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Abstract: With applied dislocation theory, the effects of shear and normal stresses on the slide and climb motions at the same section 
of a crystal were analyzed. And, based on the synergetic effect of both normal and shear strain specific energies, the concept of the 
total equivalent strain specific energy (TESSE) at an oblique section and a new strength theory named as limiting strain energy 
strength theory (LSEST) were proposed. As for isotropic materials, the plastic yielding or brittle fracture of under uniaxial stress state 
would occur when the maximum TESSE reached the strain specific energy, also the expressions on the equivalent stresses and a 
function of failure of the LSEST under different principal stress states were obtained. Relationship formulas among the tensile, 
compressive and shear yield strengths for plastic metals were derived. These theoretical predictions, according to the LSEST, were 
consistent very well with experiment results of tensile, compressive and torsion tests of three plastic metals and other experiment 
results from open literatures. This novel LSEST might also help for strength calculation of other materials. 
Key words: equivalent stress; total equivalent strain specific energy; limiting strain energy; failure function; strength theory 
                                                                                                             
 
 
1 Introduction 
 

Strength theory deals with the yielding of plastic 
materials or fracture of brittle materials, and its 
investigation could be tracked back to Galileo’s work in 
the 17th century. Ever since then, many scholars have 
made great efforts in describing the mechanism of failure 
of materials, hitherto, various yield criteria or strength 
theories have been proposed. Among them, the most 
well-established strength theories are Rankine’s, Tresca’s, 
Saint-Venant’s, von Mises’, and Coulomb-Mohr’s and so 
on, as summarized in Ref.[1−7]. 

However, strength theory is still a very complicated 
and hot topic to be studied. It has been pointed out by 
ZHEN et al[8] that there is great difficulty in using the 
methods of physical mechanics to explain the plasticity, 
strength, damage, fracture of solids. It has been more 
than 60 years since the proposal of dislocation theory, 
but it has still not been merged into mechanics 
quantitatively. YNAG[9] also has stated that a great 
number of the experts in solid mechanics have devoted 
themselves to research the procedure of deformation, 
damage, instability (or fracture) for materials under 
external load, but the problem has not been solved yet. 
ZHEN[10] also stated that it will make great progress in 

the research of strength theory combining methods of 
macroscopic, meso-mechanical and microscopic. The 
research of strength theory is also a frontier 
problem[10−11]. 

In fact, defects always exist in metallic materials at 
various states, but all previous theories on failure of the 
materials ignored this important aspect. Based on the 
effects of shear and normal stresses at a section on the 
sliding and climbing of dislocations, thus we propose a 
limiting strain energy strength theory (LSEST). 
Equivalent stresses of the LSEST under various principal 
stress states are evaluated, and the corresponding 
strength criteria are established. The relationship among 
tensile, compressive and shear yield strengths are also 
given. 
 
2 Current existing strength theories 

 
Maximum principal stress theory (Rankine)[4] 

assumes that when the maximum principal stress in the 
complex stress system reaches the elastic limit stress in 
simple tensile, failure occurs. The criterion of failure is 
thus[2]   

t1 σσ =  or c3 σσ =                           (1) 
 
where σc and σt are the experimental determined yield 
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stresses for simple tension and compression, 
respectively. 

Maximum shear stress theory (Tresca)[4] states that 
failure can be assumed to occur when the maximum 
shear stress in the complex stress system becomes equal 
to that at the yield point in the simple tensile test. The 
criterion of failure becomes[4] 

t31 σσσ =−                                 (2) 
Maximum principal strain theory (Saint-Venant)[4] 

assumes that failure occurs when the maximum strain in 
the complex stress system equals that at the yield point in 
the tensile test:  

t321 )( σσσνσ =+−                          (3) 
 

Maximum distortion energy theory (von Mises)[4] 
states that failure occurs when the maximum shear strain 
energy component in the complex stress system is equal 
to that at the yield point in the tensile test:  
[ ] t
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     (4) 
Coulomb-Mohr failure theory can be considered a 

generalized form of the Tresca theory, which can be 
given as[6−7, 12]  
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YU et al[13−15] proposed the twin-shear yield 

criterion in 1961, which was further developed into 
twin-shear strength theory in 1985 and later the twin- 
shear unified strength theory in 1991. The expression of 
the twin-shear unified strength theory is shown as[2] 
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where α  is the strength ratio of tension to compression; 
and b is a coefficient reflecting the effect of the other 
principal shear stresses on the strength of materials. 

YAO et al[16] proposed a generalized non-linear 
strength theory. YUAN et al[17] proposed a generalized 
yield criterion for plastic metals. ZHANG and 
ECKERT[18] proposed an ellipse criterion based on the 
tensile fracture behavior of the bulk metallic glass 
materials. ZHU and LEIS[19] proposed the average 
shear stress yield (ASSY) criterion. CHRISTENSEN[3, 
20] proposed a two-parameter yield/failure criterion for 
broad classes of homogeneous and isotropic materials. 
Other yield criteria for isotropic materials are also 
proposed by ALTENBACH[21], CAZACU and 
BARLAT[22], ZHOU[23], HU and WANG[24]. Most 
failure criteria selected stress or strain as a parameter to 
predict the failure behaviors of the materials, or even 

directly extracted their conclusions from experimental 
data. MAXWELL first proposed energy as the parameter 
to predict the failure of the materials in 1856[3]. 
BELTRAMI further suggested that the total energy can 
be used as general criterion[3]. FREUDENTHAL clearly 
realized that material failure in different material scales 
occurs in different forms simultaneously and only the 
energy concept is universal throughout all material 
scales[25]. XIE et al[26−28] have pointed out that the 
effect of energy dissipation must be considered when 
investigating the mechanical behavior of rocks; the rock 
deformation and fracture process can be well described 
from the viewpoint of energy; and a criterion is proposed 
for strength and abrupt structural failure of rock based on 
the concepts of energy dissipation and energy release. 

However, current failure criteria are far from perfect; 
and they could not fit in some circumstances. For 
example, Rankine’s theory does not suit for combined 
stress state of tension and compression; and 
Saint-Venant’s theory does not consistent with 
experimental results on the failure of the materials under 
biaxial tension or compression. For materials with equal 
strength of tension and compression, according to those 
criteria proposed by Tresca, von Mises, Coulomb-Mohr, 
Yu, etc., the failure stress becomes infinity under an 
equitriaxial tension or compression ( 321 σσσ == ), 
indicating that none of the above-mentioned failure 
criteria could apply to those specific conditions. TANG 
et al[29] demonstrated that the strength of material 
fracture cannot be predicted rationally and exactly if the 
fracture occurred under a complex stress state by Mohr’s 
theory. Similarly, CHRISTENSEN[12] also demonstrated 
that the Coulomb-Mohr criterion and the Drucker-Prager 
criterion predict physically unrealistic behavior in some 
important stress states. Also, for the twin shear unified 
strength theory, a similar drawback has been pointed out 
by LIU[30]. 

The stress state of pure torsion is a typical 
tensile-compressive principal stress, the relationship 
among pure shear(τs), simple tensile(σt) and simple 
compressive(σc) yield strengths, according to most 
current existing failure criteria, should be a fixed value. 
For example, the Tresca’s theory and Mises’ theory can 
only be applied to materials with τs=0.5σt and τs=0.577σt, 
respectively. The ratio of the shear yield strength to 
tensile yield strength for plastic metals lies between 0.25 
and 0.947[31] generally, indicating there is contradiction 
between theory calculation and experimental results. 
 
3 Formulation of LSEST 
 

Because of the thermal vibration of atoms and the 
influence of various factors during polycrystalline 

≤ 

≥ 
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forming, working and using process, the polycrystalline 
materials are inevitable to induce defects to the metals, 
for example point defects (vacancy etc), and line defects 
(dislocation etc). YANG[9] considered that the fractures 
of solids are closely related to the defects and 
microstructure. Dislocation theory closely relates to 
mechanical properties of crystals such as plastic yielding 
and brittle fracture[32−33]. Furthermore, dislocations 
can be initiated and expanded locally under external 
force. Any movement of dislocations can be decomposed 
into sliding and climbing. The former is caused by shear 
stress and the corresponding motion is parallel to sliding 
plane, and the latter is caused by normal stress and the 
corresponding motion is perpendicular to the sliding 
plane. The climbing of dislocations is accompanied by 
the formation of point defects, so the work done by the 
applied external forces of climbing should be larger than 
the energy required for the formation of point defects. 
The energy required for the formation of the point 
defects is named as defect-forming energy, which is 
mainly due to the work done by the normal stresses. 
Fracture of materials includes three phases, i.e. 
nucleation, growth and propagation. The nucleation and 
growth of cracks are closely related to sliding caused by 
shear stresses. Shear stresses are responsible for the 
forming of cracks, while normal stresses are responsible 
for propagation of cracks thereafter. 

Interactions among atoms in crystals are mainly 
metallic bonding forces, and the energy generated by the 
bonding force makes the crystals bonded. Under applied 
external forces, if the staggered-arrangement energy and 
the defect-forming energy increase continuously, the 
staggered-arrangement energy enlarges sliding of the 
defects and the defect-forming energy promotes the 
amount of the defects in crystals. Failure, i.e. yielding of 
plastic materials and fracture of brittle materials, will 
occur once accumulated energy reaches a critical energy 
of the crystal bonding force. 

Both of shear stress and normal stress play 
important roles in the plastic yielding or brittle fracture 
of materials. On the other hand, the shear and normal 
stresses can interchange each other according to the 
stress analysis. Owing to negligible contribution of the 
radius of dislocation core, dislocation type and crystal 
size to the dislocation energy[33−34], the dislocation 
energy generated by the shear and normal stresses at a 
section of a representative element is used to describe the 
occurrence of failure. Therefore, a new strength theory 
could be established as follows. 

The sum of the strain specific energy generated by 
the normal and shear stresses at an oblique section refers 
to total equivalent strain specific energy (TESSE). For 
isotropic materials, we hypothesize that plastic yielding 
or brittle fracture takes place if the maximum TESSE 

reaches the strain specific energy in uniaxial stress state. 
This hypothesis for predicting failure of materials is 
named as limiting total equivalent strain energy strength 
theory, shortened as limiting strain energy strength 
theory (LSEST). 

When a representative element of cell cube is 
subjected to a pair of opposite normal stresses, the 
resulting strain specific energy vs, σ is  

2
 s, 2

1 σσ E
v =                                 (7) 
 

According to the stress analysis, pure shearing 
stress (τ) exerted at a cell cube may be decomposed into 
positive stress (τ) applied to a pair of opposite faces and 
negative stress (−τ) applied to other pair of opposite 
faces. However, this transformation is not equivalent 
because deformation resulted from the shearing stress is 
inhomogeneous, while deformation resulted from the 
normal stress is homogeneous. If the shearing stress 
applied to the cell cube is decomposed into positive and 
negative stresses, according to Eq.(7) the strain specific 
energy is then calculated by the following formula: 

)2(
2
1)(

2
1

2
1 222

 s, ττττ EEE
v =−+=             (8) 

Clearly, the equivalent strain specific energy 
calculated from Eq.(8) is 1/(1+v) times as much as the 
actual strain specific energy under pure shearing stress. 
This corresponds to a loss resulted from the 
transformation due to inhomogeneous deformation 
related to the shear stress and homogeneous deformation 
related to the normal stress. If an oblique section of the 
cell cube is subjected to normal stress σ and total shear 
stress τ, the TESSE at the cell cube can be obtained by 
summing Eqs.(7) and (8) as follows: 
 

)2(
2
1)2(

2
1

2
1 2222

s τστσ +=+=
EEE

v          (9) 
 

We denote the strain specific energy of failure of 
materials in uniaxial tensile or compressive stress states 
as 0sv  and the corresponding normal stress as σ0. From 
Eq.(7) one can get  

2
00s 2

1 σ
E

v =                                 (10) 
 

As a result, from Eqs.(9) and (10) the criterion 
condition to determine the occurrence of failure of 
materials according to the LSEST is 
 

0ss )max( vv =                                (11)  
Substituting Eq.(10) for 0sv  into Eq.(11) yields  

2
0s )max(2 σ=⋅ vE                            (12) 

 
Eqs.(11) and (12) are the analytic formulae for 

determining failure of a material by the LSEST. The 
equivalent stress of LSEST σri can be derived from 
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Eq.(12) as  
( ) 21

sri )max(2 vE ⋅=σ                         (13) 
 

It is emphasized that the LSEST focuses on analysis 
of the resulting maximum TESSE at an oblique section 
with the normal and shear stresses, rather than the strain 
specific energy in the whole cubic cell body. This is an 
essential difference between the LSEST and other failure 
theories. In the LSEST, the failure of materials is 
determined according to the maximum TESSE resulted 
from all the stresses applied to an oblique section, which 
is consistent with the failure beginning from some spots 
in this material. 
 
4 Derivation of equivalent stress under 

various principal stress states 
 
4.1 Biaxial principal-stress states 

As shown in Fig.1, for a cell cube in biaxial 
principal stress state, normal stress )(ασ  and shearing 

stress )(ατ  at an oblique section with angle α(
2
π

− ≤α

≤
2
π ) can be expressed in terms of two principal stresses 

as follows:  

ασσσσασ 2cos)(
2
1)(

2
1)( 2121 −++=          (14) 

 

ασσατ 2sin)(
2
1)( 21 −=                      (15) 

 

 
Fig.1 Normal stress and shearing stress at oblique section of 
cell cube under biaxial principal stress state  

Substituting Eqs.(14) and (15) into Eq.(9), the TESSE 
)(s αv  is obtained to be 
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From Eq.(16), )(s αv  is seen to be a function of 

the direction angle α. To obtain the extreme value of 
)(s αv , we differentiate )(s αv with respect to α and 

obtain  
[ ]  2sin)()( 21s ⋅−=′ ασσαv  

 
      [ ] )2/()(2cos)( 2121 Eσσασσ +−−       (17) 
 

−−⋅−=′′ ασσασσα 2cos)((2cos)[()( 2121sv  
 
      E/])2sin)((2) )( 2

2121 ασσσσ −−+     (18) 
 
According to extreme value criterion, when 0)(s =′ αv , 

)(s αv  will arrive at its extreme value. 
1) Biaxial tensile-compressive principal stress state 

For this kind of stress state  
σ1＞1, σ2＜0                                (19)  

)(s1 αv′  can be expressed as  
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Setting 0)(s1 =′ αv  in Eq.(20), one gets: 01 =α , 

2
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Furthermore, when 01 =α  and 
2
π

2 ±=α , there are 
 

)(4)0( 212s1 σσσ −−=′′v ＞0                   (21) 
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For the remaining 3α , from Eq.(18) one gets  

213s1 8)( σσα =′′v ＜0                         (23) 
 

Upon putting these values of α  into Eqs.(13), (14) 
and (15), we obtain different results, which are shown in 
Table 1. 

 
Table 1 Parameters under biaxial tensile-compressive principal stress state calculated according to LSEST 

No. α σ(α) τ(α) )(1s αv ′′  vs1(α) σri(α) 

1 0 σ1 0 ＞0 )2/(2
1 Eσ (minimum) σ1 

2 2
π  σ2 0 ＞0 )2/(2

2 Eσ (minimum) σ2 

3 ⎟⎟
⎠
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⎝

⎛
−
+

21

21arccos
2
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σσ
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21 σσ +  21σσ−±  ＜0 
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2
1 Eσσ +  
(maximum) 
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2
1 σσ +  
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According to the LSEST, if )(s αv  gets its 
maximum, equivalent stress meets the requirement. From 
Table 1, the equivalent stress in biaxial tensile- 

compressive principal stress state is 2
2

2
1 σσ + . 

In a similar way, if taking 1σ  and 3σ  ( 02 =σ ) 
as two tensile-compressive principal stresses, 
respectively, the equivalent stress becomes 
 

2
3

2
1ri σσσ += ( 1σ ＞0, 2σ =0, 3σ ＜0)        (24) 

 
2) Uniaxial and other biaxial principal stress states 

For uniaxial and other biaxial principal stress states 
including uniaxial tension or compression, equibiaxial 
tension or compression, nonequibiaxial tension or 
compression, an analogous procedure as mentioned in 
analyses of biaxial tensile-compressive principal stress 
state indicates that their equivalent stress is equal to 
absolute value of their largest principal stress. 
Consequently, the equivalent stress in various plane 
principal stress states can be expressed as 

⎪
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⎨
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4.2 Triaxial principal stress states 

A coordinate system (x, y, z) in which three axes are 
orientated in the directions of three principal stresses is 
selected as shown in Fig.2(a). For any oblique section N, 
new coordinates x′, y′, z′ are established as shown in 
Fig.2(b), in which the x′ axis is parallel to the N axis and 
the y′ and z′ axes are perpendicular to the N axis. The 
direction cosine values between three new axes and the 
original axes are shown in Table 2. 

In the new coordinate system, the stress components 
at the section, which across the point o′, are 
perpendicular to the x′, y′ and z ′ axes, respectively 
 

2
13

2
12

2
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323322321 nnmmllzy σσστ ++=′′               (26e) 

 
133132131 nnmmllxz σσστ ++=′′                (26f) 

 
The relations between the direction cosine values in 

Table 2 are 
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2
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Fig.2 Cell body in action of principal stresses and oblique 
section N under original(a) and new(b) coordinates 
 
Table 2 Direction cosine between new and original coordinate 
axes 

Coordinate axis x y z 

x′ l1 m1 n1 

y′ l2 m2 n 2 

z′ l3 m3 n 3 

 
The purpose of the LSEST is to calculate the 

extreme value of the TESSE resulted from the normal 
and shear stresses at a certain section. For some points 
under triaxial stress state, there are three sections which 
are perpendicular to x′, y′ and z′ axes, respectively. Let  
vs, x, vs, y and vs, z correspondingly represent the TESSE on 
these three sections. The following equations can be 
derived from Eqs.(9) and (26):  

( )222
s, 22

2
1

xzyxxx E
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( )222
s, 22

2
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zyyxyy E
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( )222
s, 22

2
1

xzzyzz E
v ′′′′′ ++= ττσ                  (30) 
 
1) Equivalent stress on sections perpendicular to x′-axis 

Substituting Eqs.(26a), (26d) and (26f) into Eq.(28), 
and through Eq.(27), we obtain 

≥ ≥ 

≥ 
≥ ≥ 
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It can be found from Eq.(31) that the TESSE vs, x is 

a function of l1 and m1. In order to get the maximum of  
vs, x, we differentiate vs, x with respect to l1 and m1, 
respectively: 
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From Eqs.(32) and (33), it can be seen that there are 

many examples of l1 and m1 which ensure that 0
1

s, =
∂

∂

l
v x  

and 0
1

s, =
∂

∂

m
v x as follows. 

(1) If σσσσ === 321  (equitriaxial stress state), 
then for any l1 and m1, the following equation can be 
obtained: 
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This indicates that the total equivalent strain energy 

on any oblique section is a constant. From Eq.(31), it 
gives 
 

)2/(2
s, Ev x σ=                              (38) 

 
Putting Eq.(38) into Eq.(13), the equivalent stress is  
σσ =ri  ( σσσσ === 321 )                  (39) 

 
In an equitriaxial stress state, the equivalent stress 

calculated according to LSEST is equal to the equivalent 
normal stress, which is consistent with that in equibiaxial 
stress state. 

(2) If m1=0, 
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, meaning triaxial tensile- 

compressive principal stress state. Under such 
circumstances, from Eqs.(31), (34)−(36) and (13) the 
following equations are derived: 
 

)2/()( 2
3

2
1s, Ev x σσ +=  

 
2
3

2
1ri σσσ += ( 1σ ＞0, 3σ ＜0, 2σ ≠0)       (40) 

 

EC
B

EA

/))((2
0

/)(4

32211

1

3111

σσσσ

σσσ

−−−=
=

−−=
 

 
2

323121111
2
1 /))()((8 ECAB σσσσσσσ −−−−=−  (41) 

 
The TESSE vs,x gets its maximum because 

11
2
1 CAB − ＜0 and A1＜0, which meets the requirement 

of the LSEST. It is the equivalent stress calculated 
according to Eq.(40) under triaxial tensile-compressive 
stress state according to LSEST and the obtained result is 
in agreement with that in biaxial tensile-compressive 
stress state. 

(3) If l1=m1=0, then the equivalent stress is 
 

3ri σσ =  (0＞ 1σ ＞ 2σ ＞ 3σ )                 (42) 
 

(4) If l1=0, under this condition, vs, x has no extreme 
value and then the equivalent stress does not meet the 
requirement of the LSEST. But on an oblique section 
perpendicular to y′, it could be obtained from the analysis 
by the LSEST.   

(5) If 21 σσ = , under this condition, Eqs.(32) and 
(33) are the symmetric equations of l1 and m1. Thus the 
TESSE reaches its maximum, and the equivalent stress is 
 

2
3

2
1ri σσσ += ( 1σ = 2σ ＞0, 3σ ＜0)          (43) 

 
 (6) If 32 σσ = , the equivalent stress is 

 

2
3

2
1ri σσσ += ( 1σ ＞0, 2σ = 3σ ＜0)          (44) 

 
2) Equivalent stress on oblique section perpendicular to 

y′ and z′ axes 
In a similar manner to analyze the equivalent stress 

on sections which are perpendicular to the x′ axis, the 
equivalent stress under other triaxial principal stress 
states according to LSEST can be obtained as 
 

1ri σσ = ( 1σ ＞ 2σ ＞ 3σ ＞0)                   (45) 



LIU Guang-lian/Trans. Nonferrous Met. Soc. China 19(2009) 1651−1662 1657

The equivalent stress of other triaxial principal 
stress states is the same as the above. 
 
4.3 Equivalent stress of LSEST 

According to Eqs.(25), (38), (40), (42)−(45) for the 
equivalent stress in uniaxial, biaxial and triaxial principal 
stress states, Eq.(46) of equivalent stress in various 
principal stress states can be obtained: 
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2
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σσσσ

σσσσ
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Under bending stress xσ  and torsion stress xyτ , 
the equivalent stress according to Eq.(46) reads 

22
ri 2 xyx τσσ +=                            (47) 

The calculation results of the Mises’ theory, 
according to Eq.(4), is 

22
ri 3 xyx τσσ +=                            (48) 

 
5 Derivation of failure function 
 

After we obtain the formulae for calculating the 
equivalent stress under principal stress states of tension, 
compression and tension-compression, the failure 
function will be further analyzed. 
 
5.1 Tensile principal stress state 

When the principal stresses are all tensile ones 
including uniaxial tensile, and (non)equibiaxial tensile, 
and (non)equitriaxial tensile, the equivalent stress 
according to the LSEST is equal to the maximum tensile 
stress. So, the LSEST implies that failure takes place 
when the maximum tensile stress 1σ  reaches either the 
yielding limit for plastic materials or the ultimate 
strength for the brittle materials (in the following, for 
convenience they are uniformly referred to as the tensile 
failure strength, denoted as tσ ), namely  

t1 σσ =  ( 1σ ≥ 2σ ≥ 3σ ≥0)                  (49) 
 
or in terms of the failure function as 
 

1)(
t

1
e ==

σ
σ

σf ( 1σ ≥ 2σ ≥ 3σ ≥0)             (50) 

 
5.2 Compressive principal stress state 

When the principal stresses are all compressive, the 
LSEST infers that failure takes place when 3σ  reaches 
either the yielding limit for plastic materials or the 
ultimate strength for the brittle materials (uniformly 
refers to as the compressive failure strength, denoted 
as cσ ), namely 

c3 σσ =  (0≥ 1σ ≥ 2σ ≥ 3σ )                  (51) 
 
or in terms of the failure function as 
 

1)(
c

3
e ==

σ
σ

σf  (0≥ 1σ ≥ 2σ ≥ 3σ )            (52) 

 
5.3 Tensile-compressive principal stress state 

Under any stress state of tensile-compressive 
principal stresses, the equivalent stress, according to 
LSEST, can all be expressed as 

2
3

2
1ri σσσ +=  ( 1σ ＞0, 3σ ＜0)             (53) 

From Eq.(53), it is concluded that the equivalent 
stress under combined tensile-compressive principal 
stress states is composed of both tensile and compressive 
stresses. For materials with equal strength of tension and 
compression ( ct σσ = ), Eq.(53) can be used as the 
strength theory of the LSEST, while for materials 
with ct σσ ≠ , Eq.(53) cannot be used anymore. In an 
alternative form, Eq.(53) can be rewritten as 
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When 03 =σ , Eq.(53) reduces to Eq.(49) and 
Eq.(54) reduces to Eq.(50). In this case, tri σσ = . In 
contrast, when 01 =σ , Eq.(53) reduces to Eq.(51) and 
Eq.(54) reduces to Eq.(52), implying cri σσ = . So, the 
failure function of materials in tensile-compressive 
principal stress state can be given as 
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5.4 Failure function in all and failure curve under 

various principal stress states 
To sum up, the failure function of the LSEST can be 

expressed as 
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The failure condition is 
 

)(e σf ≥1                                  (57) 
 

From Eqs.(56) and (57), the failure curve under 
biaxial principal stress state ( 02 =σ ) of the LSEST is 
shown in Fig.3. With the assumption of 1σ ＞ 3σ  in  
biaxial principal stress state, the failure curve of biaxial 

≤ 
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≥ ≥ ≥ 
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tensile-compressive principal stress state lies only in 
Quadrant Ⅳ. The failure curves of LSEST in the biaxial 
principal stress state are convex and have inflexions. 
 

 

Fig.3 Failure curve under biaxial principal stress state in 
LSEST and experimental results of fracture strength (σ2=0) 
 
6 Experimental validations 
 
6.1 Tensile principal stress state 

The experiment data on fracture stresses of 
aluminum-silicon alloy ZL105 with σ3/σ1=0.268, 0.473, 
0.700, and 1.000 in biaxial tensile principal stress state 
done by LÜ et al[35] as well as the failure curve of the 
LSEST are plotted in Fig.3 (QuadrantⅠ). The uniaxial 
tensile strength is σt=235.6 MPa. From Fig.3, the 
experiment results of the fracture stress are distributed 
around the failure curve of the LSEST in biaxial-tensile 
principal stress state. Results of LÜ et al[35] also shows 
that aluminum-silicon alloy ZL105 suffers brittle failure 
in biaxial tensile stress state, and the high tensile stress 
plays a dominant role, which almost has not been 
influenced by the other principal stresses, coinciding 
with predictions of the LSEST. LÜ et al[36] also studied 
the fracture of aluminum-silicon alloy ZL105 in biaxial 
equivalent tensile stress state, showing that the fracture 
stress is σx=σy=220.7 MPa, close to the fracture stress 
under longitudinal (or transversal) uniaxial tensile stress 
state σy=235.6 MPa (or σx=222.3 MPa). 

The yield experiment of HJELM[37] on gray cast 
iron also demonstrated that the failure stress is nearly 
equal to the uniaxial tensile strength in a stress state of 
biaxial tension. The experiment results on ultimate 
strength of low carbon steel in triaxial equivalent tensile 
stress state done by engineering mechanics of Shanghai 
Jiao Tong University, China[38] indicated that the 
strength is the same as that under simple extension. 

The above-mentioned results reveal that in tensile 
stress state, the failure strength of the materials is equal 
to the maximum principal stress, agreeing with the 
strength theory of the LSEST. It also coincides with the 
fact that the Rankine’s theory is usually applied to 
tensile-tensile stress state[39−41]. 
 
6.2 Tensile-compressive principal stress state 

Pure shear stress state is a typical tensile- 
compressive principal stress state. Under pure shear 
stress state, plastic materials fail as a result of the action 
of shear stress. Pure shear stress state actually 
corresponds to a pair of tensile-compressive stress state 
with the same magnitude but opposite signs. According 
to the LSEST, using Eq.(55) the relationship among 
tensile, compressive and shear yield strengths, σt, σc, τs, 
can be derived as follows: 

2
c

2
t

ct
s

σσ

σσ
τ

+
=                              (58) 

In particular, for the case of σt=σc, Eq.(58) gives 
 

ts 707.0 στ =                                (59) 
 

In order to validate the relationship among σt, σc and 
τs of some plastic metals from the LSEST, mechanical 
experiments on stress relief annealed A3 steel, T8 tool 
steel, brass 62 and so on were carried out. The size of 
specimens for standard tensile and torsion test is 10 mm 
in diameter, and the size of standard compressive 
specimens are of 30 mm in height. There were 4−5 
specimens for each group under each test. The tensile 
and compressive tests were processed on an INSTRAN 
8032 tester, and the torsion test was done on a torsion 
tester controlled by computerized torsion tester (CTT). 
The experimental results showed that A3 steel yielded in 
all three tests, T8 tool steel only yielded in tensile and 
compressive experiments. Apparent yielding did not 
occur in the torsion test of T8 tool steel and in all the 
three tests of Brass 62. 

We took the upper yield limitation when yielding 
occurred or the value when 0.2% deformation happened 
as the failure strength of the material, which was taken as 
the average value of more than three effective 
experimental values. The values of tensile yield strength 
σt, compressive yield strength σc and torsion yield 
strength τs, and also the value of τsc according to Eq.(58) 
for the three plastic materials are listed in Table 3. The 
relative errors of τsc/τs are 1.78%, 0.09% and 2.82% for 
A3 steel, T8 tool steel and Brass 62, respectively, which 
indicated Eq.(58) that agreed with the experiment results 
very well, which are also highly in accordance with the 
experimental result of KONJUSHKO with five metal 
materials (Material 1−5) in Table 3[42]. 
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Table 3 Experimental yield strengths of tension, compression and torsion and their calculated values of Eq.(58) of plastic materials 

Material σt σc τs τs/σt τsc from Eq.(58) (τsc−τs)/τs/% 

A3 steel 316.7 328.8 224.1 0.708 228.1 1.78 

T8 tool steel 510.5 512.5 362.0 0.709 361.7 −0.09 

Brass 62 199.6 192.9 134.9 0.676 138.7 2.82 

Material 1 198 410 172 0.869 178.3 3.66 

Material 2 216 454 185 0.856 195.0 5.43 

Material 3 213 510 183 0.859 196.5 7.40 

Material 4 210 515 179 0.852 194.5 8.63 

Material 5 158 314 138 0.873 141.1 2.27 

 
For materials with equal yielding strength of tension 

and compression (σt=σc), the shear yielding strength is 
0.707 times tensile yield strength owing to Eq.(59). This 
is consistent with the experimental results of 
WINSTONE[43], who firstly found that at the initial 
yielding face of metal materials, the ratio of shear 
yielding stress to the tensile yielding stress is 0.7. 
However, it should be pointed out that this phenomenon 
cannot be explained by all existing failure theories 
except for LSEST. 

In a tensile-compressive stress state, the maximum 
tensile stress or compressive stress from Eq.(55) is 
smaller than the stress under single tension or 
compression. This is consistent with the experimental 
results of LÜ et al[35], i.e., the ultimate tensile stress 
decreases slightly with an increase in the compressive 
stress component. The failure strengths of 
aluminum-silicon alloy ZL105 are σc=235.6 MPa and 
σt=−389.5 MPa in a stress state of uniaxial tension and 
compression, respectively. The experimental results on 
fracture stress of aluminum-silicon alloy ZL105 are 
shown in Fig.3 (Quadrant Ⅳ) in a biaxial 
tensile-compressive principal stress state[35]. From Fig.3, 
the measured fracture stresses are closely distributed 
around the failure curve of the LSEST in a biaxial 
tensile-compressive stress state. Minimum and maximum 
values are 0.783 and 1.130, respectively, and the average 
error between the experimental results and theoretic data 
calculated by Eq.(56), is about 3.5% (three groups of the 
experimental results related to σ3/σ1=−0.268 are 
exceptional and then discarded). 

This indicates that in biaxial tensile state or biaxial 
tensile-compressive state, the calculated results 
according to the LSEST accord well with the 
experimental data, which is acceptable for prediction on 
mechanical properties. According to the strength theory 
of the LSEST (Eq.(56)) in tensile-compressive principle 

stress state, the tensile failure strength acts equally with 
the compressive failure strength in preventing failure of 
materials. 

The above-mentioned results reveal that in biaxial 
tensile-compressive stress state, the calculation results of 
the LSEST agree with the experiments. 
 
6.3 Compressive stress state 

The yield experiment of HJELM[37] on gray cast 
iron also demonstrated that the failure stress is nearly 
equal to the uniaxial compressive strength in a stress 
state of biaxial compression. According to the LSEST, 
the strength theory in compressive stress state is equal to 
the maximum principal stress in magnitude. In 
calculating the strength in contact problem, the materials 
stand in a triaxial compressive stress state near the 
contact face and their three principal stresses are all 
compressive with almost equal values. The allowable 
compressive stresses in the contact face are much higher 
and even exceed 30% of the yielding stress of the 
materials[44], which is consistent with the LSEST. 
Under triaxial equivalent-compressive stress state, 
especially under hydrostatic stress, because of the 
specimen under actions of closed compressive stress, the 
amassed strain energy is difficult to release. Thereafter, 
plastic materials even brittle materials can sustain large 
compressive stress. 

According to the LSEST, the failure of metals under 
all kinds of stress states has no relationship with the 
hydrostatic stress, which is in accordance with the 
experimental result of BRIDGMAN[45−46], who found 
that the failure of most metals is not affected by 
hydrostatic stress. The principal stress state remarkably 
influences the failure of materials and the failure of 
isotropic metals does not relate to the intermediate stress 
under different principal stress states. Based on the 
principle of the first stress invariant; and the sum of three 
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principal stresses is constant in triaxial stress state, so 
only two of the three principal stresses are independent 
variables; and the intermediate stress cannot change the 
stress state essentially, which is consistent with the 
failure function of the LSEST. 
 
6.4 Comparison between experimental data and other 

strength theories 
1) Plastic materials under pure torsion stress 

Under pure torsion stress, the experimental failure 
stress of plastic materials is the yield shear one. By 
comparing the theoretical calculated shear stress with the 
experimental shear stress, the relative error is obtained. 

For plastic materials under pure torsion stress, the 
relative error from Tresca’s criterion, according to Eq.(2), 
is 
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The relative error from von Mises’ criterion, 
according to Eq.(4), is 
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As the tensile and compressive strengths are 
obtained from experimental data, the relative error from 
Mohr-Coulomb’s criterion, according to Eq.(5) is also 
considered: 

%1001
)( sct

ct
CoMo ×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

⋅+
=− τσσ

σσ
η             (62) 

Based on Table 3 and Eqs.(60)−(62), the relative 
error of plastic materials under pure torsion stress 
according to other related strength theories is listed in 
Table 4. 

From the relative error in Table 3 and Table 4, for 8 
plastic materials under pure torsion, the average value of 
the calculated relative error, according to Tresca criterion, 
von Mises criterion, Mohr-Coulomb criterion and 
LSEST are −36.85%, −27.08%, −23.29% and 3.99%, 
respectively. 
2) Aluminum-silicon alloy ZL105 under biaxial tensile- 

compressive principal stress 
LÜ et al[35] obtained the experimental fracture 

stress of aluminum-silicon alloy ZL105 under several 
groups of biaxial tensile-compressive principal stress. 
Generally, the Treesca criterion and the von Mises 
criterion are considered to be applied to strength 
calculation of plastic materials, which cannot be applied 
to the strength calculation of aluminum-silicon alloy 
ZL105; however, the Rankine theory can only be applied 
to tensile or compressive stress state. So, the relative 

Table 4 Relative error of plastic materials under pure torsion 
stress according to other related strength theories 

Material ΗTresc/% ηMis/% ηMo-Co/% 

A3 steel −29.34 −18.41 −28.02 

T8 tool teel −29.49 −18.58 −29.35 

Brass 62 −26.02 −14.58 −27.28 

Material 1 −42.44 −33.54 −22.37 

Material 2 −41.62 −32.59 −20.88 

Material 3 −41.80 −32.80 −17.90 

Material 4 −41.34 −32.27 −16.66 

Material 5 −42.75 −33.90 −23.83 

Average −36.85 −27.08 −23.29 

 
error of these three criterions is not considered here. 

Under plane tensile-compressive principle stress, 
the relative error of Mohr-Coulomb criterion, according 
to Eq.(5), is 
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The relative error of LSEST, according to Eq.(56), 
is  
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According to the 21 groups of experimental fracture 
stresses of aluminum-silicon alloy ZL105 under biaxial 
tensile-compressive principal stress by LÜ et al[35], the 
average value of the calculated relative error of 
Mohr-Coulomb criterion and LSEST, according to 
Eqs.(63) and (64), are 28.4% and −3.5%, respectively. 
3) Failure curves of several strength theories under plane 

stress state 
Under uniaxial and plane stress, the failure curve of 

Rankine theory, Tresca criterion, von Mises criterion, 
Mohr-Coulomb criterion and LSEST as well as the 
experimental data is shown in Fig.4. 

From Eqs.(1), (4), (5), (56) and Fig.4: 
(1) Under uniaxial or biaxial tensile stress, the 

failure curve is in Quadrant , Ⅰ and the calculation 
results of LSEST is the same as those of Rankine theory, 
Tresca, von Mise and Mohr-coulomb theory. The 
calculation result of von Mises is larger than that of other 
four theories. 

(2) Under uniaxial or biaxial compressive stress, the 
failure curve is in Quadrant , Ⅲ and the calculation result 
of LSEST is the same as that of Rankine theory and 
Mohr-Coulomb theory. The calculation results of Tresca,  
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Fig.4 Failure curves of several strength theories under plane 
stress state 
 
von Mises criterion are smaller than those of the other 
three theories. 

(3) Under biaxial tensile-compressive stress state, 
the failure curve is in Quadrant Ⅱ or . The calculation Ⅳ

results of Tresca theory, vol Mises theory, 
Mohr-Coulomb theory, LSEST, Rankine theory are 
different. Rankine theory cannot be applied to biaxial 
tensile-compressive strength calculation. So, under 
biaxial tensile-compressive principal stress state, the 
calculated failure value of LSEST is the largest, and 
materials can be most fully used. 

From the above comparison of calculated results of 
several strength theories, under different principal stress 
state, LSEST has the highest calculation accuracy.  
 
7 Conclusions 
 

1) Based on the different effects of the shear and 
normal stresses at an oblique section on sliding and 
climbing of the dislocations, the total equivalent strain 
specific energy (TESSE) is constructed and then the 
limiting strain energy strength theory (LSEST) is 
proposed. For isotropic materials, failure meaning plastic 
yielding or brittle fracture occurs if the maximum TESSE 
arrives at or exceeds the strain specific energy of the 
plastic yielding or brittle fracture in uniaxial stress state. 

2) The equivalent stresses of the LSEST in uniaxial, 
biaxial or triaxial stress states are calculated using the 
stress analysis of a cell body. The failure function under 
different stress states and the relationship among σt, σc 
and τs for metals are obtained. 

3) Theoretical predictions agree well with the 
experimental results of the tension, compression and 

torsion of A3 steel, T8 tool steel and Brass 62, as well as 
other existing experimental results from literatures. 
Furthermore, the LSEST accounts precisely for the fact 
that the ratio of the initial shear yielding strength to the 
tensile yielding strength of plastic metals is 0.7. All these 
indicate the validness and universality of the LSEST in 
analyzing the failure of both plastic and brittle metals. In 
particular, in single tensile or compressive stress state, 
the LSEST is reduced to Rankine’s theory. 

4) The equivalent stress under the actions of 
bending and torsion according to the LSEST is lower that 
calculated data according to Mises criterion. 
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