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Polycrystal geometrical model of foil rolling: (a)
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Fig. 3 Contour plots of meso-scale shear stress in roll bite
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Fig. 6 Activated slip systems at high-low slip sites during cold rolling with =100 um (a), @=33 pm (b) and =20 pm (c)



2238 T EA O8RS

2018411 A

% 2 5 SRS T AR A IR K22 7 B2 SRR 1Y)
MR, EER XA B S SE B RN R
KPR BX, BEE SR RSN, m—Es X
WEBIE R R E 2, WIE)M IS I %
VT 4R R ST 100 pm I, R R X IFEI
TR RECH FRBAE — RN, 4 DB RS
3, WER G WHIETAHTEE, WK a3, bl H
b3 VRS T7 AT IE R, WAL 20 RAE T =g i X
(g RS R E I B K AR X b SN 33 pum
B, EAREE XIS REH S 4 4, =i
B X JEshig® R 285 Gk RSN 100 pm B —
FE, MER AR al AR bl fEARME B XS 50,
% al F1d3 IFIEIERE, W R a3 f b3 7
EE, 4 NMEBERIEBIREEFR M Al
JSE 0 20 pm B, SRR X IFEhEE 28 EH N 5
A, B R IR BRI RS R T 5 R R SRR
MAERKES, EIL REBRE.

K 7 B N bR ST oA 33 um A 20 pm B4 4
N2yl o o =Sk ol TR N 3P i N A
{1 B XS PG o Hordr iR~ 2 RS d=33 pm I8, 4ii
SEIREE TR B 3 2k, d=20 um I, 4R
i A 5 Rk, B SR T HER R % b 4]
GREIA . AL JE & R SR A1 (TD) R A2 T B 1)
¥3), A& SR RS IE DA, AR R AR
AL [0 SR X ) A D 5 kL BT A A8 T X ) 7

@

Middle
BEl7 HHATBX ERE. i, R SRR AT S AR L
Fig. 7 {111} Pole figures of grains before and after deformation in roll bite with =33 pm ((a), (a'), (")) and d=20 um ((b), (b"),
(")

BEUIMI. LRI N 33 um i, 22 kL G139
A G141 LA AR AU B £ BE AT 43 H0RE B 2 KT v ]
fnkl G140 [, whiESRL G140 28T G (R EL A H 2 %
TD Jie¥e, Mrti&A REY T, MmN RIE SR
IR S bR R A B Ah, JEHF RD I ND RAEY B 24
e PLRST N 20 pm B, 3R 2 SRRL G401 F1 G404 (1) HLI]
e B KT rh A R G402 11, 222 kL G401 AR JE
JE I EUR AU S8 TD ¥ 3R KA EE, 11 LW RD
ND AT s B diob RT BN, BT 5 SR )
()2 20y Fig FE AR R 3 WORE BE Rk /N, 22 et R PR30
L ) AR A ) 22 S VRIS, 3 AR e A B AL A R AR T
JE B AR A TS B R R T BRES B - dh A
1E F R 2 DDA 56

Kl 8 Fitani 3 AN R RS 5T 3 FhAS ] f
RLEL A AR T, S AR B A R oAb vy 4L 1)
Tk A ) FL A g~ [a] i e K AL TG0 v oL R ST 8K
o FHEE 8 TN, AN dRE R ST 5 B a) 40 A7 X AR Y
FLHIM MR B W . MRS 100 um
I, BRI 3 Sk ELHI i & mZE IRk, Hbh—2%
TEFFURFALE R B M — AN AEL, T 340 2 Skt 2k
DU BE I [B] Sz T g N, AR R R, SRS EAR T4
BTG PG SRR N 33 um 120 um B, 3
SRELII 2 2 T W Z2 50/, S [R) 38 i 2 5 K AE f5
BN, FLEIZE T WTRGE BRI . BE SRR ST 19980
AR B A AR B AL ) i 26 2 Rl i 220, HLALI D



328 5 11 ) WRSrAR, See ok ROT RSO0 S A L) A2 T WL 2R B AL T 2239

1400
1600 -
1300

1400
1200

1200 oo

1000 1000 F

800}

Per unit width roll force/(N-mm™™")

Per unit width roll force/(N-mm™™")

900 -

0 0.1 0.2 0.13 04 05 0.6
Time/s

1300 1000

(d) =M Rolling reduction of 40%
[ Rolling reduction of 20%
800

800}
6001
400F
0 01 02 03 04 05 06 07 0050 33 25 20

Time/s d/um
B8 AL RS b H ] o B AL AL 1] g — I TR FR) 5 0 0L 1) 7 ditobar RO 482
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Simulation of effect of grain size on
rolling deformation mechanism of copper ultra-thin strip

CHEN Shou-dong" %, LU Ri-huan?, SUN Jian', LI Jie', ZHANG K¢®

(1. School of Mechanical Engineering, Tongling University, Tongling 244061, China;
2. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China;
3. School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243032, China)

Abstract: Annealed pure copper foils were taken as raw materials, and after the processes of foil rolling, the grain size
effect was studied by foil rolling experiment and crystal plasticity finite element simulation. A user defined material
subroutine (UMAT) developed based on the rate-dependent crystal plasticity theory embedded into the finite element
software to analyze the grain size effect on micro-scale deformation mechanism of rolling polycrystalline copper
ultra-thin strip. The random generating of the Voronoi diagram seeds was improved. The polycrystalline ultra-thin strip
geometry model was created by constructing a new seeds generation algorithm, which can express the shape of the grains
and the irregular grain boundaries. An algorithm to describe the grain orientation and texture distribution was introduced
by adjusting the modeling parameters. The results show that the shear bands in small grain size are more uniform than
those in large grain size which could effectively reduce the rolling deformation locality. The activity of slip system and
accumulated slip are significant different in the foils with different grain sizes, and the activity of slip systems increases
with decreasing grain size. The rotate of crystallographic orientation mainly around the transverse direction attributes to
the different constraint of surface grain and internal grain, and the growth of rotation angle and dispersion degree
decreases with decreasing grain size. The effect of grain orientation on roll force is weakened with decreasing grain size,
and the roll force-grain size curves from the simulation agree well with the rolling experimental results.

Key words: foil rolling; polycrystalline model; crystal plasticity finite element; grain size effect
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