.26 eV)、石墨烯(0.28 eV)，含 vdW 修

正 DFT 计算结果显示 Li2S2与所有基底的结合能比不

修正增加了 0.65~1.00 eV，发现 Co9S8与多硫化锂间吸

附强于石墨烯，该组制备的电池测试结果也显示Co9S8

复合硫正极后能达到很好的循环稳定性(0.5C 循环

1500 圈，衰减率为 0.045%)。YUAN 等[56]采用 CoS2

复合碳硫正极，采用 GGA-PBE 方法，CoS2 与 Li2S4

间的吸附能为 1.97 eV，比与石墨烯间的吸附能大 5

倍以上，同时，CoS2复合碳硫正极提供较强的吸附位

和活性位(见图 3(a))，加速氧化还原反应速度，结果显

示 CoS2与多硫化锂(Li2S4 )之间的相互作用很强，制备

CoS2 复合正极电池实验显示出电池能量效率提高

10%，放电容量提高，良好的循环稳定性性(2.0C 下循

环 2000 圈，衰减率为 0.034%)。 

目前的研究者多数认同多硫化锂的强吸附作用能

抑制穿梭效应，但是当过强吸附也会导致多硫化物自

身解离，这就需要适当的结合能来平衡这种强吸附与 

 

 

图 2  金属化合物基底对 Li2S 的催化作用[54] 

Fig. 2  Li2S catalytic oxidation on surface of metal compound 

substrate[54] 

 

 

图 3  多硫化锂对 CoS2
[56]、金属硫化物[58]、氮化碳[63]的吸

附作用 

Fig. 3  Polysulfide adsorption of CoS2-incorporated 

carbon/sulfur cathode[56] (a), S-binding in metal sulfide 

cathodes[58] (b) and adsorption between polysulphide and 

carbon nitride[63] (c) 
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解离作用。KAMPHAUS 等 [57]提出了采取 DFT 和

AIMD 研究长链多硫化锂(Li2S6和 Li2S8)与不同基底间

(MoS2、掺 Mo 石墨烯、MoO2和 Fe2O3)的相互作用，

显示 MoO2 基底对多硫化物有强吸附作用且不会使多

硫化物解离，MoS2 和 Fe2O3 吸附作用更强但会使多

硫化锂自身解离，锂离子会吸附在 MoS2 和 Fe2O3 表

面上，研究者认为不能盲目追求大吸附能而忽略亲硫

和适中的表面活性间的平衡。CHEN 等[58]认为抓固材

料基底设计原则为多硫化锂与复合正极间产生极性物

理和化学相互作用，该研究组采用 CASTEP 程序进行

了第一原理计算，选取第 4 周期 10 个过渡金属硫化物

(ScS、TiS、VS、CrS、MnS、FeS、CoS、NiS、CuS

和 ZnS)与 Li2S 的吸附和相互作用，结果显示过渡金属

硫化物主要通过硫键与多硫化锂作用，而碳基材料与

多硫化锂通过锂键作用，另外发现 VS 对 Li2S 抓固效

应最强，为过渡金属硫化物吸附多硫化锂元素周期火

山型规律，发现 d 轨道的电子数目与结合能有紧密联

系和周期规律(见图 3(b))，认为与多硫化锂之间产生

锂键、硫键是有内在原因，该组工作筛选了吸附多硫

化锂的过渡金属硫化物，有利于正极材料的合理设计

及优化电池性能。 

从第一性原理计算角度研究金属化合物对锂硫电

池正极电池性能影响，引入金属元素有利于多步多相

转化反应有一定促进或催化作用，对比二维和三维金

属化合物与多硫化锂的相互作用(见表 1)数据，单从结

合能大小分析二维层状材料对多硫化锂吸附作用强于

体相三维金属化合物，但其微观的机理仍需进一步探

索，结合实验和第一性原理计算为寻找更适合锂硫电

池正极的材料是否会全面优化锂硫电池电化学性能，

而且建立导电性好且抑制穿梭效应的材料基因库需要

第一性原理从计算角度助力。 

 

1.3  其他材料体系 

除了碳质材料和金属化合物被考虑到优化锂硫电

池正极性能中，研究者注意到一些新型材料和生物分

子体系，从第一性原理计算角度出发研究对多硫化物

的吸附时候抑制穿梭效应。磷烯由于其层状材料，优

异性能，ZHAO 等[59]等通过 DFT 研究多硫化锂与单层

磷烯的吸附作用，显示与多硫化锂适度结合，而沿着

边缘方向扩散，提高磷烯的导电性，有潜力添加到锂

硫电池的正极材料。SUN 等[60]等也计算了磷烯与多硫

化锂之间吸附，对比 vdW 修正发现磷烯对多硫化锂中

的锂和硫原子吸附均强，且制备磷烯隔膜用于实验上，

发现磷烯的引入提高硫正极的比容量及循环稳定性。 

大量的研究表明：氮掺杂碳材料引入硫正极中能

够抑制多硫化物的溶解与扩散，而石墨型氮化碳

(g-C3N4)具有类石墨烯层状结构，孔隙结构且比表面

积大，氮含量高，可以从物理限域和化学键合作用多

硫化物，抑制穿梭效应，LIAO 等[61]等提出方法用石

墨型氮化碳来修饰碳电极，利用密度泛函计算显示出

g-C3N4对多硫化锂具有强烈的吸附效应，主要体现在

氮原子与多硫化锂中的锂原子形成化学键作用，这种

修饰法使得锂硫电池的容量性能和循环性能比本征石

墨碳有较大提高；NAZAR 等[62]采用轻质高氮多孔

g-C3N4复合硫电极，利用第一原理计算得到的结合能

数据显示 g-C3N4 与多硫化锂之间产生强化学相互作

用，认为随结合能增加固硫作用越强，进一步制备成

电池 g-C3N4/S75 硫正极测试电池性能得到优异，0.5C

倍率下，循环 1500 圈，衰减率为 0.04%，验证了添加

石墨型氮化碳有利于缓解穿梭效应提高循环稳定性；

考虑到电解质对正极材料的影响，LIANG 等[63]计算了

聚合氮化碳(p-C3N4)与石墨烯对多硫化锂的结合能情

况，发现在 DME 电解液中 p-C3N4与多硫化物的结合

能是石墨烯 2 倍，作者认为 p-C3N4对多硫化物的结合

是由于静电定位效应，同时促进多硫化锂的氧化还原

反应，提高转换效率及活性材料利用率(见图 3(c))。 

生物分子中带有 4 种 A、T、G、C 不同碱基的脱

氧核苷酸作为模板吸附多硫化锂，采用第一性原理计

算显示在最易溶的 Li2S8 与基底间在氢键环境和结构

张力有很多密切相关的电荷位点，锂离子间和强大的

孤对电子间的静电吸引力贡献了吸附能，而 S8
2−和基

底之间的形成稳定氢键[64]，显示出对多硫化锂的亲和

力较强。LI 等[65]将 DNA 分子引入 CMK-3/S 正极，计

算多硫化物与 DNA 中的各种极性基团(氨基、亚氨基、

磷酸、羰基、羟基等)之间的吸附作用，结果吸附作用

最强在—P=O 和=N—位点。 

为改善常规的粘结剂(如 PVDF，聚偏二氯乙烯)

与多硫化物的亲和性效果差，WANG 等[66]通过 DFT

计算发现聚(偏二氟乙烯−三氟乙烯)作为粘结剂对多

硫化物具有更强吸附作用，同时抑制穿梭效应。SHE   

等[67]通过含有不同官能团对粘结剂吸附 Li2S 的吸附

影响计算，择优选择具有最强吸附能的粘结剂用于锂

硫电池，制备出的电池通过实验测定相对于传统的粘

结剂电池性能得到提高。 

综上所述，采用第一性原理计算正极材料(碳质材

料、金属化合物、其他材料等)与多硫化物之间结合强

度，通过对比数据大小判断吸附类型，而化学吸附或

物理吸附这两种作用相互协同提高正极材料导电性及

储硫功能、抑制穿梭效应、提高容量和循环寿命，但

是锂硫电池实用化进程尚有一段距离，需要利用第一 
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表 1  二维、三维材料与多硫化物的相互作用 

Table 1  Interaction between two dimensions, three dimensional materials and polysulfides 

Cathode Dimension 
Adsorption energy/eV 

Ref 
S8 Li2S8 Li2S6 Li2S4 Li2S2 Li2S 

V2O5 

2D 

   3.73   

[41]，[42] 

[48]，[49] 

[51] 

MoO3    2.85   

TiO2 1.78      

Ti4O7 1.28      

TiO2 

3D 

   4.1−3.5   

Ti4O7    4.2−3.8   

MnO2 1.60 4.68 3.86−5.15    

MgO  1.87    5.71 

Al2O3  3.54    7.12 

CeO2  2.07    6.33 

La2O3  2.18    5.85 

CaO  1.54    5.49 

Zr2S 

2D 

     2.70 

[41]，[42] 

[52]，[53] 

[54]，[56] 

VS2   1.04   2.94 

TiS2   1.02 1.54  2.99 

MoS2    0.77   

NbS2    1.80   

CoS2 

3D 

  1.01 1.97   

FeS   0.87    

SnS2   0.80    

Ni2S3   0.72    

Co9S8    1.71 2.26 2.74 

VS      4.89 

TiCl2 

2D 

   0.38   

[42]，[43] 

[44]，[45] 

[46]，[47] 

Ti2CF2  1.15 1.03 1.11   

Ti2CO2    2.40   

TiC  3.68  1.89  2.75 

TiN 6.60      

WC  3.56     

VN   3.75    
         

 

性原理计算更大规模和高精度对锂硫电池的正极材料

体系本质问题进行研究。 

 

2  充放电机理 

 

锂硫电池充放电过程中发生多步多相氧化还原反

应及多电子离子的输运，充放电机理的电化学机理尚

不清晰，实验层面上虽然采用原位手段表征但很难从

原子尺度分析内在过程，而理论计算方面针对锂硫电

池的反应机理进行模拟和深入探讨却可以，目前第一

性原理计算对锂硫电池反应过程中的放电机理研究主

要从 4 个方面出发：首先是电压平台的计算；其次是

计算反应物两端的结构信息及物相性质；再次是中间

产物的模拟；最后对最终放电产物的确定。 

首先计算得到的电池的电压值是与电池反应的自

由能变化紧密联系的参量。在锂硫电池中电化学进程

为多步多相的硫还原氧化过程，单质硫和金属锂在充

放电过程中存在多硫化锂产物 Li2Sx(x=1~8)，放反应过

程中存在两次平台还是 3 次电压平台，仍存在异议，而
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WANG 等[68]计算 16 种可能氧化还原反应过程的 Gibbs

自由能，通过自由能变化计算在放电反应过程中，存在

3 个放电平台，但是第三个平台比第二个略低，解释了

在实验上通常只观察到两个电压平台的原因。 

其次，从微观上了解 S8及放电产物的结构参数和

物理化学等相关性质，有助于更深理解锂硫电池充放

电反应机理和放电过程。通过 BYLYP 泛函优化 S8和

Li2Sx结构，对放电过程中的中间产物进行了理论计算

并得到相关的结构参数及物化性质[68]。理论角度解释

了多硫化锂的形成原因，WANG等[32]计算显示Li2Sn (1

≤n≤8)团簇都是由环状八角硫产生，超大锂硫团簇是

由不同环共同耦合产生，高锂浓度下研究 Li2S8、Li2S6、 

Li2S4和绝缘的 Li2S2和 Li2S 的结构，发现多硫化锂会

在硫正极表面形成。SHANG 等[69]等对比不同泛函的

DFT 研究 S 及硫化物的物理化学性质，结果显示对硫

及多硫化物研究中有必要考虑分子间的范德瓦尔斯相

互作用。PARK 等[70]通过含有 vdW 修正的密度泛函理

论、准粒子方法(G0W0)，预测锂硫电池氧化还原两端

的物相的结构，通过计算表征光谱数据、电子及表面

结构特征，理论预测了硫同素异构转变相图，在低温

下存在稳定的 α相硫的同素异形体，模拟了有无 DME

基电解液情况下，Li2S 和 α相硫的表面性质、稳定性

和平衡微晶的形状。ASSARY 等[71]计算放电过程中多

硫化锂和多硫分子,计算得到多硫化物的电压平台，发

现醚类电解质中会发生岐化反应和一系列副反应，也

证实多硫离子的存在，计算了多步多相的氧化还原反

应过程中的反应能及 Gibb 自由能差并提出了锂硫电

池的放电反应机理(见图 4(a))。LIU 等[72]计算了各种多

硫化物到晶体 Li2S 化学反应过程，计算结果表明多硫

化物在 Li2S(110)面发生放热反应。 

多步多相的充放电过程中各种产物(多硫化物分

子、多硫离子、自由基等)从实验层面上难以定量检测，

而结合第一性原理的光谱计算进行模拟，从微观上定

量锂、多硫阴离子和电解液反应前后的结构变化和反

应信息，包括结构稳定性，动力学过程中的能量变化，

有助于揭开锂硫电池的充放电机理神秘面纱。

PASCAL 等[73−74]采用 DFT 模拟溶解在标准溶液中的

多硫分子和离子的 X 射线吸收光谱，模拟真空中的各

种多硫自由基，并在长链硫二价阴离子背景下探测出

三价硫自由基。VIJAYAKUMAR 等[75]利用含时 DFT

计算研究激发态下的非质子溶剂中多硫化锂的结构及

稳定性，显示长链多硫化物趋于链状而且环状，短链

多硫化物趋于簇状，在二甲基亚砜中容易二聚，发现

有三价硫自由基存在，这也解释了实验检测到的光谱

信号。WUJCIK 等[76]计算了醚类电解质中的锂硫电池 

 

 

图 4  锂硫电池放电机理[71]以及 XAS 测量的锂硫电池电压

平台曲线[76] 

Fig. 4  Discharge mechanism of Li-S batteries[71] (a) and XAS 

measurements for voltages of Li-S batteries[76] (b) 

 

放电产物的 X 射线吸收光谱，并于实验数据拟合得到

3 个电压平台下多硫化锂分子和离子的浓度比例(见图

3(b))，检测到多硫化锂自由基多数存在于第一放电平

台，ASSARY 等[71]也得到相似的结论。 

关于锂硫电池中放电最终产物是 Li2S2 还是 Li2S

有很多的争论，利用 DFT 与核磁共振谱结合计算认为

放电过程中只有 Li2S 是固相产物[77]；寻找最稳定的的

Li2S2 的结构，YANG 等[78]使用第一原理计算显示 Li

和 S2
−2价离子均为中心正四面体结构，热力学和电化

学活性分析显示，Li2S2作为中间产物会自发歧化 Li2S

和 S；PAOLELLA 等[79]通过计算认为 Li2S2 是由长链

的多硫化物岐化反应生成为非平衡状态，不是最终放

电产物；引入遗传进化算法找到最稳定的结构后，

FENG 等[80]计算 Li2S2 的能量和电子性质，Li2S2 结构

放电电压 2.11V 平台与实验上的低电压相匹配，表明

Li2S2自发歧化处于介稳态，Li2S2作为放电非平衡态过



                                           中国有色金属学报                                              2018年11月 

 

2320

程中一个重要的中间产物。从 PARTOVI-AZAR 等[81] 

计算分子动力学角度研究 Li2S2 团簇的结构和拉曼光

谱，也认为 Li2S2是放电过程中的中间产物，并不是最

终放电产物，与 PARK 等[70]和 YANG 等[79]得到同样的

结论。从以上的研究中表明目前多数研究者认同锂硫电

池放电过程的最终产物为 Li2S，Li2S2 为重要的中间产

物，虽然热力学理论研究中发现 Li2S 更稳定，介稳态

下的动力学行为在电池使用中也非常重要，所以不同体

系下放电机理依然有所差异，目前这一争论仍未解决。 

目前采用第一性原理研究锂硫电池充放电过程中

各种多硫化锂、多硫离子、自由基之间的相互转化反

应过程的研究还相对匮乏，需进一步加深探索。 

 

3  锂离子的扩散 

 

锂硫电池具有高功率密度，外电路的电流密度一

定匹配锂离子在电极内外的移动速率，一般锂离子的

扩散过程、扩散路径、能量势垒等与电池的倍率性能

有直接联系。因此从微观上研究提高锂离子在材料中

的扩散性质有利于提升电池的倍率性能。极稀低缺陷

浓度中扩散系数如下[82]： 
 







 

kT

E
xfgaD a2 Δ

exp                                           (1) 

 
式中：a 是迁移距离；g 是几何结构因子；f 是对比因

数；x为调节扩散的缺陷浓度； 是有效振动频率； aΔE

为活化能垒。条件相同时，锂离子的扩散由活化能垒

决定。第一原理中应用(Nudged elastic band，NEB)方

法确定两个稳定含锂结构为点间锂离子扩散的活化能

垒，进而判断扩散途径和扩散难易。 

双层掺氮的纳米管中的锂离子扩散研究，结果显

示氮掺杂的碳纳米管不会改变锂离子的扩散路径，但

是扩散能垒从 9 eV 减少到 1 eV，有利于锂离子自由

扩散到氮掺杂 CNTs，但硫原子却被束缚在其中，源

于硫原子和近氮原子间形成了强烈的化学吸附作用，

优化活性物质的使用，提高倍率性能[83]。锂离子在 5

种金属氧化物纳米粒子(MgO、Al2O3、CeO2、La2O3

和 CaO)中的扩散路径和扩散能垒研究发现锂离子扩

散能垒最大的是在 Al2O3(110)面上，为 MgO(100)的 3

倍，对多硫化物 Al2O3 吸附最强但锂离子扩散最慢所

以研究者认为 Al2O3 并不适合引入正极材料，总结出

了强吸附能、高比表面积和良好的表面输运能力才是

良好金属氧化物添加剂的标准[53]。采用 CI-NEB 方法

研究锂离子在石墨烯和 6 种硫化物中的扩散，结果显

示石墨烯的能垒是 0.3 eV，而 Ni3S2、SnS2、FeS 的能

垒比 CoS2、VS2、TiS2的能垒稍大 0.1 eV，发现扩散

系数的大小影响着多硫化物氧化还原反应的速率，扩

散能垒越小，扩散越快越有利于反应进行[54]。含有 3d

轨道的过渡金属硫化物(ScS、TiS、VS、CrS、MnS、

FeS、CoS、NiS、CuS 和 ZnS)，也研究了锂离子的扩

散路径和扩散能垒，扩散垒由大到小依次为 ZnO (0.63 

eV)、石墨烯(0.31 eV)、VS (0.22 eV)、ScS (0.10 eV)，

能垒越低，扩散速率越快，越有利于 Li2S 均匀沉积[58]。

针对锂硫电池中放电产物 Li2S 的研究发现，锂离子扩

散过程中电荷转移，低浓度的锂离子扩散相对较    

慢[84]。图 5 所示为锂离子在氧化物、硫化物及第一过

渡金属硫化物中的扩散过程。 

 

 

图 5  Li+在氧化物[53]、硫化物[54]、第一 TMs 中的扩散[58] 

Fig. 5  Diffusion processes of Li ion on oxide[53], sulfide[54] 

and first Row TMs[58] 
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4  电子结构 
 

材料的电化学性能与电池正极材料的电子结构紧

密相连，电池的导电能性能与微观的电子性质相关，

而通过分析微观的态密度可以定性预测正极材料与电

解质界面的化学稳定性，目前第一性原理主要从态密

度、电荷密度积分和 Mulliken 布局分析 3 个方面来定

性分析电子密度分布。 

从电子电荷转移分析可以直观分析各种相互作用

的本质区别(见图 6)。HOU 等[41]计算了杂原子(N 和

O)掺杂的纳米带与 Li2S4 吸附前后不同位点的

Mulliken 电荷布局和对应的差分电荷密度，结果显示

N 和 O 的电负性都比 F 的高，会在碳晶格内形成共轭

的 sp2的偶极矩，有利于提高正极的导电性。ZHANG

等[44]计算了 S8 和 Li2S4 分别吸附在层状材料 V2O5 和

TiS2的差分电荷密度图和投影态密度，结果显示 S8和

抓固材料之间的电荷转移发生在各自内部，二者之间

没有电荷交换，表明二者之间没有化学键形成，相比

之下对于 Li2S4，在锂原子和氧原子或者 S 原子之间电

荷增加，产生强化学键(对 TiS2 形成 Li—S 键、V2O5

形成 Li—O 键)，同时，在 Li2S4内部沿着 Li—S 键方

向电子密度降低，即弱化 Li—S 键(见图 7)。 

从微观理论上研究Li2S的电子结构性质有利于提

升锂硫电池性能。KIM 等[84]研究了 Li2S 的电子结构

和电荷转移机理，表明是通过锂离子在各种可能的电

荷载体上的空穴进行电荷传输；Li2S 本身是具有大带

隙的电子绝缘体，内部电荷转移主要发生在带正电荷

锂离子扩散过程中，从 Li2S 晶体结构中脱出会产生相

对大的极化率导致锂离子转移相对缓慢。PENG 等[27]

研究吡啶型和四分氮掺杂碳基底与多硫化锂之间电荷 

 

 

图 6  改性碳基底与多硫化物的 Mulliken 电荷分布[41] 

Fig. 6  Mulliken charge distribution of modified carbon 

substrate and polysulfide[41] 

密度分布，发现锂离子倾向于有孤电子的吡啶型氮直

接结合，而对于四分氮，锂离子易与相邻的碳原子结

合形成局域 π 键，显示这种界面耦合作用是由多硫化

锂与氮掺杂型碳之间的电子转移行为产生(见图 8)。

LIU 等[85]研究了 L2S2电荷转移机理，结果表明，虽然

L2S2 为半导体，电子不能自由传递，但可以通过缺陷

(如锂空位和极化子)在电极和多硫化物之间传递电

荷。提升正极材料的导电性有利于弥补单质硫导电性

差的缺陷，从而优化锂硫电池的电化学性能。 
 

 

图 7  V2O5、TiS2与多硫化物差分电荷密度[44] 

Fig. 7  Charge transfers electric density between V2O5 or TiS2 

and polysulfide[44] 

 

 

图 8  碳基底与多硫化物电荷密度的分布[27] 

Fig. 8  Distribution of electric density between carbon 

substrate and polysulfide[27] 

 

5  结语 
 

1) 针对锂硫电池穿梭效应，研究多硫化物与正极
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材料(掺杂碳材料、金属化合物、其他新型材料)之间

的吸附作用，有物理吸附作用使多硫化物限域在碳质

材料内，也会与多硫化物产生化学键合作用，这两种

作用相互协同提高碳质材料导电性及储硫功能、抑制

穿梭效应、提高容量和循环寿命。 

2) 从多硫化锂微观状态理解充放电机理及多步

多相多电子离子过程中的充放电速率和电压平台，发

现不仅多硫化物分子、锂离子参与氧化还原反应，同

时发现硫的自由基也起作用，还需进一步加深对多硫

化物分子、离子、自由基之间理论研究探索。 

3) 根据锂离子在各种含碳、金属化合物等复合正

极微观界面的扩散过程，研究扩散路径、扩散能垒及

系数，发现锂离子在层状材料中扩散能垒低、扩散速

度快，且单层结构扩散能垒最低，优于体相材料，但

并未找到普适规则确定扩散路径，需进一步扩大数据

来寻找规律。 

4) 计算材料的电子结构可以得到电子传导特性，

通过定性分析电荷密度分布情况可以判定化学键合情

况，但定量的电子转移数目还有待加大研究深度。随

着全球范围内“材料基因组”计划的启动，缩短研发

周期和降低开发成本，第一性原理会更广泛应用到储

能材料领域中。尤其对于正处在研发阶段的锂硫电池，

将第一性原理与实验相结合是解决锂硫电池中存在瓶

颈问题的有效途径。为推进高性能的锂硫电池实用化，

还需通过第一性原理深入理解宏观性能与微观机理的

内在联系。 
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Applications of first-principles in cathode material of 
lithium-sulfide batteries 
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Abstract: Lithium-sulfur (Li-S) batteries are widely regarded as the most promising generation of energy storage systems, 

but the technical bottlenecks of Li-S batteries have made it difficult to make them practical. The global “Material Genome 

Initiative” promotes the widespread use of first-principles in energy-storage materials. The recent application of the 

first-principles in cathode materials, including the influences of adsorption effect of polysulfide, charging-discharging 

mechanism, lithium ions diffusion and electronic structure on the performances of Li-S batteries, such as shuttle effect, 

the capacity and cycle stability were reviewed. Combined macro performance and micro essentials by first-principles 

calculations, the application prospects of Li-S batteries were given to provide a reference for further design of sulfur 

cathode materials. 
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