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Abstract: The equi-biaxial tensile test is often required for parameter identification of anisotropic yield function and it demands the 
special testing technique or device. Instead of the equi-biaxial tensile test, the plane strain test carried out with the traditional uniaxial 
testing machine is suggested to provide the experimental data for calibration of anisotropic yield function. This simplified method by 
using plane strain test was adopted to identify the parameters of Yld2000-2d yield function for 5xxx aluminum alloy and AlMgSi 
alloy sheets. The predicted results of yield stresses, anisotropic coefficients and yield loci by the proposed method were very similar 
with the experimental data and those by the equi-biaxial tensile test. It is validated that the plane strain test is effective to provide 
experimental data instead of equi-biaxial tensile test for calibration of Yld2000-2d yield function. 
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1 Introduction 
 

As one of the lightweight materials, aluminum alloy 
sheet is widely used in the astronautical, aeronautical and 
automobile industry and so on. Due to the polycrystal 
and texture structure, aluminum alloy sheet usually 
exhibits very strong anisotropic plastic behavior. Hence, 
an accurate constitutive model of aluminum alloy sheet 
is vitally required for finite element simulation of 
aluminum alloy sheet forming processes [1,2]. Up to date, 
many advanced anisotropic yield functions have been 
suggested to describe the anisotropic yield behavior of 
aluminum alloy sheet [3]. The advanced anisotropic 
yield functions usually introduce a number of parameters 
to guarantee the flexibility of anisotropic plasticity. The 
parameter identification of yield function needs the same 
number of experimental data as the number of 
parameters. Therefore, a number of mechanical tests 
should be employed to provide the required experimental 
data for calibration of yield function. BARLAT et al [4] 
proposed the Yld2000-2d yield function to describe the 
anisotropic yield behavior of aluminum alloy sheets. For 

the parameter identification, the equi-biaxial tensile yield 
stress was obtained by the bulge test and the equi-  
biaxial anisotropic coefficient was provided by poly- 
crystal model, through-thickness disk compression or 
calculation with Yld96 yield function. BARLAT et al [5] 
utilized the experimental data and several calculated data 
by the identified Yld2000-2d yield function to calibrate 
the Yld2004-18p and Yld2004-13p yield functions. 
BANABIC et al [6] suggested the BBC2000 yield 
function for orthotropic metal sheets under plane stress 
conditions. The biaxial tensile test of cruciform specimen 
was carried out to provide the yield stress and anisotropic 
coefficient under equi-biaxial tensile state. BANABIC  
et al [7] also adopted the biaxial tensile test of another 
cross-shaped specimen to calibrate the BBC2003 yield 
function. BRON and BESSON [8] presented a 
phenomenological yield function to represent the 
anisotropic plasticity of aluminum sheets. The uniaxial 
tests of U-notched samples with different notch radii 
were used to obtain the material behavior under various 
stress states and they were assumed to play a similar role 
as biaxial tests. WU et al [9] obtained the experimental 
yield  points  by  biaxial  tensile  tests  with  cruciform 
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specimen. It showed that the Barlat 89 and Hosford yield 
criteria could well describe the yield loci of aluminum 
alloy sheets than Hill 90，Hill 48 and Mises criteria. 
FLORES et al [10] improved an identification method 
for Hill 1948 and Hosford 1979 yield functions by 
introducing the uniaxial tensile tests, plane strain tests 
and simple shear tests along rolling direction and 
transverse direction of metal sheets. ARETZ et al [11] 
improved the calibration procedure of Yld2003 yield 
function on the basis of uniaxial and plane strain tensile 
tests. The required tests can be simplified by involving 
only a traditional uniaxial tensile testing machine. 
GÜNER et al [12] presented the inverse identification for 
Yld2000-2d yield function by using a uniaxial tensile 
testing specimen with varying cross-section. The 
employed specimen covered a stress state ranging from 
uniaxial tension to plane strain tension, and the 
equi-biaxial stress state obtained from layer compression 
tests was also utilized to define the objective function. 
POTTIER et al [13] developed an out-of-plane testing 
procedure for inverse identification of Hill 1948 yield 
function and Ludwick hardening law. The testing 
specimen was designed to contain the expansion zone, 
tension zone and shear zone. TEACA et al [14] 
determined some parameters of Ferron−Makkouk− 
Morreale (FMM) yield criterion by inverse analysis 
based on the heterogeneous biaxial tensile tests of 
cross-shaped specimen. One cross-shaped specimen was 
dedicated to cover the stress state ranging from uniaxial 
tensile state to equi-biaxial tensile state. ZHANG      
et al [15] calibrated the Bron and Besson yield criterion 
by either conventional mechanical tests or single biaxial 
test of cruciform specimen. The conventional tests 
included the representative stress state by the uniaxial 
tensile tests, simple shear tests and bulge test, while the 
single biaxial test covered a range of stress state by the 
heterogeneous deformation field in central zone of 
cruciform specimen. KIM et al [16] suggested a complex 
geometry of specimen to exhibit heterogeneous stress 
states in a uniaxial tensile test. Based on the 
heterogeneous deformation field, the Hill 1948 yield 
criterion and Swift hardening law were calibrated by the 
virtual field method. 

In the case of less access to equi-biaxial tensile test 
or other dedicated experimental technique, the plane 
strain tests along the rolling and transverse directions 
were proposed to offer the experimental data for 
parameter identification of anisotropic yield function. 
The simplified identification procedure based on the 
plane strain test was presented for the Yld2000-2d yield 
function. The parameters of Yld2000-2d yield function 
were calibrated for 5xxx aluminum alloy and AlMgSi 
alloy sheets. The identified results were compared with 
the experimental data and those by the equi-biaxial 

tensile test to validate the proposed method. 
 
2 Yld2000-2d yield function 
 

The Yld2000-2d yield function (F) is presented 
under the plane stress condition: 
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where a is a coefficient determined by the crystal 
structure. For the BCC material, a=6, and for the FCC 
material, a=8. X1 and X2 are the principle values of X′ 
and X″ as follows: 
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where X′ and X″ are deviatoric stress tensors by using 
two linear transformations on the Cauchy stress tensor as 
follows: 
 
X′=L′σ, X″=L″σ                              (3) 
 
where σ is the Cauchy stress tensor, and L′ and L″ are the 
coefficient matrixes given by 
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where αi (i=1, …, 8) are the material parameters to be 
identified for each material. The parameter identification 
was presented by Newton−Raphson numerical  
procedure. The Jacobian matrix should be derived firstly 
and a reasonable initial point should be given for 
numerical convergence. 
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The Yld2000-2d yield function and its improved 
formulations were validated to well describe the 
anisotropic plasticity for aluminum alloy and steel  
sheets [17,18]. Meanwhile, the formulation of 
Yld2000-2d yield function is particularly suitable for 
finite element simulation and has been implemented in 
the commercial finite element software [19]. Therefore, 
the Yld2000-2d yield function can be widely adopted for 
the finite element simulation of sheet metal forming 
processes in the industry. 
 
3 Parameter identification 
 
3.1 Minimization of error function 

To avoid the derivation of Jacobian matrix and 
satisfy the demand of reasonable initial point for 
Newton−Raphson numerical procedure, the parameter 
identification of anisotropic yield function can be 
achieved by minimization of error function. The error 
function is defined by the discrepancy between the 
predicted and experimental data. These data usually 
include the uniaxial yield stresses and anisotropic 
coefficients along different directions, equi-biaxial 
tensile yield stress and equi-biaxial anisotropic 
coefficient. Hence, the error function δ1 is given by 
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where ps(pre)

0  and ps(pre)
90  are respectively the 

predicted yield stresses of plane strain test along the 
angles 0° and 90° with respect to the rolling direction, 

ps
0  and ps

90  are respectively the experimental yield 
stresses of plane strain test along the angles 0° and 90° 
from the rolling direction. The yield stresses of plane 
strain test along the angle 0° and 90° with respect to the 
rolling direction predicted by the Yld2000-2d yield 
function are derived in the next section. 

For the minimization of error function in the 
modeFRONTIER® platform, the bounded Broyden− 
Fletcher−Goldfarb−Shanno (B-BFGS) algorithm is 
adopted. The B-BFGS is based on the quasi-Newton 
method and can achieve fast convergence. A large 
number of initial points can be used to cover all the 
parameter ranges. 
 
3.2 Prediction of uniaxial yield stress and anisotropic 

coefficient 
For the uniaxial yield stress σθ obtained by the 

standardized uniaxial tensile test along the angle θ with 
respect to the rolling direction, the components of 
Cauchy stress tensor can be calculated as follows: 
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Then, the predicted uniaxial yield stress can be 

calculated as follows: 
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where Yref is the referenced yield stress,   is the 
uniaxial equivalent stress calculated by taking the 
Cauchy stress tensor of uniaxial yield stress σθ into the 
anisotropic yield function, and Fθ is the function defined 
by the anisotropic yield function for uniaxial tensile test 
along the angle θ with respect to the rolling direction. 

With the hypotheses of associated flow rule, the 
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predicted uniaxial anisotropic coefficients can be derived 
as follows: 
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where the partial differentials of equivalent stress to the 
Cauchy stress component for the Yld2000-2d yield 
function are given as follows: 
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3.3 Prediction of equi-biaxial yield stress and 

anisotropic coefficient 
For the equi-biaxial yield stress, the components of 

Cauchy stress tensor are given by 
 
σ11=σ12=σb, σ12=σ21=0                         (13) 
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anisotropic coefficient are given as follows: 
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where b  is the equi-biaxial equivalent stress 
calculated by taking the Cauchy stress tensor of 
equi-biaxial yield stress σb into the anisotropic yield 
function, and Fb is the function defined by the 
anisotropic yield function for equi-biaxial tensile test. 

3.4 Prediction of plane strain yield stress 
For the plane stresses ps
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where η and ξ are the ratios of minor and major principal 
stresses for plane strain test along the rolling and 
transverse directions, respectively. Considering the fact 
that the strain along the angle 90° with respect to the 
tensile direction equals zero for the plane strain test, the 
following equations of associated flow rule should be 
fulfilled with 
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So, the constants η and ξ can be determined by 

solving Eqs. (15) and (16) with the bisection method. 
The predicted yield stress of plane strain tests is 

calculated as follows: 
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where ps  is the equivalent stress of plane strain tensile 
calculated by taking the Cauchy stress tensor of plane 
strain yield stress σps into the anisotropic yield function, 
the Fps is the function defined by the anisotropic yield 
function for plane strain test. 
 
4 Results and discussion 
 
4.1 Anisotropic model of 5xxx aluminum alloy sheet 

The two proposed methods were used to calibrate 
the Yld2000-2d yield function for a 5xxx aluminum alloy 
(Al-5xxx) sheet. For the first method, the error object is 
defined with the experimental and predicted data of the 
uniaxial tensile tests and equi-biaxial tensile test, and it is 
denoted as EB. For the second method, the error object is 
defined with the experimental and predicted data of the 
uniaxial tensile tests and plane strain test, and it is 
denoted as PS. The experimental data of Al-5xxx sheet 
was given by VEGTER et al [20]. The difference of the 
results predicted by the simplified method PS from the 
experimental data and those predicted by the traditional 
method EB can be ignored for Al-5xxx sheet, as shown 
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in Table 1. The parameters of Yld2000-2d yield function 
identified by the two methods for Al-5xxx sheet are 
similar with each other, as shown in Table 2. 
 
Table 1 Experimental and predicted results of Al-5xxx sheet 

Parameter Exp Pre(EB) Pre(PS) 

0  0.992 0.992 0.992 

45  1.008 1.008 1.008 

90  0.992 0.992 0.991 

b  1.026 1.026 − 
ps
0  1.081 − 1.081 
ps
90  1.054 − 1.056 

0r  0.73 0.73 0.73 

45r  0.79 0.79 0.79 

90r  0.67 0.67 0.67 

br  1.00 1.00 − 

 
Table 2 Identified parameters of Yld2000-2d yield function for 

Al-5xxx sheet 

Parameter EB PS 

α1 0.9910 0.9753 

α2 0.9532 0.9861 

α3 0.9063 1.0336 

α4 1.0071 1.0323 

α5 1.0042 1.0107 

α6 0.9190 0.9453 

α7 0.9709 0.9776 

α8 1.0463 0.9992 

 
For the Al-5xxx alloy sheet, the trends of 

normalized flow stress and anisotropic coefficient under 
uniaxial tensile condition predicted by the two methods 
are compared in Figs. 1 and 2. While the predicted trends 
of normalized flow stress are very similar except near the 
angle 90° with respect to the rolling direction, and the 
predicted trends of uniaxial anisotropic coefficient 
coincide with each other in the whole range. As shown in 
Fig. 3, the Yld2000-2d yield loci of Al-5XXX alloy sheet 
obtained by the two methods are almost the same. 
 
4.2 Anisotropic model of AlMgSi alloy sheet 

The same procedures were also applied to 
identifying the parameter of Yld2000-2d yield function 
for an AlMgSi alloy sheet. The experimental data of 
AlMgSi alloy sheet were given by VEGTER and 
BOOGAARD [21]. For the AlMgSi alloy sheet, the 
results predicted by the simplified method PS are nearly 
the same as the experimental data and those predicted by 
the traditional method EB, as shown in Table 3. The 
identified parameters of Yld2000-2d yield function 
identified by the two methods are in relatively good 

agreement, as shown in Table 4. 
For the AlMgSi alloy sheet, the trends of 

normalized flow stress predicted by the two methods are 
similar although there is a very small discrepancy near 
the angles 0° and 90°, as shown in Fig. 4, while the 
trends of uniaxial anisotropic coefficient predicted by the 
two methods are the same in the whole range, as shown 
in Fig. 5. The Yld2000-2d yield loci of AlMgSi alloy 
sheet obtained by the two methods coincide with each 
other, as shown in Fig. 6. 
 

 
Fig. 1 Comparison of normalized flow stress for Al-5xxx alloy 

sheet 

 

 
Fig. 2 Comparison of anisotropic coefficient for Al-5xxx alloy 

sheet 

 

 

Fig. 3 Comparison of yield loci for Al-5xxx alloy sheet 
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Table 3 Experimental and predicted results of AlMgSi sheet 

Parameter Exp Pre(EB) Pre(PS) 

0  1.021 1.021 1.021 

45  0.987 0.987 0.987 

90  1.009 1.009 1.008 

b  1.004 1.004 − 
ps
0  1.061 − 1.059 
ps
90  1.048 − 1.049 

0r  0.64 0.64 0.64 

45r  0.48 0.48 0.48 

90r  0.76 0.76 0.76 

br  0.889 0.889 − 
 
Table 4 Identified parameters of Yld2000-2d yield function for 
AlMgSi sheet 

Parameter EB PS 

α1 0.9188 0.9263 

α2 1.0003 1.0415 

α3 0.9651 1.3763 

α4 0.9965 1.0798 

α5 1.0059 1.0588 

α6 1.0042 1.2671 

α7 0.9425 0.9828 

α8 1.1249 0.9226 
 

 
Fig. 4 Comparison of normalized flow stress for AlMgSi alloy 
sheet 
 

 
Fig. 5 Comparison of anisotropic coefficients for AlMgSi alloy 

sheet 

 

 
Fig. 6 Comparison of yield loci for AlMgSi alloy sheet 

 

5 Conclusions 
 

1) A simplified method for parameter identification 
of anisotropic yield function was presented by using the 
plane strain test instead of equi-biaxial tensile test. The 
simplified method and the traditional one were compared 
to calibrate the Yld2000-2d yield function for Al-5xxx 
alloy and AlMgSi alloy sheets. 

2) For parameter identification of Yld2000-2d yield 
function by the two methods, the same anisotropic 
coefficients were used, so the predicted trend of 
anisotropic coefficient is very similar. However, when 
the yield stresses under plane strain state were adopted 
instead of those under equi-biaxial tensile state, the 
predicted trend of normalized flow stress shows very 
small discrepancy to be negligible. 

3) The proposed method is validated for calibration 
of anisotropic yield function. It is more convenient for 
parameter identification to use plane strain test to 
provide the experimental data instead of equi-biaxial 
tensile test or other dedicated technique. 
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采用平面应变替代等双拉实验的各向异性屈服函数识别 
 

朱 杰 1，黄尚宇 1，刘 维 1,2，胡建华 1，邹希凡 1 

 

1. 武汉理工大学 材料科学与工程学院，武汉 430070； 

2. 华中科技大学 材料成形与模具技术国家重点实验室，武汉 430074 

 

摘  要：各向异性屈服函数参数识别中经常需要完成等双拉实验，但这要求专用的实验技术或设备。采用基于传

统单轴拉伸实验装置的平面应变实验取代等双拉实验，以提供相关实验数据，完成各向异性屈服函数的参数识别。

运用基于平面应变实验的简易方法，对 5xxx 铝合金和 AlMgSi 铝合金板材实现 Yld2000-2d 各向异性屈服函数的

参数识别。结果表明，通过该方法预测的屈服应力、各向异性系数、屈服轨迹与实验值以及采用等双拉实验的预

测值十分接近。因此，采用平面应变实验替代等双拉实验完成 Yld2000-2d 屈服函数参数识别的方法是有效的。 

关键词：铝合金板材；各向异性行为；屈服函数；参数识别；平面应变实验 
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