

Available online at www.sciencedirect.com

Transactions of Nonferrous Metals Society of China

www.tnmsc.cn

Trans. Nonferrous Met. Soc. China 19(2009) 1599-1617

Volume sequences of characteristic atoms separated from experimental volumes of AuCu and AuCu₃ compounds

XIE You-qing(谢佑卿)^{1,2,3}, LIU Xin-bi(刘心笔)¹, LI Xiao-bo(李晓波)⁴, PENG Hong-jian(彭红建)¹, NIE Yao-zhuang(聂耀庄)¹

School of Materials Science and Engineering, Central South University, Changsha 410083, China;
 Powder Metallurgy Research Institute, Central South University, Changsha 410083, China;
 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China;

4. College of Mechanical Engineering, Xiangtan University, Xiangtan 411105, China

Received 10 August 2009; accepted 15 September 2009

Abstract: The systematic science of alloys (SSA) is a framework of the total energy and total volume able to be separated. The volume sequences of characteristic atoms at the central sites of the basic clusters in the fcc-based Au-Cu system are separated out from the experimental volumes of L_{10} -AuCu and L_{12} -AuCu₃ compounds at room temperature only, by nine volume *V*-functions. From these volume sequences, the volumes, volumes of formation, ordering (excess) volumes and volume mismatch degrees of the L_{10} -AuCu, L_{12} -AuCu₃ and L_{12} -Au₃Cu compounds, Au₃Cu-, AuCu- and AuCu₃-type ordered alloys with maximal ordering degree, and disordered Au_{1-x}Cu_x alloys are calculated. Among these functions, only ordering volumes of the compounds and ordered alloys obtained by the 6th *V*-function are negative, i.e., the destruction of the superlattice is accompanied by an increase in volume, which is identical with the experimental results. Accompanying conclusions, the different descriptions of volumetric properties between traditional alloy theories and SSA framework are discussed.

Key words: systematic science of alloys; Au-Cu system; atomic volume; volume of formation; ordering volume; volume mismatch

1 Introduction

In order to get an entire understanding of the alloy systems, to establish phase diagrams and to search a method for designing of alloys, the SSA framework[1] has been established on the basis of two scientific philosophy propositions. A diversity of structures, properties and features of whether matter or nonmatter systems should be attributed to combination and arrangement of structural units in the structural unit sequence; and a systematic theory of any complex system described quantitatively should be constructed by structural unit sequence-, equation- and informationchains. The SSA framework is constructed indeed by the structural unit sequence-, equation- and informationchains.

1.1 Models and structure unit sequence-chain

An alloy system contains three structure levels: the

phase level of organizations, atomic level of phases and electronic level of atoms. The atomic level of alloy phases in the SSA framework involves three models for constructing diversity of structures and properties of alloy phases[1–4].

1) The basic cluster overlapping (BCO) model, of which the structural units are a pair of basic cluster sequences in a based lattice (such as fcc, hcp and bcc) of binary alloy systems, and each cluster consists of a central atom, the first neighbor configuration, the second neighbor configuration and the third neighbor configuration. The actions of the BCO model are as follows: to give information about an atomic arrangement of alloy phases described by overlapping pattern of basic clusters; and to determine the splitting order on the potential energy, volume and electronic structure of the central atoms, which may have one, two and three splitting orders, respectively, corresponding to the basic clusters with one, two and three neighbor configurations.

Foundation item: Project(50471058) supported by the National Natural Science Foundation of China; Project(08JJ3099) supported by the Natural Science Foundation of Hunan Province, China

Corresponding author: XIE You-qing; Tel: +86-731-88879287; E-mail: xieyouq2000@yahoo.com.cn DOI: 10.1016/S1003-6326(09)60077-7

٢

In the present work, the long-period superlattice structure AuCu II is not concerned. Therefore, to use one order split is enough, where the basic B_i^{α} -cluster consists of a central A_i^{α} atom and the first neighboring configuration [(*I*-*i*)Au, *i*Cu], which contains *i* Cu-atoms and (*I*-*i*) Au-atoms. Here, the symbol α denotes Au or Cu; *I* is the coordinative number and equals 12 for the fcc-based lattice; *i* can change from 0 to 12.

2) The characteristic atom arranging (CAA) model, of which the structural units are a pair of characteristic atom sequences, and each characteristic atom is the central atom of a specific basic cluster. The characteristic A_i^{α} atom has own characters at the ground state: potential energy $\varepsilon_i^{\alpha}(0)$, volume $V_i^{\alpha}(0)$ and electronic structure $\psi_i^{\alpha}(0)$. The actions of the CAA model are as follows: to give information about an atomic arrangement of alloy phases described by potential energy pattern, volume pattern and electronic structure pattern of the characteristic atoms occupied at the various lattice sites in intermetallics; to derive equations for calculating concentrations of various characteristic atoms and configurational entropy of ordered and disordered alloys as functions of composition (x) and ordering degree (σ); and to establish composition-ordering degree dependent $E(x, 0, \sigma), V(x, 0, \sigma)$ and $\psi(x, 0, \sigma)$ functions of potential energy, volume and electronic structure of alloy phases at 0 K.

Therefore, in a based lattice alloy system the variations in potential energy, volume and electronic structure of intermetallics, various type ordered alloys and disordered alloys with composition and ordering degree can be calculated by the same information about a pair of potential energy sequences, a pair of volume sequences and a pair of electronic structure sequences, which belong to a pair of characteristic atom sequences.

3) The characteristic crystal mixing (CCM) model, of which the structure units are a pair of invented characteristic crystal sequences, and each characteristic crystal consists of the same characteristic atoms with the identical potential energy, identical volume and identical electronic structure. The actions of the CCM model are as follows: to establish a set of temperature (T)dependent functions of the energetic and volumetric properties consisting of general volume $V^{V}(T)$ function, the general thermal expansion coefficient $\beta(T)$ function, general vibrational capacity $C_p^{v}(T)$ function, general vibrational energy $U^{v}(T)$ function, general vibrational entropy $S^{v}(T)$ function, enthalpy H(T) function and free energy G(T) function of the characteristic crystals; and to derive a set of composition-temperature-ordering degree dependent functions of the general volume $V^{v}(x,T,\sigma)$, general thermal expansion coefficient $\beta^{v}(x,T,\sigma)$, general vibration heat capacity $C_p^{v}(x,T,\sigma)$, general vibrational energy $U^{v}(x,T,\sigma)$,

general vibration entropy $S^{v}(x,T,\sigma)$, enthalpy $H(x,T,\sigma)$ and characteristic free energy $G^{*}(x,T,\sigma)$ without containing configuration entropy $S^{c}(x,\sigma)$ of alloy phases. And finally, combining the $G^{*}(x,T,\sigma)$ function with partition function the general free energy $G(x,T,\sigma)$ function can be derived, where the $G(x,T,\sigma)$ function contains configuration entropy $S^{c}(x,\sigma)$. This action will be presented in the future.

These three models are proposed in order to overcome disappointments of the atomic pair interaction model and central atom model[5] as well as effective cluster interaction model[6–9].

1.2 Equation- and information-chains

1.2.1 Additive law of *q*-properties of characteristic crystals (atoms)

According to CCM model (or CAA model), the extensive properties $q(x,T,\sigma)$, $q_A(x,T,\sigma)$, $q_B(x,T,\sigma)$ of a given alloy phase and its components can be obtained by an additive law of the *q*-properties of characteristic crystals (atoms) (in terms of CCA law or CAA model))[1]:

$$\begin{cases} q(x,T,\sigma) = x_{A}q_{A}(x,T,\sigma) + x_{B}q_{B}(x,T,\sigma) \\ q_{A}(x,T,\sigma) = \sum_{i=0}^{I} x_{i}^{A}(x,\sigma)q_{i}^{A}(T)/x_{A} \\ q_{B}(x,T,\sigma) = \sum_{i=0}^{I} x_{i}^{B}(x,\sigma)q_{i}^{B}(T)/x_{B} \end{cases}$$
(1)

where $x_i^{A}(x,\sigma)$ and $x_i^{B}(x,\sigma)$ are the concentrations of the characteristic crystal (atoms).

1.2.2 Nine $E(x,0,\sigma)$ - and nine $V(x,0,\sigma)$ - functions of alloy phases at 0 K

In order to make Eq.(1) become a simple, applicable and separable $q(x,0,\sigma)$ function (here q denotes E or V), three types of relations of q_i^A and q_i^B with *i* have been designed[1, 10–12]:

Type I of straight line relation:

$$\begin{cases} q_i^{\rm A} = q_0^{\rm A} + (i/I)(q_I^{\rm A} - q_0^{\rm A}) \\ q_i^{\rm B} = q_I^{\rm B} + [(I-i)/I](q_0^{\rm B} - q_I^{\rm B}) \end{cases}$$
(2)

Type II of concave parabola relation:

$$\begin{cases} q_i^{\rm A} = q_0^{\rm A} + (i/I)^2 (q_I^{\rm A} - q_0^{\rm A}) \\ q_i^{\rm B} = q_I^{\rm B} + [(I-i)/I]^2 (q_0^{\rm B} - q_I^{\rm B}) \end{cases}$$
(3)

Type III of convex parabola relation:

$$\begin{cases} q_i^{A} = q_0^{A} + (2i/I)(q_I^{A} - q_0^{A}) - (i/I)^2 (q_I^{A} - q_0^{A}) \\ q_i^{B} = q_I^{B} + [2(I-i)/I](q_0^{B} - q_1^{B}) - (4) \\ [(I-i)/I]^2 (q_0^{B} - q_1^{B}) \end{cases}$$

where q_0^A and q_I^B denote, respectively, corresponding properties of the primary C_0^A and C_I^B characteristic crystals (atoms); q_I^A and q_0^B denote, respectively, corresponding properties of the terminal C_I^A and C_0^B characteristic crystals (atoms).

By combining Eqs.(2), (3), (4) and substituting them into Eq.(1), nine $q(x,0,\sigma)$ functions can be obtained, which can be used to compounds, ordered and disordered alloy phases; and nine q(x,0,0)-functions, which are derived from corresponding $q(x,0,\sigma)$ functions and can be used to the disordered alloy phase only[1, 10–13].

1.3 Methodology

1.3.1 Inference from the first proposition

The whole can be reproduced from a few parts. For example, the whole of a tree can be reproduced respectively from a seed, a leaf or a branch of the tree, and the whole of a sheep can be reproduced respectively from a egg cell or a body cell of the sheep in biologic systems; the whole information of an alloy system can be reproduced respectively from a few disordered alloys, a few ordered alloys or a few intermetallics. This means that the total potential energies and total volumes of a few alloys can be separated into the potential energy sequence and volume sequence of the characteristic crystals (atoms), from which the whole information about energetic and volumetric properties, electronic and crystalline structures of all alloy phases in an alloy system can be reproduced. Therefore, the systematic study for an alloy system in the SSA framework is divided into three step investigations.

1) The aims of the first step investigation are to choose $E(x,0,\sigma)$ and $V(x,0,\sigma)$ functions and to determine a pair of potential energy sequences and a pair of volume sequences of characteristic crystals (atoms), through resolving nine $E(x,0,\sigma)$ - and $V(x,0,\sigma)$ -functions on the basis of FP-calculated heats and volumes of formation of a few intermetallics only, or of experimental heats and volumes of formation of a few intermetallics only or a few disordered alloys only by the structural unit inversion method; to determine a pair of electronic structure sequences of characteristic crystals (atoms), according to potential energies and volumes of characteristic crystals (atoms); and finally to study energetic properties, volumetric properties and electronic structures of alloy phases as function of composition (x)at ground state (0 K).

2) The aims of the second step investigation are to obtain energetic and volumetric properties of characteristic crystals as function of temperature, to obtain the energetic and volumetric property equations of alloy phases as functions of composition, temperature and ordering degree and then to study energetic and volumetric properties, crystalline parameters and electronic structures, as well as some physical properties of alloy phases in the whole ranges of composition, temperature and ordering degree.

3) The aims of the third step investigation are to study stability, transformation and equilibrium of alloy phases, to establish phase diagram and to provide a systematic knowledge about energetic and volumetric properties, crystalline and electronic structures of characteristic crystal (atom) sequences for designing applied alloys. That is called as design engineering of characteristic atom sequences of alloy systems.

The potential energy sequences of A_i^{Au} and A_i^{Cu} characteristic atoms separated out from experimental heats of formation of some disordered Au_{1-x}Cu_x alloys only[12, 14] and of L1₀-AuCu and L1₂-AuCu₃ compounds only[13, 15] have been performed, respectively. In this work, the volume sequences of the A_i^{Au} and A_i^{Cu} characteristic atoms are separated out from experimental volumes of the L1₀-AuCu and L1₂-AuCu and L1₂-AuCu and L1₂-AuCu from experimental volumes of the L1₀-AuCu and L1₂-AuCu and L1₂-Au

1.3.2 Survey for descriptions of volumetric properties of alloys in traditional alloy theories

These descriptions are as follows[16–17]: the molar volume, average atomic volume and cell volume of alloys; the volume of formation and change on disordering of intermetallics; the partial atomic volume of components in an alloy, effective atomic volume instead of partial atomic volume; the volume mismatch of the constituent atoms represented by the ratio of the partial atomic volume of the minor component.

1.3.3 Volumetric properties of alloys in SSA framework by taking Au-Cu system as an example

1) The volume sequences of characteristic atoms of components Au and Cu represent the realistic volumes of atoms surrounded by various neighbor configurations, and the results are listed in Table 1 and shown in Fig.1.

2) The volumetric properties of disordered and ordered alloys are presented in Section 2.2 and 2.3: the volumes (V_i^{Au}, V_i^{Cu}) and concentrations (x_i^{Au}, x_i^{Cu}) of characteristic atoms in a given alloy; the average atomic volume $V_a(x)$, average atomic volume of formation $\Delta V_a^m(x)$, average volume V(x) and average volume of formation $\Delta V_c^m(x)$ of a cell for a given alloy; average atomic volume ($V_{Au}(x), V_{Cu}(x)$) and average atomic volume (lattice parameter) of formation $(\Delta V_{Au}^m(x), \Delta V_{Cu}^m(x))$ of components Au and Cu; the ordering (excess) atomic volume $\Delta V^{ex}(x)$ which is

XIE You-qing, et al/Trans. Nonferrous Met. Soc. China 19(2009) 1599-1617

INO	Volume sequence -				i			
		0	1	2	3	4	5	6
1	V_i^{Au}	16.958 11	16.964 49	16.970 86	16.977 23	16.983 60	16.989 98	16.996 35
	V_i^{Cu}	11.888 84	11.882 47	11.876 09	11.869 72	11.863 35	11.856 98	11.850 60
2	V_i^{Au}	16.958 11	16.958 45	16.958 79	16.959 13	16.959 47	16.959 81	16.960 15
	V_i^{Cu}	12.084 69	12.041 19	12.001 48	11.965 55	11.933 40	11.905 03	11.880 45
3	V_i^{Au}	16.958 11	17.003 84	17.049 56	17.095 29	17.141 02	17.186 74	17.232 47
	$V_i^{ m Cu}$	11.540 05	11.541 94	11.547 62	11.557 07	11.570 31	11.587 33	11.608 13
4	V_i^{Au}	16.958 11	16.956 22	16.950 55	16.941 09	16.927 86	16.910 84	16.890 03
	$V_i^{ m Cu}$	12.179 53	12.148 94	12.118 34	12.087 74	12.057 15	12.026 55	11.995 95
5	V_i^{Au}	16.958 11	16.958 13	16.958 20	16.958 30	16.958 45	16.958 64	16.958 88
5	V_i^{Cu}	12.087 74	12.043 76	12.003 60	11.967 27	11.934 76	11.906 07	11.881 21
($V_i^{ m Au}$	16.958 11	16.952 40	16.935 25	16.906 67	16.866 66	16.815 22	16.752 35
6	$V_i^{ m Cu}$	12.363 12	12.359 29	12.347 82	12.328 69	12.301 92	12.267 50	12.225 43
	V_i^{Au}	16.958 11	17.001 61	17.041 32	17.077 25	17.109 40	17.137 77	17.162 35
1	V_i^{Cu}	11.634 90	11.649 69	11.664 48	11.679 27	11.694 06	11.708 84	11.723 63
	V_i^{Au}	16.958 11	16.959 09	16.959 98	16.960 79	16.961 51	16.962 14	16.962 70
8	V_i^{Cu}	12.078 57	12.036 06	11.997 23	11.962 11	11.930 68	11.902 95	11.878 92
	V_i^{Au}	16.958 11	16.990 98	17.020 99	17.048 14	17.072 43	17.093 86	17.112 44
9	V_i^{Cu}	11.745 82	11.746 28	11.747 67	11.749 98	11.753 21	11.757 37	11.762 46
No	Volume sequence -				i			
No.	Volume sequence -	7	8	9	i	10	11	12
No.	Volume sequence - V_i^{Au}	7 17.002 72	8 17.009 09	9 17.015	<i>i</i> 47 17	10 7.021 84	11 17.028 21	12 17.034 58
No.	Volume sequence - V_i^{Au} V_i^{Cu}	7 17.002 72 11.844 23	8 17.009 09 11.837 86	9 17.015 11.831	<i>i</i> 47 17 49 11	10 7.021 84 .825 11	11 17.028 21 11.818 74	12 17.034 58 11.812 37
No.	Volume sequence $-$ V_i^{Au} V_i^{Cu} V_i^{Au}	7 17.002 72 11.844 23 16.960 49	8 17.009 09 11.837 86 16.960 83	9 17.015 11.831 16.961	<i>i</i> 47 17 49 11 17 16	10 2.021 84 .825 11 5.961 51	11 17.028 21 11.818 74 16.961 85	12 17.034 58 11.812 37 16.962 19
No.	Volume sequence $-$ V_i^{Au} V_i^{Cu} V_i^{Au} V_i^{Cu}	7 17.002 72 11.844 23 16.960 49 11.859 65	8 17.009 09 11.837 86 16.960 83 11.842 63	9 17.015 11.831 16.961 11.829	<i>i</i> 47 17 49 11 17 16 39 11	10 2.021 84 .825 11 5.961 51 .819 93	11 17.028 21 11.818 74 16.961 85 11.814 26	12 17.034 58 11.812 37 16.962 19 11.812 37
No.	Volume sequence V_i^{Au} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu}	7 17.002 72 11.844 23 16.960 49 11.859 65 17.278 19	8 17.009 09 11.837 86 16.960 83 11.842 63 17.323 92	9 17.015 11.831 16.961 11.829 17.369	<i>i</i> 47 17 49 11 17 16 39 11 64 17	10 2.021 84 .825 11 5.961 51 .819 93 2.415 37	11 17.028 21 11.818 74 16.961 85 11.814 26 17.461 10	12 17.034 58 11.812 37 16.962 19 11.812 37 17.506 82
No.	Volume sequence V_i^{Au} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu}	7 17.002 72 11.844 23 16.960 49 11.859 65 17.278 19 11.632 71	8 17.009 09 11.837 86 16.960 83 11.842 63 17.323 92 11.661 08	9 17.015 11.831 16.961 11.829 17.369 11.693	<i>i</i> 47 17 49 11 17 16 39 11 64 17 23 11	10 2.021 84 .825 11 5.961 51 .819 93 2.415 37 .729 16	11 17.028 21 11.818 74 16.961 85 11.814 26 17.461 10 11.768 87	12 17.034 58 11.812 37 16.962 19 11.812 37 17.506 82 11.812 37
No. 1 2 3	Volume sequence V_i^{Au} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Au} V_i^{Cu}	7 17.002 72 11.844 23 16.960 49 11.859 65 17.278 19 11.632 71 16.865 45	8 17.009 09 11.837 86 16.960 83 11.842 63 17.323 92 11.661 08 16.837 08	9 17.015 11.831 16.961 11.829 17.369 11.693 16.804	<i>i</i> 47 17 49 11 17 16 39 11 64 17 23 11 93 16	10 2.021 84 .825 11 5.961 51 .819 93 2.415 37 .729 16 5.769 00	11 17.028 21 11.818 74 16.961 85 11.814 26 17.461 10 11.768 87 16.729 29	12 17.034 58 11.812 37 16.962 19 11.812 37 17.506 82 11.812 37 16.685 80
No. 1 2 3 4	Volume sequence V_i^{Au} V_i^{Cu} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu}	7 17.002 72 11.844 23 16.960 49 11.859 65 17.278 19 11.632 71 16.865 45 11.965 35	8 17.009 09 11.837 86 16.960 83 11.842 63 17.323 92 11.661 08 16.837 08 11.934 76	9 17.015 11.831 16.961 11.829 17.369 11.693 16.804 11.904	<i>i</i> 47 17 49 11 17 16 39 11 64 17 23 11 93 16 16 11	10 2.021 84 .825 11 0.961 51 .819 93 2.415 37 .729 16 0.769 00 .873 56	11 17.028 21 11.818 74 16.961 85 11.814 26 17.461 10 11.768 87 16.729 29 11.842 97	12 17.034 58 11.812 37 16.962 19 11.812 37 17.506 82 11.812 37 16.685 80 11.812 37
No.	Volume sequence V_i^{Au} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Au}	7 17.002 72 11.844 23 16.960 49 11.859 65 17.278 19 11.632 71 16.865 45 11.965 35 16.959 15	8 17.009 09 11.837 86 16.960 83 11.842 63 17.323 92 11.661 08 16.837 08 11.934 76 16.959 47	9 17.015 11.831 16.961 11.829 17.369 11.693 16.804 11.904 16.959	<i>i</i> 47 17 49 11 17 16 39 11 64 17 23 11 93 16 16 11 83 16	10 2.021 84 .825 11 5.961 51 .819 93 2.415 37 .729 16 5.769 00 .873 56 5.960 23	11 17.028 21 11.818 74 16.961 85 11.814 26 17.461 10 11.768 87 16.729 29 11.842 97 16.960 68	12 17.034 58 11.812 37 16.962 19 11.812 37 17.506 82 11.812 37 16.685 80 11.812 37 16.685 80 11.812 37 16.961 17
No. 1 2 3 4 5	Volume sequence V_i^{Au} V_i^{Cu}	7 17.002 72 11.844 23 16.960 49 11.859 65 17.278 19 11.632 71 16.865 45 11.965 35 16.959 15 11.860 18	8 17.009 09 11.837 86 16.960 83 11.842 63 17.323 92 11.661 08 16.837 08 11.934 76 16.959 47 11.842 97	9 17.015 11.831 16.961 11.829 17.369 11.693 16.804 11.904 16.959 11.829	<i>i</i> 47 17 49 11 17 16 39 11 64 17 23 11 93 16 16 11 83 16 58 11	10 2.021 84 .825 11 5.961 51 .819 93 2.415 37 .729 16 5.769 00 .873 56 5.960 23 .820 02	11 17.028 21 11.818 74 16.961 85 11.814 26 17.461 10 11.768 87 16.729 29 11.842 97 16.960 68 11.814 28	12 17.034 58 11.812 37 16.962 19 11.812 37 17.506 82 11.812 37 16.685 80 11.812 37 16.961 17 11.812 37
No. 1 2 3 4 5 6	Volume sequence V_i^{Au} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Au} V_i^{Cu}	7 17.002 72 11.844 23 16.960 49 11.859 65 17.278 19 11.632 71 16.865 45 11.965 35 16.959 15 11.860 18 16.678 04	8 17.009 09 11.837 86 16.960 83 11.842 63 17.323 92 11.661 08 16.837 08 11.934 76 16.959 47 11.842 97 16.592 31	9 17.015 11.831 16.961 11.829 17.369 11.693 16.804 11.904 16.959 11.829 16.495	<i>i</i> 47 17 49 11 17 16 39 11 64 17 23 11 93 16 16 11 83 16 58 11 14 16	10 1.021 84 .825 11 0.961 51 .819 93 2.415 37 .729 16 0.769 00 .873 56 0.960 23 .820 02 0.386 54	11 17.028 21 11.818 74 16.961 85 11.814 26 17.461 10 11.768 87 16.729 29 11.842 97 16.960 68 11.814 28 16.266 51	12 17.034 58 11.812 37 16.962 19 11.812 37 17.506 82 11.812 37 16.685 80 11.812 37 16.961 17 11.812 37 16.961 505
No. 1 2 3 4 5 6	Volume sequence V_i^{Au} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu}	7 17.002 72 11.844 23 16.960 49 11.859 65 17.278 19 11.632 71 16.865 45 11.965 35 16.959 15 11.860 18 16.678 04 12.175 71	8 17.009 09 11.837 86 16.960 83 11.842 63 17.323 92 11.661 08 16.837 08 11.934 76 16.959 47 11.842 97 16.592 31 12.118 34	9 17.015 11.831 16.961 11.829 17.369 11.693 16.804 11.904 16.959 11.829 16.495 12.053	<i>i</i> 47 17 49 11 17 16 39 11 64 17 23 11 93 16 16 11 83 16 58 11 14 16 32 11	10 1.021 84 .825 11 5.961 51 .819 93 2.415 37 .729 16 5.769 00 .873 56 5.960 23 .820 02 5.386 54 .980 65	11 17.028 21 11.818 74 16.961 85 11.814 26 17.461 10 11.768 87 16.729 29 11.814 28 16.960 68 11.814 28 16.266 51 11.900 34	12 17.034 58 11.812 37 16.962 19 11.812 37 17.506 82 11.812 37 16.685 80 11.812 37 16.961 17 11.812 37 16.135 05 11.812 37
No. 1 2 3 4 5 6 7	Volume sequence V_i^{Au} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Au} V_i^{Cu}	7 17.002 72 11.844 23 16.960 49 11.859 65 17.278 19 11.632 71 16.865 45 11.965 35 16.959 15 11.860 18 16.678 04 12.175 71 17.183 15	8 17.009 09 11.837 86 16.960 83 11.842 63 17.323 92 11.661 08 16.837 08 11.934 76 16.959 47 11.842 97 16.592 31 12.118 34 17.200 17	9 17.015 11.831 16.961 11.829 17.369 11.693 16.804 11.904 16.959 11.829 16.495 12.053 17.213	<i>i</i> 47 17 49 11 17 16 39 11 64 17 23 11 93 16 16 11 83 16 58 11 14 16 32 11 41 17	10 1.021 84 .825 11 5.961 51 .819 93 2.415 37 .729 16 5.769 00 .873 56 5.960 23 .820 02 5.386 54 .980 65 2.222 87	11 17.028 21 11.818 74 16.961 85 11.814 26 17.461 10 11.768 87 16.729 29 11.842 97 16.960 68 11.814 28 16.266 51 11.900 34 17.228 54	12 17.034 58 11.812 37 16.962 19 11.812 37 17.506 82 11.812 37 16.685 80 11.812 37 16.961 17 11.812 37 16.135 05 11.812 37 17.230 43
No. 1 2 3 4 5 6 7	Volume sequence V_i^{Au} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Au} V_i^{Cu}	7 17.002 72 11.844 23 16.960 49 11.859 65 17.278 19 11.632 71 16.865 45 11.965 35 16.959 15 11.860 18 16.678 04 12.175 71 17.183 15 11.738 42	8 17.009 09 11.837 86 16.960 83 11.842 63 17.323 92 11.661 08 16.837 08 11.934 76 16.959 47 11.842 97 16.592 31 12.118 34 17.200 17 11.753 21	9 17.015 11.831 16.961 11.829 17.369 11.693 16.804 11.904 16.959 11.829 16.495 12.053 17.213 11.768	<i>i</i> 47 17 49 11 17 16 39 11 64 17 23 11 93 16 16 11 83 16 58 11 14 16 32 11 41 17 00 11	10 1.021 84 .825 11 0.961 51 .819 93 2.415 37 .729 16 0.769 00 .873 56 0.960 23 .820 02 0.386 54 .980 65 2.222 87 .782 79	11 17.028 21 11.818 74 16.961 85 11.814 26 17.461 10 11.768 87 16.729 29 11.814 28 16.960 68 11.814 28 16.266 51 11.900 34 17.228 54 11.797 58	12 17.034 58 11.812 37 16.962 19 11.812 37 17.506 82 11.812 37 16.685 80 11.812 37 16.961 17 11.812 37 16.135 05 11.812 37 17.230 43 11.812 37
No. 1 2 3 4 5 6 7 2	Volume sequence - V_i^{Au} V_i^{Cu} V_i^{Cu} V_i^{Au} V_i^{Au} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Au} V_i^{Au}	7 17.002 72 11.844 23 16.960 49 11.859 65 17.278 19 11.632 71 16.865 45 11.965 35 16.959 15 11.860 18 16.678 04 12.175 71 17.183 15 11.738 42 16.963 16	8 17.009 09 11.837 86 16.960 83 11.842 63 17.323 92 11.661 08 16.837 08 11.934 76 16.959 47 11.842 97 16.592 31 12.118 34 17.200 17 11.753 21 16.963 55	9 17.015 11.831 16.961 11.829 17.369 11.693 16.804 11.904 16.959 11.829 16.495 12.053 17.213 11.768 16.963	<i>i</i> 47 17 49 11 17 16 39 11 64 17 23 11 93 16 16 11 83 16 58 11 14 16 32 11 41 17 00 11 84 16	10 1.021 84 .825 11 5.961 51 .819 93 2.415 37 .729 16 5.769 00 .873 56 5.960 23 .820 02 5.386 54 .980 65 2.222 87 .782 79 .964 05	11 17.028 21 11.818 74 16.961 85 11.814 26 17.461 10 11.768 87 16.729 29 11.814 28 16.960 68 11.814 28 16.266 51 11.900 34 17.228 54 16.964 18	12 17.034 58 11.812 37 16.962 19 11.812 37 17.506 82 11.812 37 16.685 80 11.812 37 16.961 17 11.812 37 16.135 05 11.812 37 17.230 43 11.812 37 16.964 22
No. 1 2 3 4 5 6 7 8	Volume sequence V_i^{Au} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Au}	7 17.002 72 11.844 23 16.960 49 11.859 65 17.278 19 11.632 71 16.865 45 11.965 35 16.959 15 11.860 18 16.678 04 12.175 71 17.183 15 11.738 42 16.963 16 11.858 58	8 17.009 09 11.837 86 16.960 83 11.842 63 17.323 92 11.661 08 16.837 08 11.934 76 16.959 47 11.842 97 16.592 31 12.118 34 17.200 17 11.753 21 16.963 55 11.841 95	9 17.015 11.831 16.961 11.829 17.369 11.693 16.804 11.904 16.959 11.829 16.495 12.053 17.213 11.768 16.963 11.829	i 47 17 49 11 17 16 39 11 64 17 23 11 93 16 16 11 83 16 58 11 14 16 32 11 41 17 00 11 84 16 01 11	10 1.021 84 .825 11 5.961 51 .819 93 2.415 37 .729 16 5.769 00 .873 56 5.960 23 .820 02 5.386 54 .980 65 2.222 87 .782 79 5.964 05 .819 76	11 17.028 21 11.818 74 16.961 85 11.814 26 17.461 10 11.768 87 16.729 29 11.842 97 16.960 68 11.814 28 16.266 51 11.900 34 17.228 54 11.797 58 16.964 18 11.814 22	12 17.034 58 11.812 37 16.962 19 11.812 37 17.506 82 11.812 37 16.685 80 11.812 37 16.961 17 11.812 37 16.135 05 11.812 37 16.135 05 11.812 37 16.964 22 11.812 37
No. 1 2 3 4 5 6 7 8 2	Volume sequence V_i^{Au} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Au} V_i^{Cu} V_i^{Au} V_i^{Cu}	7 17.002 72 11.844 23 16.960 49 11.859 65 17.278 19 11.632 71 16.865 45 11.965 35 16.959 15 11.860 18 16.678 04 12.175 71 17.183 15 11.738 42 16.963 16 11.858 58 17.128 16	8 17.009 09 11.837 86 16.960 83 11.842 63 17.323 92 11.661 08 16.837 08 11.934 76 16.959 47 11.842 97 16.592 31 12.118 34 17.200 17 11.753 21 16.963 55 11.841 95 17.141 02	9 17.015 11.831 16.961 11.829 17.369 11.693 16.804 11.904 16.959 11.829 16.495 12.053 17.213 11.768 16.963 11.829 17.151	<i>i</i> 47 17 49 11 17 16 39 11 64 17 23 11 93 16 16 11 83 16 58 11 14 16 32 11 41 17 00 11 84 16 01 11 02 17	10 1.021 84 .825 11 0.961 51 .819 93 2.415 37 .729 16 0.769 00 .873 56 0.960 23 .820 02 0.386 54 .980 65 2.222 87 .782 79 0.964 05 .819 76 '.158 16	11 17.028 21 11.818 74 16.961 85 11.814 26 17.461 10 11.768 87 16.729 29 11.814 28 16.960 68 11.814 28 16.266 51 11.900 34 17.228 54 11.797 58 16.964 18 11.814 22 17.162 45	12 17.034 58 11.812 37 16.962 19 11.812 37 17.506 82 11.812 37 16.685 80 11.812 37 16.961 17 11.812 37 16.135 05 11.812 37 16.964 22 11.812 37 16.964 22 11.812 37 17.16388

Table 1 Volume sequences of characteristic atoms calculated by nine *V*-functions on the basis of experimental volumes of $L1_0$ -AuCu and $L1_2$ -AuCu₃ compounds (in nm³)

Fig.1 Volume V_i^{Au} , V_i^{Cu} (a) and lattice parameter a_i^{Au} , a_i^{Cu} (b) sequences obtained by the 6th V-function

defined as the difference in average atomic volumes between ordered and disordered alloys.

3) The volumetric properties of L_{10} -AuCu, L_{12} -AuCu₃ and L_{12} -Au₃Cu compounds are presented in Section 2.4: the volumes (V_i^{Au}, V_i^{Cu}) and numbers (n_i^{Au}, n_i^{Cu}) of characteristic atoms in a cell; the total volume V_c and total volume of formation ΔV_c^m , lattice parameter a and lattice parameter of formation Δa^m of a cell; ordering (excess) atomic volume ΔV^{ex} of compounds and ordering lattice parameter Δa^{ex} ; average atomic volumes (V_{Au}, V_{Cu}^m), and average ordering (excess) atomic volumes of formation ($\Delta V_{Au}^m, \Delta V_{Cu}^m$) and average ordering (excess) atomic volume (V_{Au}^{ex}, V_{Cu}^{ex}) of formation of components Au and Cu; and volume mismatch degree.

Average atomic volume mismatch degree of characteristic atoms inside α component (α =Au or Cu) is

$$\begin{cases} \Delta m_V^{\alpha} = \sum_i n_i^{\alpha} \left| (V_i^{\alpha} - V_a^{\alpha}) \right| \div \sum_i n_i^{\alpha} V_a^{\alpha} \\ V_a^{\alpha} = \sum_i n_i^{\alpha} V_i^{\alpha} \div \sum_i n_i^{\alpha} \end{cases}$$
(5)

Average atomic volume mismatch degree of characteristic atoms between components Au and Cu is

$$\begin{cases} \Delta m_V = \sum_{\alpha} \sum_i n_i^{\alpha} |V_i^{\alpha} - V_a| \div \sum_{\alpha} \sum_i n_i^{\alpha} V_a \\ V_a = \sum_{\alpha} \sum_i n_i^{\alpha} V_i^{\alpha} \div \sum_{\alpha} \sum_i n_i^{\alpha} \end{cases}$$
(6)

If there is no splitting atomic volume state, Eq.(6) becomes

$$\begin{cases} \Delta m_V^0 = \sum_{\alpha} n_{\alpha} |(V_{\alpha}^0 - V_{a}^0)| \div \sum_{\alpha} n_{\alpha} V_{a}^0 \\ V_{a}^0 = \sum_{\alpha} n_{\alpha} V_{\alpha}^0 \div \sum_{\alpha} n_{\alpha} \end{cases}$$
(7)

The total average atomic volume mismatch degree of a compound is

$$\Delta m_V^T = \Delta m_V + \sum_{\alpha} (n_{\alpha} / n_T) \Delta m_V^{\alpha}$$
(8)

In Eqs.(5)–(7), V_i^{α} and n_i^{α} are, respectively, atomic volume and number of the A_i^{α} characteristic atoms in a cell; V_a^{α} , average atomic volume of the α -component; V_a , average atomic volume of the compound; V_{α}^{0} , atomic volume of the α -element; n_{α} , number of atoms of the α -component; n_T , total number of atoms in a cell; V_a^{0} , average atomic volume of the element; V_a , average atomic volume of the compound.

2 Results

2.1 Volume sequences of A_i^{Au} and A_i^{Cu} characteristic atoms

The volume sequences of A_i^{Au} and A_i^{Cu} characteristic atoms are separated out from the experimental average atomic volumes (V_{AuCu} =14.447 1 × 10⁻³(nm³), V_{AuCu} = 13.122 5×10⁻³ (nm³) [17]) of L1₀-AuCu and L1₂-AuCu₃ compounds at room temperature by nine volume *V*-functions. The results are listed in Table 1, from which the following knowledge can be obtained.

1) The volume sequences of the characteristic atoms obtained by nine *V*-functions are different each other.

2) In the remainder of this section it has been demonstrated that the volumetric properties of alloy phases in the Au-Cu system should be described by the 6th V(x)-function. This means that the relation of V_i^{Au} and V_i^{Cu} with *i* is described by the following equation:

$$\begin{cases} V_i^{Au} = V_0^{Au} + (i/I)^2 (V_I^{Au} - V_0^{Au}) \\ V_i^{Cu} = V_I^{Cu} + [2(I-i)/I] (V_0^{Cu} - V_I^{Cu}) - \\ [(I-i)/I]^2 (V_0^{Cu} - V_I^{Cu}) \end{cases}$$
(9)

2.2 Volumetric properties of disordered Au_(1-x)Cu_x alloys

listed in Table 2 and shown in Fig.2, from which the

following knowledge can be obtained.

alloys According to the volume sequences of characteristic atoms in Table 1, the volumes V(x), $V_{Au}(x)$ and $V_{Cu}(x)$ of disordered $Au_{1-x}Cu_x$ alloys and their components as well as their volumes of formation $\Delta V^{m}(x)$ are calculated by the 2nd-9th V-functions, as 1) The average atomic volumes $V_{g,Z}(x)$ and lattice parameters $a_{g,Z}(x)$ calculated by the 6th V(x)-function are in the best agreement with experimental values, and have positive deviation respectively from Zen's law and Vegard's law (details in Section 3.2). 2) The volumes of formation $\Delta V^{m}(x)$ of

2) The volumes of formation $\Delta V^{m}(x)$ of disordered Au_{1-x}Cu_x alloys calculated by the 2nd-9th

Table 2 Average volumetric properties V(x), $V_{Au}(x)$, $V_{Cu}(x)$ and $\Delta V^{m}(x)$ of disordered Au_{1-x}Cu_x alloys calculated by the 2nd–9th *V*-functions at room temperature (in 10⁻³nm³)

NI - *	Pro-							x(Cu)						
INO.*	perty	0	0.1	0.2	0.25	0.3	0.4	0.5	0.6	0.7	0.75	0.8	0.9	1
	$V_{\rm Au}(x)$	16.958 1	16.958 5	16.958 9	16.959 1	16.959 3	16.959 7	16.960 2	16.960 6	16.961 0	16.961 2	16.961 4	16.961	8 16.962 2
r	$V_{\rm Cu}(x)$	12.084 7	12.035 0	11.990 3	11.969 8	8 11.950 6	11.915 9	11.886 1	11.861 4	11.841 6	11.833 6	11.826 9	11.817	1 11.812 4
2	V(x)	16.958 1	16.466 2	15.965 2	15.711 8	8 15.456 7	14.942 2	14.423 1	13.901 1	13.377 4	13.115 5	12.853 8	12.331	6 11.812 4
	$\Delta V^{\rm m}(x)$	0	0.022 6	0.036 2	0.040 1	0.042 3	0.042 4	0.037 9	0.030 4	0.021 4	0.016 7	0.012 3	0.004 7	7 0
	$V_{\rm Au}(x)$	16.958 1	17.013 0	17.067 9	17.095 3	3 17.122 7	17.177 6	17.232 5	17.287 3	17.342 2	17.369 6	17.397 1	17.452	0 17.506 8
2	$V_{\rm Cu}(x)$	11.540 1	11.544 8	11.554 6	11.561 3	11.569 3	11.589 1	11.613 8	11.643 5	11.678 3	11.697 5	11.718 0	11.762	7 11.812 4
3	V(x)	16.958 1	16.466 2	15.965 2	15.711 8	3 15.456 7	14.942 2	14.423 1	13.901 1	13.377 4	13.115 5	12.853 8	12.331	6 11.812 4
	$\Delta V^{\rm m}(x)$	0	0.022 6	0.036 2	0.040 1	0.042 3	0.042 4	0.037 9	0.030 4	0.021 4	0.016 7	0.012 3	0.004 7	7 0
	$V_{\rm Au}(x)$	16.958 1	16.953 4	16.943 6	16.936 8	8 16.928 8	16.909 1	16.884 4	16.854 6	16.819 9	16.800 7	16.780 2	16.735	5 16.685 8
4	$V_{\rm Cu}(x)$	12.179 5	12.142 8	12.106 1	12.087 7	7 12.069 4	12.032 7	11.996 0	11.959 2	11.922 5	11.904 2	11.885 8	11.849	1 11.812 4
4	V(x)	16.958 1	16.472 3	15.976 1	15.724 6	5 15.471 0	14.958 5	14.440 2	13.917 4	13.391 7	13.128 3	12.864 7	12.337	7 11.812 4
	$\Delta V^{\rm m}(x)$	0	0.028 8	0.047 1	0.052 9	0.056 6	0.058 7	0.054 9	0.046 7	0.035 6	0.029 5	0.023 2	0.010 8	3 0
	$V_{\rm Au}(x)$	16.958 1	16.958 2	16.958 3	16.958 4	16.958 4	16.958 7	16.958 9	16.959 3	16.959 7	16.959 9	16.960 1	16.960	6 16.961 2
5	$V_{\rm Cu}(x)$	12.087 7	12.037 5	11.992 3	11.971 6	5 11.952 1	11.917 0	11.887 0	11.861 9	11.842 0	11.833 9	11.827 1	11.817	2 11.812 4
5	V(x)	16.958 1	16.466 1	15.965 1	15.711 7	15.456 6	14.942 0	14.422 9	13.900 9	13.377 3	13.115 4	12.853 7	12.331	5 11.812 4
	$\Delta V^{\rm m}(x)$	0	0.022 6	0.036 1	0.040 0	0.042 2	0.042 2	0.037 7	0.030 2	0.021 2	0.016 6	0.012 2	0.004 6	5 0
	$V_{\rm Au}(x)$	16.958 1	16.943 7	16.914 2	16.893 8	8 16.869 6	16.810 0	16.735 2	16.645 4	16.540 4	16.482 3	16.420 4	16.285	3 16.135 1
6	$V_{\rm Cu}(x)$	12.363 1	12.353 5	12.333 7	12.320 1	12.303 9	12.264 0	12.214 0	12.153 8	12.083 6	12.044 7	12.003 3	11.912	9 11.812 4
0	V(x)	16.958 1	16.484 7	15.998 1	15.750 4	15.499 9	14.991 6	14.474 6	13.950 4	13.420 7	13.154 1	12.886 7	12.350	1 11.812 4
	$\Delta V^{\rm m}(x)$	0	0.041 2	0.069 2	0.078 7	0.085 5	0.091 8	0.089 3	0.079 8	0.064 6	0.055 3	0.045 2	0.023 2	2 0
	$V_{\rm Au}(x)$	16.958 1	17.007 8	17.052 5	17.073 (0 17.092 2	17.127 0	17.156 7	17.181 4	17.201 2	17.209 2	17.215 9	17.225	7 17.230 4
7	$V_{\rm Cu}(x)$	11.634 9	11.652 7	11.670 4	11.679 3	8 11.688 1	11.705 9	11.723 6	11.741 4	11.759 1	11.768 0	11.776 9	11.794	6 11.812 4
/	V(x)	16.958 1	16.472 3	15.976 1	15.724 6	5 15.471 0	14.958 5	14.440 2	13.917 4	13.391 7	13.128 3	12.864 7	12.337	7 11.812 4
	$\Delta V^{\rm m}(x)$	0	0.028 8	0.047 1	0.052 9	0.056 6	0.058 7	0.054 9	0.046 7	0.035 6	0.029 5	0.023 2	0.010 8	3 0
	$V_{\rm Au}(x)$	16.958 1	16.959 2	16.960 2	16.960 7	7 16.961 1	16.961 9	16.962 6	16.963 1	16.963 6	16.963 8	16.963 9	16.964	1 16.964 2
0	$V_{\rm Cu}(x)$	12.078 6	12.030 0	11.986 3	11.966 3	5 11.947 5	11.913 5	11.884 5	11.860 3	11.841 0	11.833 2	11.826 6	11.817	0 11.812 4
0	V(x)	16.958 1	16.466 3	15.965 4	15.712 1	15.457 0	14.942 6	14.423 5	13.901 4	13.377 8	13.115 8	12.854 0	12.331	7 11.812 4
	$\Delta V^{\rm m}(x)$	0	0.022 8	0.036 5	0.040 4	0.042 6	0.042 7	0.038 3	0.030 8	0.021 7	0.017 0	0.012 5	0.004 8	3 0
	$V_{\rm Au}(x)$	16.958 1	16.995 7	17.029 4	17.044 9	0 17.059 5	17.085 7	17.108 2	17.126 8	17.141 8	17.147 8	17.152 9	17.160	3 17.163 9
0	$V_{\rm Cu}(x)$	11.745 8	11.747 0	11.749 4	11.751 0	0 11.753 0	11.757 8	11.763 8	11.771 1	11.7796	11.784 3	11.789 3	11.800	2 11.812 4
9	V(x)	16.958 1	16.470 8	15.973 4	15.721 4	15.467 5	14.954 5	14.436 0	13.913 4	13.388 2	13.125 2	12.862 0	12.336	2 11.812 4
	$\Delta V^{\rm m}(x)$	0	0.027 3	0.044 5	0.049 8	0.053 1	0.054 7	0.050 8	0.042 7	0.032 2	0.026 4	0.020 5	0.009 3	3 0

*: Up till now, we cannot give a reasonable method to separate volume of characteristic atoms by the first function. Therefore, it cannot be used at present.

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.1

 $x_i^{Cu}(x)$

Fig.2 Volumetric properties: (a), (b) Average atomic volumes (lattice parameters) V(x), $V_{Au}(x)$ and $V_{Cu}(x)$ (a(x), $a_{Au}(x)$ and $a_{Cu}(x)$) of disordered $Au_{1-x}Cu_x$ alloys and their components calculated by the 6th V(x)-functions at room temperature, together with experimental lattice parameters [18–19]; (c) volumes of formation $\Delta V^{m}(x)$ of disordered Au_{1-x}Cu_x alloys calculated by the 2nd–9th V(x)-functions; (d) Deviations of average volumes of disordered Au_{1-x}Cu_x alloys calculated by the 2nd-9th V-functions from ones calculated by the 6th V(x)-function; (e), (f) Concentrations $x_i^{Au}(x)$ and $x_i^{Cu}(x)$ of characteristic atoms in disordered $Au_{1-x}Cu_x$ alloys

0.9

V(x)-functions have positive values, in which the values obtained by the 6th V(x)-function is the largest.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

x(Cu)

18 (a)

17

16

15

14

13

12

11

0.10

0.08

0.06

0.04

0.02

-0.02

0

0

 $\sigma=0$ (e)

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

 $x_i^{Au}(x)$

 $\Delta V^{\rm m}(x)/10^{-3}{\rm nm}^3$

0 0.1

(c)

2.

 $V_{\rm Au}(x), V_{\rm Cu}(x), V(x)/10^{-3} {\rm nm}^3$

2.3 Volumetric properties of ordered Au_{1-x}Cu_x alloys

According to the volume sequences of characteristic atoms in Table 1, the volumes V(x), $V_{Au}(x)$ and $V_{Cu}(x)$ of $L1_2$ -Au₃Cu, $L1_0$ -AuCu and $L1_2$ -AuCu₃ type ordered $Au_{1-x}Cu_x$ alloys and their components as well as

their volumes of formation $\Delta V^{m}(x)$ and ordering volumes $\Delta V^{\text{ex}}(x)$ are calculated by the 2nd–9th V(x)-functions. The volumetric properties of $L1_2$ -Au₃Cu-type, $L1_0$ -AuCu-type and $L1_2$ -AuCu₃-type ordered Au_{1-x}Cu_x alloys at room temperature are shown in Figs.3-5 and listed in Tables 3-6.

0.2 0.3 0.4 0.5 0.6 0.7 0.8

x(Cu)

0.9 1

From these results the following knowledge can be obtained.

XIE You-qing, et al/Trans. Nonferrous Met. Soc. China 19(2009) 1599-1617

Table 3 Average volumetric properties V(x), $V_{Au}(x)$, $V_{Cu}(x)$, $\Delta V^{m}(x)$ and $\Delta V^{ex}(x)$ of $L1_2$ -Au₃Cu-type ordered Au_{1-x}Cu_x alloys with maximal ordering degree calculated by 2nd–9th *V*-functions at room temperature (in 10^{-3} nm³)

No	Pro-							x(Cu)						
INO.	perty	0	0.1	0.2	0.25	0.3	0.4	0.5	0.6	0.7	0.75	0.8	0.9	1
	$V_{\rm Au}(x)$	16.958	1 16.958 6	16.959 1	16.959 5	16.959 7	16.960 0	16.960 4	16.960 7	16.961 1	16.961 3	16.961 5	16.961 8	16.962 2
	$V_{\rm Cu}(x)$	12.084	7 12.084 7	12.084 7	12.084 7	12.029 0	11.953 5	11.904 0	11.869 3	11.844 7	11.835 3	11.827 8	11.817 3	11.812 4
2	V(x)	16.958	1 16.471 2	15.984 2	15.740 8	15.480 4	14.957 4	14.432 2	13.905 9	13.3796	6 13.116 8	12.854 5	12.331 7	11.812 4
	$\Delta V^{m}(x)$	0	0.027 6	0.055 3	0.069 1	0.066 1	0.057 6	0.046 9	0.035 2	0.023 5	0.018 0	0.013 0	0.004 8	0
	$\Delta V^{\rm ex}(x)$	0	0.005 0	0.019 0	0.029 0	0.023 7	0.015 2	0.009 0	0.004 8	0.002 2	0.001 3	0.000 7	0.000 1	0
	$V_{\rm Au}(x)$	16.958	1 17.019 1	17.095 3	17.141 0	17.165 4	17.214 2	17.263 0	17.311 7	17.360 5	5 17.384 9	17.409 3	17.458 1	17.506 8
	$V_{\rm Cu}(x)$	11.540	1 11.540 1	11.540 1	11.540 1	11.548 9	11.572 3	11.601 4	11.635 3	11.673 5	5 11.694 1	11.715 8	11.762 1	11.812 4
3	V(x)	16.958	1 16.471 2	15.984 2	15.740 8	15.480 4	14.957 4	14.432 2	13.905 9	13.3796	5 13.116 8	12.854 5	12.331 7	11.812 4
	$\Delta V^{\rm m}(x)$		0.027 6	0.055 3	0.069 1	0.066 1	0.057 6	0.046 9	0.035 2	0.023 5	0.018 0	0.013 0	0.004 8	0
	$\Delta V^{\rm ex}(x)$	0	0.005 0	0.019 0	0.029 0	0.023 7	0.015 2	0.009 0	0.004 8	0.002 2	0.001 3	0.000 7	0.000 1	0
	$V_{\rm Au}(x)$	16.958	1 16.952 6	16.938 8	16.927 9	16.918 3	16.896 4	16.870 7	16.841 3	16.808 0	0 16.790 0	16.771 1	16.730 3	16.685 8
	$V_{\rm Cu}(x)$	12.179	5 12.179 5	12.179 5	12.179 5	12.136 0	12.069 4	12.016 4	11.970 1	11.927 8	8 11.907 6	11.887 8	11.849 5	11.812 4
4	V(x)	16.958	1 16.475 3	15.987 0	15.740 8	15.483 6	14.965 6	14.443 5	13.918 6	13.391 8	3 13.128 2	12.864 5	12.337 6	11.812 4
	$\Delta V^{\rm m}(x)$	0	0.031 7	0.058 0	0.069 1	0.069 2	0.065 8	0.058 3	0.047 9	0.035 8	0.029 4	0.023 0	0.010 7	0
	$\Delta V^{\mathrm{ex}}(x)$	0	0.003 0	0.010 9	0.016 2	0.012 6	0.007 1	0.003 4	0.001 2	0.000 1	-0.000 1	-0.000 2	-0.000 1	0
	$V_{\rm Au}(x)$	16.958	1 16.958 2	16.958 3	16.958 5	16.958 6	16.958 8	16.959 1	16.959 4	16.959 8	8 16.960 0	16.960 2	16.960 7	16.961 2
	$V_{\rm Cu}(x)$	12.087	7 12.087 7	12.087 7	12.087 7	12.031 4	11.955 1	11.905 0	11.869 9	11.845 0	11.835 6	11.827 9	11.817 3	11.812 4
5	V(x)	16.958	1 16.471 1	15.984 2	15.740 8	15.480 4	14.957 3	14.432 1	13.905 7	13.379 5	5 13.116 7	12.854 4	12.331 7	11.812 4
	$\Delta V^{\rm m}(x)$	0	0.027 6	0.055 3	0.069 1	0.066 0	0.057 5	0.046 8	0.035 1	0.023 4	0.017 9	0.012 9	0.004 7	0
	$\Delta V^{\rm ex}(x)$	0	0.005 0	0.019 1	0.029 1	0.023 9	0.015 3	0.009 1	0.004 9	0.002 2	0.001 3	0.000 7	0.000 1	0
	$V_{\rm Au}(x)$	16.958	1 16.941 4	16.899 8	16.866 7	16.837 8	16.771 6	16.693 9	16.604 9	16.504 5	5 16.450 1	16.392 7	16.269 6	16.135 1
	$V_{\rm Cu}(x)$	12.363	1 12.363 1	12.363 1	12.363 1	12.345 3	12.297 9	12.239 0	12.170 5	12.093 3	12.051 5	12.007 7	11.914 0	11.812 4
6	V(x)	16.958	1 16.483 5	15.992 5	15.740 8	15.490 1	14.982 1	14.466 5	13.944 3	13.416 6	5 13.151 1	12.884 7	12.349 6	11.812 4
	$\Delta V^{\rm m}(x)$	0	0.040 0	0.063 5	0.069 1	0.075 7	0.082 3	0.081 2	0.073 6	0.060 5	0.052 3	0.043 2	0.022 6	0
	$\Delta V^{\rm ex}(x)$	0	-0.001 2	-0.005 7	-0.009 6	-0.009 9	-0.009 5	-0.008 1	-0.006 2	-0.004 (0-0.003 0	-0.002 0	-0.000 6	0
	$V_{\rm Au}(x)$	16.958	1 17.013 1	17.075 0	17.109 4	17.124 1	17.150 6	17.173 3	17.192 2	17.207 4	17.213 6	17.218 9	17.226 5	17.230 4
	$V_{\rm Cu}(x)$	11.634	9 11.634 9	11.634 9	11.634 9	11.655 9	11.688 1	11.713 8	11.736 1	11.756 6	6 11.766 4	11.775 9	11.794 4	11.812 4
7	V(x)	16.958	1 16.475 3	15.987 0	15.740 8	15.483 6	14.965 6	14.443 5	13.918 6	13.391 8	3 13.128 2	12.864 5	12.337 6	11.812 4
	$\Delta V^{\rm m}(x)$	0	0.031 7	0.058 0	0.069 1	0.069 2	0.065 8	0.058 3	0.047 9	0.035 8	0.029 4	0.023 0	0.010 7	0
	$\Delta V^{\rm ex}(x)$	0	0.003 0	0.010 9	0.016 2	0.012 6	0.007 1	0.003 4	0.001 2	0.000 1	-0.000 1	-0.000 2	-0.000 1	0
	$V_{\rm Au}(x)$	16.958	1 16.959 4	16.960 7	16.961 5	16.961 8	16.962 4	16.962 9	16.963 4	16.963 7	16.963 9	16.964 0	16.964 1	16.964 2
	$V_{\rm Cu}(x)$	12.078	6 12.078 6	12.078 6	12.078 6	12.024 1	11.950 4	11.901 9	11.868 0	11.843 9	0 11.834 8	11.827 4	11.817 2	11.812 4
8	V(x)	16.958	1 16.471 3	15.984 3	15.740 8	15.480 5	14.957 6	14.432 4	13.906 2	13.379 9	0 13.117 1	12.854 7	12.331 9	11.812 4
	$\Delta V^{\rm m}(x)$	0	0.027 7	0.055 3	0.069 1	0.066 1	0.057 8	0.047 2	0.035 5	0.023 8	0.018 3	0.013 2	0.004 9	0
	$\Delta V^{\rm ex}(x)$	0	0.005 0	0.018 9	0.028 7	0.023 5	0.015 1	0.008 9	0.004 7	0.002 1	0.001 3	0.000 7	0.000 1	0
	$V_{\rm Au}(x)$	16.958	1 16.999 7	17.046 4	17.072 4	17.083 5	17.103 5	17.120 7	17.135 0	17.146 5	5 17.151 2	17.155 1	17.160 9	17.163 9
	$V_{\rm Cu}(x)$	11.745	8 11.745 8	11.745 8	11.745 8	11.748 0	11.753 7	11.760 8	11.769 1	11.778 4	11.783 5	11.788 8	11.800 1	11.812 4
9	V(x)	16.958	1 16.474 3	15.986 3	15.740 8	15.482 8	14.963 6	14.440 8	13.915 5	13.388 9	0 13.125 4	12.862 0	12.336 2	. 11.812 4
	$\Delta V^{\rm m}(x)$	0	0.030 7	0.057 3	0.069 1	0.068 5	0.063 8	0.055 5	0.044 8	0.032 8	0.026 6	0.020 5	0.009 2	0
	$\Delta V^{\rm ex}(x)$	0	0.003 5	0.012 9	0.019 3	0.015 3	0.009 1	0.004 8	0.002 1	0.000 6	0.000 2	0	-0.000 1	0

Table 4 Average volumetric properties V(x), $V_{Au}(x)$, $V_{Cu}(x)$, $\Delta V^{m}(x)$ and $\Delta V^{ex}(x)$ of $L1_0$ -AuCu-type ordered Au_{1-x}Cu_x alloys with maximal ordering degree calculated by the 2nd–9th V-functions at room temperature (in 10^{-3} nm³)

No	Pro-							<i>x</i> (Cu)						
INU.	perty	0	0.1	0.2	0.25	0.3	0.4	0.5	0.6	0.7	0.75	0.8	0.9	1
	$V_{\rm Au}(x)$	16.958 1	16.958 5	16.959 0	16.959 2	16.959 5	16.960 1	16.960 8	16.961 1	16.961 4	16.961 5	16.961 6	16.961 9	16.962 2
	$V_{\rm Cu}(x)$	12.084 7	12.050 8	12.018 7	12.003 4	11.988 5	11.960 0	11.933 4	11.882 4	11.849 7	11.838 2	11.829 2	11.817 5	11.812 4
2	V(x)	16.958 1	16.467 8	15.970 9	15.720 3	15.468 2	14.960 1	14.447 1	13.913 9	13.383 2	13.119 0	12.855 7	12.331 9	11.812 4
	$\Delta V^{\rm m}(x)$	0	0.024 2	0.042 0	0.048 6	0.053 8	0.060 3	0.061 9	0.043 2	0.027 1	0.020 2	0.014 2	0.005 0	0
	$\Delta V^{\rm ex}(x)$	0	0.001 6	0.005 7	0.008 5	0.011 5	0.017 9	0.024 0	0.012 8	0.005 8	0.003 5	0.001 9	0.000 3	0
	$V_{\rm Au}(x)$	16.958 1	17.015 0	17.077 0	17.110 5	17.146 2	17.226 4	17.323 9	17.360 5	17.397 1	17.415 4	17.433 7	17.470 2	17.506 8
	$V_{\rm Cu}(x)$	11.540 1	11.542 5	11.5467	11.549 5	11.552 8	11.560 6	11.570 3	11.616 1	11.663 0	11.686 9	11.711 2	11.761 0	11.812 4
3	V(x)	16.958 1	16.467 8	15.970 9	15.720 3	15.468 2	14.960 1	14.447 1	13.913 9	13.383 2	13.119 0	12.855 7	12.331 9	11.812 4
	$\Delta V^{\rm m}(x)$	0	0.024 2	0.042 0	0.048 6	0.053 8	0.060 3	0.061 9	0.043 2	0.027 1	0.020 2	0.014 2	0.005 0	0
	$\Delta V^{\rm ex}(x)$	0	0.001 6	0.005 7	0.008 5	0.011 5	0.017 9	0.024 0	0.012 8	0.005 8	0.003 5	0.001 9	0.000 3	0
	$V_{\rm Au}(x)$	16.958 1	16.953 0	16.941 2	16.932 3	16.920 8	16.888 1	16.837 1	16.810 5	16.782 0	16.767 1	16.751 8	16.719 7	16.685 8
	$V_{\rm Cu}(x)$	12.179 5	12.155 1	12.130 6	12.118 3	12.106 1	12.081 6	12.057 2	11.991 9	11.938 3	11.914 4	11.891 9	11.850 5	11.812 4
4	V(x)	16.958 1	16.473 2	15.979 1	15.728 8	15.476 4	14.965 5	14.447 1	13.919 3	13.391 4	13.127 6	12.863 9	12.337 4	11.812 4
	$\Delta V^{\rm m}(x)$	0	0.029 7	0.050 2	0.057 1	0.062 0	0.065 7	0.061 9	0.048 6	0.035 3	0.028 7	0.022 4	0.010 4	0
	$\Delta V^{\rm ex}(x)$	0	0.000 9	0.003 0	0.004 2	0.005 4	0.007 0	0.007 0	0.001 9	-0.000 4	-0.000 7	-0.000 8	-0.000 4	0
	$V_{\rm Au}(x)$	16.958 1	16.958 2	16.958 3	16.958 4	16.958 5	16.958 9	16.959 5	16.959 8	16.960 1	16.960 3	16.960 4	16.960 8	16.961 2
	$V_{\rm Cu}(x)$	12.087 7	12.053 5	12.021 0	12.005 5	11.990 4	11.961 7	11.934 8	11.883 2	11.850 1	11.838 5	11.829 4	11.817 5	11.812 4
5	V(x)	16.958 1	16.467 7	15.970 9	15.720 2	15.468 1	14.960 0	14.447 1	13.913 8	13.383 1	13.118 9	12.855 6	12.331 9	11.812 4
	$\Delta V^{\rm m}(x)$	0	0.024 2	0.041 9	0.048 5	0.053 7	0.060 2	0.061 9	0.043 1	0.027 0	0.020 1	0.014 1	0.004 9	0
	$\Delta V^{\rm ex}(x)$	0	0.001 6	0.005 8	0.008 5	0.011 6	0.018 0	0.024 2	0.012 9	0.005 8	0.003 6	0.002 0	0.000 3	0
	$V_{\rm Au}(x)$	16.958 1	16.942 7	16.907 1	16.880 0	16.845 2	16.746 6	16.592 3	16.511 8	16.425 9	16.380 8	16.334 4	16.237 5	16.135 1
	$V_{\rm Cu}(x)$	12.363 1	12.358 2	12.349 7	12.344 0	12.337 4	12.321 5	12.301 9	12.209 3	12.114 5	12.066 1	12.016 9	11.916 3	11.812 4
6	V(x)	16.958 1	16.484 2	15.995 6	15.746 0	15.492 9	14.976 5	14.447 1	13.930 3	13.407 9	13.144 8	12.880 4	12.348 4	11.812 4
	$\Delta V^{\rm m}(x)$	0	0.040 7	0.066 7	0.074 3	0.078 5	0.076 7	0.061 9	0.059 7	0.051 8	0.046 0	0.038 9	0.021 4	0
	$\Delta V^{\rm ex}(x)$	0	-0.000 5	-0.002 5	-0.004 4	-0.007 0	-0.015 0	-0.027 5	-0.020 1	-0.012 8	-0.009 4	-0.006 3	-0.001 7	0
	$V_{\rm Au}(x)$	16.958 1	17.009 5	17.059 3	17.083 6	17.107 5	17.154 4	17.200 2	17.209 9	17.217 7	17.221 0	17.223 8	17.228 0	17.230 4
	$V_{\rm Cu}(x)$	11.634 9	11.646 7	11.658 6	11.664 5	11.670 4	11.682 2	11.694 1	11.725 6	11.751 5	11.763 1	11.773 9	11.794 0	11.812 4
7	V(x)	16.958 1	16.473 2	15.979 1	15.728 8	15.476 4	14.965 5	14.447 1	13.919 3	13.391 4	13.127 6	12.863 9	12.337 4	11.812 4
	$\Delta V^{\rm m}(x)$	0	0.029 7	0.050 2	0.057 1	0.062 0	0.065 7	0.061 9	0.048 6	0.035 3	0.028 7	0.022 4	0.010 4	0
	$\Delta V^{\rm ex}(x)$	0	0.000 9	0.003 0	0.004 2	0.005 4	0.007 0	0.007 0	0.001 9	-0.000 4	-0.000 7	-0.000 8	-0.000 4	0
	$V_{\rm Au}(x)$	16.958 1	16.959 3	16.960 4	16.960 9	16.961 5	16.962 5	16.963 6	16.963 8	16.963 9	16.964 0	16.964 1	16.964 2	16.964 2
	$V_{\rm Cu}(x)$	12.078 6	12.045 5	12.014 1	11.999 1	11.984 5	11.956 7	11.930 7	11.880 8	11.848 9	11.837 6	11.828 9	11.817 4	11.812 4
8	V(x)	16.958 1	16.467 9	15.971 1	15.720 5	15.468 4	14.960 2	14.447 1	13.914 0	13.383 4	13.119 2	12.855 9	12.332 0	11.812 4
	$\Delta V^{\rm m}(x)$	0	0.024 4	0.042 2	0.048 8	0.054 0	0.060 4	0.061 9	0.043 3	0.027 3	0.020 4	0.014 4	0.005 1	0
	$\Delta V^{\rm ex}(x)$	0	0.001 6	0.005 7	0.008 4	0.011 4	0.017 6	0.023 6	0.012 6	0.005 6	0.003 4	0.001 9	0.000 3	0
	$V_{\rm Au}(x)$	16.958 1	16.996 9	17.034 5	17.052 9	17.071 0	17.106 4	17.141 0	17.148 3	17.154 3	17.156 7	17.158 9	17.162 1	17.163 9
	$V_{\rm Cu}(x)$	11.745 8	11.746 4	11.747 4	11.748 1	11.748 9	11.750 9	11.753 2	11.764 4	11.775 9	11.781 7	11.787 7	11.799 8	11.812 4
9	V(x)	16.958 1	16.471 9	15.977 1	15.726 7	15.474 4	14.964 2	14.447 1	13.918 0	13.389 4	13.125 5	12.861 9	12.336 0	11.812 4
	$\Delta V^{\rm m}(x)$	0	0.028 3	0.048 2	0.055 0	0.060 0	0.064 4	0.061 9	0.047 3	0.033 3	0.026 7	0.020 4	0.009 1	0
	$\Delta V^{\rm ex}(x)$	0	0.001 1	0.003 7	0.005 3	0.006 9	0.009 7	0.011 1	0.004 6	0.001 1	0.000 3	-0.000 1	-0.000 2	2 0

XIE You-qing, et al/Trans. Nonferrous Met. Soc. China 19(2009) 1599-1617

XIE You-qing, et al/Trans. Nonferrous Met. Soc. China 19(2009) 1599-1617

Table 5 Average volumetric properties V(x), $V_{Au}(x)$, $V_{Cu}(x)$, $\Delta V^{m}(x)$ and $\Delta V^{ex}(x)$ of $L1_2$ -AuCu₃-type ordered Au_{1-x}Cu_x alloys with maximal ordering degree calculated by 2nd–9th *V*-functions at room temperature (in 10^{-3} nm³)

N.	Pro-							<i>x</i> (Cu)						
INO.	perty	0	0.1	0.2	0.25	0.3	0.4	0.5	0.6	0.7	0.75	0.8	0.9	1
	$V_{\rm Au}(x)$	16.958 1	16.958 5	16.959 0	16.959 2	16.959 4	16.959 9	16.960 4	16.961 0	16.961	7 16.962 2	16.962 2	16.962 2	16.962 2
	$V_{\rm Cu}(x)$	12.084 7	12.040 2	11.999 4	11.980 5	11.962 5	11.929 2	11.899 8	11.874 1	11.852 2	2 11.842 6	11.831 7	11.817 9	11.812 4
2	V(x)	16.958 1	16.466 7	15.967 1	15.714 5	15.460 3	14.947 6	14.430 1	13.908 8	13.385 () 13.122 5	12.857 8	12.332 3	11.812 4
	$\Delta V^{\rm m}(x)$	0	0.023 2	0.038 1	0.042 8	0.045 9	0.047 8	0.044 8	0.038 2	0.028 9	0.023 7	0.016 3	0.005 4	0
	$\Delta V^{\rm ex}(x)$	0	0.000 5	0.001 9	0.002 7	0.003 6	0.005 4	0.006 9	0.007 8	0.007 6	0.007 0	0.004 0	0.000 7	0
	$V_{\rm Au}(x)$	16.958 1	17.013 7	17.070 9	17.100 4	17.130 6	17.193 9	17.263 0	17.342 2	17.441 8	8 17.506 8	17.506 8	17.506 8	17.506 8
	$V_{\rm Cu}(x)$	11.540 1	11.544 0	11.551 6	11.556 9	11.563 1	11.578 2	11.597 2	11.619 9	11.646 4	11.661 1	11.695 5	11.757 4	11.812 4
3	V(x)	16.958 1	16.466 7	15.967 1	15.714 5	15.460 3	14.947 6	14.430 1	13.908 8	13.385 (0 13.122 5	12.857 8	12.332 3	11.812 4
	$\Delta V^{\rm m}(x)$	0	0.023 2	0.038 1	0.042 8	0.045 9	0.047 8	0.044 8	0.038 2	0.028 9	0.023 7	0.016 3	0.005 4	0
	$\Delta V^{\rm ex}(x)$	0	0.000 5	0.001 9	0.002 7	0.003 6	0.005 4	0.006 9	0.007 8	0.007 6	0.007 0	0.004 0	0.000 7	0
	$V_{\rm Au}(x)$	16.958 1	16.953 2	16.942 7	16.935 1	16.925 8	16.901 2	16.866 5	16.817 0	16.741 5	5 16.685 8	16.685 8	16.685 8	16.685 8
	$V_{\rm Cu}(x)$	12.179 5	12.146 9	12.114 3	12.097 9	12.081 6	12.049 0	12.016 4	11.983 7	11.951	11.934 8	11.904 2	11.853 2	11.812 4
4	V(x)	16.958 1	16.472 6	15.977 0	15.725 8	15.472 6	14.960 3	14.441 4	13.917 0	13.388 2	2 13.122 5	12.860 5	12.336 4	11.812 4
	$\Delta V^{\rm m}(x)$	0	0.029 1	0.048 1	0.054 2	0.058 2	0.060 5	0.056 2	0.046 4	0.032 1	0.023 7	0.019 0	0.009 5	0
	$\Delta V^{\rm ex}(x)$	0	0.000 3	0.000 9	0.001 3	0.001 6	0.001 8	0.001 3	-0.000 4	-0.003 :	5-0.005 8	-0.004 2	-0.001 3	0
	$V_{\rm Au}(x)$	16.958 1	16.958 2	16.958 3	16.958 4	16.958 5	16.958 8	16.959 1	16.959 7	16.960 \$	5 16.961 2	16.961 2	16.961 2	16.961 2
	$V_{\rm Cu}(x)$	12.087 7	12.042 7	12.001 5	11.982 4	11.964 1	11.930 5	11.900 8	11.874 8	11.852 6	5 11.843 0	11.831 9	11.818 0	11.812 4
5	V(x)	16.958 1	16.466 6	15.966 9	15.714 4	15.460 2	14.947 5	14.430 0	13.908 8	13.385 () 13.122 5	12.857 7	12.332 3	11.812 4
	$\Delta V^{\rm m}(x)$	0	0.023 1	0.038 0	0.042 7	0.045 8	0.047 7	0.044 7	0.038 1	0.028 9	0.023 7	0.016 2	0.005 4	0
	$\Delta V^{\rm ex}(x)$	0	0.000 5	0.001 9	0.002 7	0.003 6	0.005 5	0.007 0	0.007 9	0.007 7	0.007 1	0.004 1	0.000 8	0
	$V_{\rm Au}(x)$	16.958 1	16.943 3	16.911 6	16.888 7	16.860 5	16.786 1	16.681 2	16.531 5	16.303 5	5 16.135 1	16.135 1	16.135 1	16.135 1
	$V_{\rm Cu}(x)$	12.363 1	12.355 2	12.339 7	12.329 1	12.316 6	12.285 9	12.247 5	12.201 6	12.148 (0 12.118 3	12.048 7	11.923 5	11.812 4
6	V(x)	16.958 1	16.484 5	15.997 2	15.748 8	15.497 4	14.986 0	14.464 4	13.933 5	13.394 (5 13.122 5	12.866 0	12.344 7	11.812 4
	$\Delta V^{\rm m}(x)$	0	0.041 0	0.068 3	0.077 1	0.083 0	0.086 2	0.079 1	0.062 9	0.038 5	0.023 7	0.024 5	0.017 8	0
	$\Delta V^{\rm ex}(x)$	0	-0.000 2	-0.000 9	-0.001 6	-0.002 6	-0.005 6	-0.010 2	-0.016 9	-0.026 (0-0.031 6	-0.020 7	-0.005 4	0
	$V_{\rm Au}(x)$	16.958 1	17.008 4	17.054 7	17.076 3	17.097 0	17.135 2	17.169 1	17.198 2	17.221 6	5 17.230 4	17.230 4	17.230 4	17.230 4
	$V_{\rm Cu}(x)$	11.634 9	11.650 7	11.666 5	11.674 3	11.682 2	11.698 0	11.713 8	11.729 6	11.745 3	3 11.753 2	11.768 0	11.792 7	11.812 4
7	V(x)	16.958 1	16.472 6	15.977 0	15.725 8	15.472 6	14.960 3	14.441 4	13.917 0	13.388 2	2 13.122 5	12.860 5	12.336 4	11.812 4
	$\Delta V^{\rm m}(x)$	0	0.029 1	0.048 1	0.054 2	0.058 2	0.060 5	0.056 2	0.046 4	0.032 1	0.023 7	0.019 0	0.009 5	0
	$\Delta V^{\rm ex}(x)$	0	0.000 3	0.000 9	0.001 3	0.001 6	0.001 8	0.001 3	-0.000 4	-0.003 :	5-0.005 8	-0.004 2	-0.001 3	0
	$V_{\rm Au}(x)$	16.958 1	16.959 2	16.960 3	16.960 8	16.961 2	16.962 1	16.962 9	16.963 5	16.964 () 16.964 2	16.964 2	16.964 2	16.964 2
	$V_{\rm Cu}(x)$	12.078 6	12.035 1	11.995 2	11.976 7	11.959 1	11.926 6	11.897 8	11.872 7	11.851 3	3 11.842 0	11.831 2	11.817 8	11.812 4
8	V(x)	16.958 1	16.466 8	15.967 3	15.714 8	15.460 6	14.947 9	14.430 3	13.909 0	13.385	13.122 5	12.857 8	12.332 4	11.812 4
	$\Delta V^{\rm m}(x)$	0	0.023 3	0.038 3	0.043 1	0.046 2	0.048 1	0.045 1	0.038 4	0.029 0	0.023 7	0.016 3	0.005 5	0
	$\Delta V^{\rm ex}(x)$	0	0.000 5	0.001 8	0.002 7	0.003 6	0.005 3	0.006 8	0.007 6	0.007 3	0.006 7	0.003 8	0.000 7	0
	$V_{\rm Au}(x)$	16.958 1	16.996 1	17.031 1	17.047 5	17.063 1	17.091 9	17.117 5	17.139 5	17.157 2	2 17.163 9	17.163 9	17.163 9	17.163 9
	$V_{\rm Cu}(x)$	11.745 8	11.746 8	11.748 6	11.749 9	11.751 4	11.755 2	11.759 8	11.765 3	11.771 8	3 11.775 4	11.783 8	11.798 9	11.812 4
9	V(r)	16 958 1	16 471 2	15 974 6	15 723 1	15 469 6	14 957 2	14 438 7	13 915 0	13 387 4	1 1 3 1 2 2 5	12 859 8	12 335 4	11 812 4
	$\Lambda V^{\rm m}(\mathbf{x})$	0	0.027.6	0.045 6	0.051 4	0.055 2	0.057 4	0.053 4	0.044 4	0.031 3	0.023 7	0.018 3	0.008 5	0
	$\Delta V^{\rm ex}(x)$	0	0.000 4	0.001 2	0.001 6	0.002 1	0.002 7	0.002 7	0.001 6	-0.000 8	3-0.002 7	-0.002 2	-0.000 8	0

XIE You-qing, et al/Trans. Nonferrous Met. Soc. China 19(2009) 1599-1617

Alloy	Para-							<i>x</i> (Cu)						
	meter	0	0.1	0.2	0.25	0.3	0.4	0.5	0.6	0.7	0.75	0.8	0.9	1
	$a_{Au}(x)$	4.078 3	4.077 1	4.074 8	4.073 1	4.071 2	4.0664	4.0604	4.0531	4.0445	4.0398	4.0347	4.023 6	4.011 2
Dis-	$a_{\rm Cu}(x)$	3.670 5	3.669 6	3.667 6	3.666 3	3.664 7	3.6607	3.6557	3.6497	3.6427	3.6387	3.6346	3.625 4	3.615 2
ordered	a(x)	4.078 3	4.040 0	3.999 8	3.979 1	3.957 9	3.9141	3.8686	3.8213	3.7723	3.7472	3.7216	3.669 2	3.615 2
alloys	$\Delta a^{\mathrm{m}}(x)$	0	0.008 0	0.014 2	0.016 6	0.018 5	0.0211	0.0219	0.0209	0.0182	0.0162	0.0138	0.007 7	0
	$\Delta a^{\mathrm{ex}}(x)$	0	0	0	0	0	0	0	0	0	0	0	0	0
Au ₃ Cu- type ordered	$a_{\rm Au}(x)$	4.078 3	4.077 0	4.073 6	4.071 0	4.068 6	4.063 3	4.057 0	4.049 8	4.041 6	4.037 2	4.032 5	4.022 3	4.011 2
	$a_{\rm Cu}(x)$	3.670 5	3.670 5	3.670 5	3.670 5	3.668 8	3.664 1	3.658 2	3.651 4	3.643 6	3.639 4	3.635 0	3.625 5	3.615 2
	a(x)	4.078 3	4.039 9	3.999 4	3.978 3	3.957 0	3.913 3	3.867 9	3.820 8	3.772 0	3.746 9	3.721 4	3.669 2	3.615 2
alloys	$\Delta a^{\mathrm{m}}(x)$	0	0.007 9	0.013 7	0.015 8	0.017 7	0.020 3	0.021 1	0.020 3	0.017 8	0.015 9	0.013 6	0.007 7	0
	$\Delta a^{\mathrm{ex}}(x)$	0	-0.000 1	-0.000 5	-0.000 8	-0.000 8	-0.000 8	-0.000 7	-0.000 6	-0.000 4	-0.000 3	-0.000 2	-0.000 1	0
	$a_{Au}(x)$	4.078 3	4.077 1	4.074 2	4.072 0	4.069 2	4.061 3	4.048 8	4.042 2	4.035 2	4.031 5	4.027 7	4.019 7	4.011 2
AuCu-	$a_{\rm Cu}(x)$	3.670 5	3.670 0	3.669 2	3.668 6	3.668 0	3.666 4	3.664 5	3.655 3	3.645 8	3.640 9	3.635 9	3.625 8	3.615 2
type ordered	a(x)	4.078 3	4.040 0	3.999 6	3.978 7	3.957 3	3.912 8	3.866 2	3.819 5	3.771 1	3.746 3	3.721 0	3.669 1	3.615 2
alloys	$\Delta a^{\mathrm{m}}(x)$	0	0.008 0	0.014 0	0.016 2	0.017 9	0.019 8	0.019 4	0.019 1	0.017 0	0.015 3	0.013 2	0.007 6	0
	$\Delta a^{\mathrm{ex}}(x)$	0	0	-0.000 2	-0.000 4	-0.000 6	-0.001 3	-0.002 4	-0.001 8	-0.001 2	-0.000 9	-0.000 6	-0.000 2	0
	$a_{Au}(x)$	4.078 3	4.077 1	4.074 6	4.072 7	4.070 5	4.064 5	4.056 0	4.043 8	4.025 1	4.011 2	4.011 2	4.011 2	4.011 2
AuCu ₃ -	$a_{\rm Cu}(x)$	3.670 5	3.669 8	3.668 2	3.667 2	3.665 9	3.662 9	3.659 1	3.654 5	3.649 1	3.646 1	3.639 2	3.626 5	3.615 2
type ordered	a(x)	4.078 3	4.040 0	3.999 8	3.979 0	3.957 7	3.913 7	3.867 7	3.819 8	3.769 9	3.744 2	3.719 6	3.668 7	3.615 2
alloys	$\Delta a^{\mathrm{m}}(x)$	0	0.008 0	0.014 1	0.016 4	0.018 3	0.020 6	0.021 0	0.019 4	0.015 8	0.013 2	0.011 8	0.007 2	0
	$\Delta a^{ex}(x)$	0	0	-0.000 1	-0.000 1	-0.000 2	-0.000 5	-0.000 9	-0.001 5	-0.002 4	-0.003 0	-0.002 0	-0.000 5	0

Table 6 Lattice parameters a(x), $a_{Au}(x)$, $a_{Cu}(x)$, $\Delta a^{m}(x)$, $\Delta a^{ex}(x)$ of disordered with full disorder and ordered Au_{1-x}Cu_x alloys with maximal ordering degree calculated by the 6th *V*-function (in 10^{-1} nm)

1) Even through the volume sequences of characteristic atoms in Table 1 are separated out from the experimental volumes of $L1_0$ -AuCu and $L1_2$ -AuCu₃ compounds only, the volumes of the $L1_2$ -Au₃Cu compound calculated by the 2nd-9th V(x)-functions are equal each to each (15.740 8×10⁻³nm⁻³), and in good agreement with the experimental volume (15.773 1×10⁻³nm⁻³)[16], but their average atomic volumes $V_{Au}(x)$ and $V_{Cu}(x)$ of Au and Cu components are different each other.

2) The volumes of the $L1_0$ -AuCu compound calculated by the 2nd–9th V(x)-functions are equal to experimental volume (14.447 1×10^{-3} nm⁻³), but their average atomic volumes $V_{Au}(x)$ and $V_{Cu}(x)$ of Au and Cu components are different each other.

3) The volumes of the $L1_2$ -AuCu₃ compound calculated by the 2nd-9th V(x)-functions are equal to

experimental volume (13.122 5×10^{-3} nm⁻³), but their average atomic volumes $V_{Au}(x)$ and $V_{Cu}(x)$ of Au and Cu components are different each other.

4) Tables 3–5 show that the volumes of formation $\Delta V^{\rm m}(x)$ calculated by the 2nd–9th V(x)-functions are of positive values. But only the ordering volume $\Delta V^{\rm ex}(x)$ calculated by the 6th V(x)-function are negative, which is coincident with the experimental result. Therefore, only the 6th V(x)-function can be used to describe volumetric properties of Au-Cu system.

2.4 Volumetric properties of L1₂-Au₃Cu, L1₀-AuCu and L1₂-AuCu₃ compounds

From Table 7 following knowledge can be obtained: The volumetric properties of these three compounds are of the same results as listed in Tables 3-6. The volumes of formation of these three compounds are

1609

Fig.3 Formation of volume $\Delta V^{m}(x)$ (a) and ordering volume $\Delta V^{ex}(x)$ (b) of L_{12} -Au₃Cu-type ordered Au_{1-x}Cu_x alloys with maximal ordering degree calculated by the 2nd–9th *V*-functions at room temperature (in 10⁻³nm³); average atomic volumes V(x), $V_{Au}(x)$ and $V_{Cu}(x)$ (c) and average lattice parameters a(x), $a_{Au}(x)$ and $a_{Cu}(x)$ (d) of L_{12} -Au₃Cu-type ordered Au_{1-x}Cu_x alloys with maximal ordering degree calculated by the 6th *V*-functions at room temperature; concentrations $x_i^{Au}(x)$ (e) and $x_i^{Cu}(x)$ (f) of $A_i^{Au}(x)$ and $A_i^{Cu}(x)$ characteristic atoms in L_{12} -Au₃Cu-type ordered Au_{1-x}Cu_x alloys

of positive values, to which the contribution of the Au-component is negative, the contribution of the Cu-component is positive, and $x(Cu) \times \Delta V_{Cu}^m > |x(Au) \times \Delta V_{Au}^m|$. The ordering volumes of these three compounds are of negative values, i.e., $V_{ord} < V_{dis}$, to

which the contribution of the Au-component is positive $(\Delta V_{Au}^{ex}, negative)$, the contribution of the Cu-component is negative $(\Delta V_{Cu}^{ex}, positive)$, and $|x(Au) \times \Delta V_{Au}^{ex}| > x(Cu) \times \Delta V_{Cu}^{ex}$ as disordering compounds. The volume mismatch degrees of characteristic atoms between

Fig.4 Formation of volume $\Delta V^{\text{m}}(x)$ (a) and ordering volume $\Delta V^{\text{ex}}(x)$ (b) of L_{1_0} -AuCu-type ordered Au_{1-x}Cu_x alloys with maximal ordering degree calculated by the 2nd–9th V-functions at room temperature; average atomic volumes V(x), $V_{\text{Au}}(x)$ and $V_{\text{Cu}}(x)$ (c) and average lattice parameters a(x), $a_{\text{Au}}(x)$ and $a_{\text{Cu}}(x)$ (d) of L_{1_0} -AuCu-type ordered Au_{1-x}Cu_x alloys with maximal ordering degree calculated by the 6th V-functions at room temperature; concentrations $x_i^{\text{Au}}(x)$ (e) and $x_i^{\text{Cu}}(x)$ (f) of $A_i^{\text{Au}}(x)$ and $A_i^{\text{Cu}}(x)$ characteristic atoms in L_{1_0} -AuCu-type ordered Au_{1-x}Cu_x alloys

constituents Au and Cu for these three compounds are smaller than those of atoms between pure elements Au and Cu, respectively. There is no volume mismatch degree Δm_V^{α} inside the component in these three compounds. But the AuCu II with a long-period superlattice structure has one, which will be presented in the future.

Fig.5 Formation of volume $\Delta V^{m}(x)$ (a) and ordering volume $\Delta V^{ex}(x)$ (b) of L_{12} -AuCu₃-type ordered Au_{1-x}Cu_x alloys with maximal ordering degree calculated by the 2nd–9th *V*-functions at room temperature; average atomic volumes V(x), $V_{Au}(x)$ and $V_{Cu}(x)$ (c) and average lattice parameters a(x), $a_{Au}(x)$ and $a_{Cu}(x)$ (d) of L_{12} -AuCu₃-type ordered Au_{1-x}Cu_x alloys with maximal ordering degree calculated by 6th *V*-functions at room temperature; concentrations $x_i^{Au}(x)$ (e) and $x_i^{Cu}(x)$ (f) of $A_i^{Au}(x)$ and $A_i^{Cu}(x)$ characteristic atoms in L_{12} -AuCu₃-type ordered Au_{1-x}Cu_x alloys

3 Discussion and conclusions

3.1 Relation of volumes and potential energies of characteristic atoms

In the Au-Cu system, the volume change and

potential energy change of A_i^{Au} and A_i^{Cu} characteristic atoms consequence on changing nearest neighbor configuration indicated by *i* number of Cu-atoms have different correlations.

The relation of ε_i^{Au} and ε_i^{Cu} with *i* is described by the following equation[13]:

Table 7 Volumetric properties of $L1_0$ -AuCu, $L1_2$ -AuCu₃ and $L1_2$ -Au₃Cu compounds calculated by the 6th *V*-functions (*V* in 10^{-3} nm³, *a* in 10^{-1} nm)

Compound	Group	A_i^{α} /cel	n_i^{α} /cell	V_i^{α}	V _c /cell	$\sum n_i^{\rm Au} V_i^{\rm Au} / {\rm cell}$	$\sum n_i^{\mathrm{Cu}} V_i^{\mathrm{Cu}} / \mathrm{cell}$	$\Delta V_{\rm c}^{\rm m}/{\rm cell}$	$\Delta V_{\rm c}^{\rm ex}/{\rm cell}$
Au ₃ Cu	<i>Pm</i> 3 <i>m</i> (<i>L</i> 1 ₂)	$A_4^{ m Au} \ A_0^{ m Cu}$	3 1	16.866 7 12.363 1	62.963 1	50.600 0	12.363 1	0.276 4	-0.038 4
AuCu	P4/mmm (L1 ₀)	$egin{array}{c} A_8^{ m Au}\ A_4^{ m Cu} \end{array}$	2 2	16.592 3 12.301 9	57.788 5	33.184 6	24.603 8	0.247 5	-0.109 9
AuCu ₃	<i>Pm</i> 3 <i>m</i> (<i>L</i> 1 ₂)	$A_{12}^{ m Au} \ A_8^{ m Cu}$	1 3	16.135 0 12.118 3	52.490 1	16.135 0	36.355 0	0.094 8	-0.126 4
Compound	V/atom		V _{Au} /atom	V _{Cu}	₁ /atom	$\Delta V^{\rm m}/{\rm atom}$	$\Delta V_{\rm Au}^{\rm m}$ / ato	m Δ	V _{Cu} ^m / atom
An Cu	15.740 8		16.866 7	12	.363 1	0.069 1	-0.091	5	0.550 7
Au ₃ Cu	(15.750 4)		(16.893 8)	(12.320 1)		(0.078 7)	(-0.064 3	3) (0.507 7)
AuCu	14.447 1		16.592 3		.301 9	0.061 9	-0.365 8	3	0.489 6
AuCu	(14.474 6)		(16.735 2)	(12	.214 0)	(0.089 3)	(-0.222 9	9) (0.410 6)
AuCus	13.122 5		16.135 0	12	.118 3	0.023 7	-0.823	1	0.306 0
MuCu3	(13.154 1)		(16.482 3)	(12	.044 7)	(0.055 3)	(-0.475 8	8) (0.232 3)
Compound	ΔV^{ex} / atom	ı	$\Delta V_{ m Au}^{ m ex}$ /	atom	$\Delta V_{ m Cu}^{ m ex}$ /	atom	Δm_V	2	Δm_V^0
Au ₃ Cu	-0.009 6		-0.02	27 1	0.04	3 0	0.107 3	0.	123 1
AuCu	-0.027 5		-0.142 9		0.08	88 0	0.148 5	0.178 9	
AuCu ₃	-0.031 6		-0.34	7 3	0.07	3 6	0.114 8	0.	149 6

* The values of disordered alloys listed in parentheses are taken from Table 2

$$\begin{cases} \varepsilon_i^{\mathrm{Au}} = \varepsilon_0^{\mathrm{Au}} + (i/I)^2 (\varepsilon_I^{\mathrm{Au}} - \varepsilon_0^{\mathrm{Au}}) \\ \varepsilon_i^{\mathrm{Cu}} = \varepsilon_I^{\mathrm{Cu}} + [(I-i)/I]^2 (\varepsilon_0^{\mathrm{Cu}} - \varepsilon_I^{\mathrm{Cu}}) \end{cases}$$
(10)

where $\varepsilon_0^{\text{Au}} = -368 \text{ kJ/mol}$, $\varepsilon_I^{\text{Au}} = -391.303 \text{ kJ/mol}$, $\varepsilon_I^{\text{Cu}} = -336 \text{ kJ/mol}$, $\varepsilon_0^{\text{Cu}} = -352.055 \text{ kJ/mol}$.

By comparing Eqs.(9) and (10), the following knowledges can be obtained: for the Au-characteristic atoms, the potential energy lowers with increasing the *i* number of Cu-atoms, and the volume reduces. For the Cu-characteristic atoms, the potential energy lowers with increasing the (I-i) number of Au-atoms, but the volume rises.

This different correlation will be explained by electronic structure sequences of A_i^{Au} and A_i^{Cu} characteristic atoms in the future.

3.2 Relation between Zen's law and general Zen's law

In Pearson's book of 1972, "The crystal chemistry and physical of metals and alloys" [20], we are informed that there is a Zen's law. The average atomic volume of a solid solution is the concentration-weighted average of the atomic volumes of the elements. For Au-Cu alloys, it is

$$V(x) = x(Au)V_{Au}^{0} + x(Cu)V_{Cu}^{0}$$
(11)

According the SSA framework, the average atomic volume of an alloy is the concentration (x_i^A , x_i^B)-

weighted average of the splitting atomic volumes (V_i^A, V_i^B) of the characteristic atoms, represented by Eq.(6), which may be named as additive law of characteristic atomic volume. It has been demonstrated that the equation of average atomic volume of intermetallic compounds, ordered and disordered alloys for Au-Cu system is

$$V(x, T, \sigma) = x_{Au} V_0^{Au}(T) + x_{Cu} V_I^{Cu}(T) + \sum_{i=0}^{I} \left[\left(\frac{i}{I} \right)^2 x_i^{Au}(x, \sigma) \right] V_I^{Au}(T) - V_0^{Au}(T) + \sum_{i=0}^{I} \left[\frac{2I(I-i) - (I-i)^2}{I^2} x_i^{Cu}(x, \sigma) \right] \cdot \left(V_0^{Cu}(T) - V_I^{Cu}(T) \right)$$
(12)

For the disordered alloys only, Eq.(12) becomes

$$V(x, T, 0) = x_{Au}V_0^{Au}(T) + x_{Cu}V_I^{Cu}(T) + \frac{(I-1)x_{Au}x_{Cu}^2 + x_Ax_{Cu}}{I} \left(V_I^{Au}(T) - V_0^{Au}(T)\right) + \frac{(I-1)x_{Au}^2x_{Cu} + Ix_{Au}x_{Cu}}{I} \cdot \frac{(I-1)x_{Au}^2(T) - V_I^{Cu}(T)}{I} \cdot \frac{I}{I} \left(V_0^{Cu}(T) - V_I^{Cu}(T)\right)$$
(13)

where $V_0^{\text{Au}} = 16.958 \ 11 \times 10^{-3} \text{nm}^3$, $V_I^{\text{Au}} = 16.135 \ 05 \times 10^{-3} \text{nm}^3$, $V_I^{\text{Cu}} = 11.812 \ 37 \times 10^{-3} \text{nm}^3$, $V_0^{\text{Cu}} = 12.363 \ 12 \times 10^{-3} \text{nm}^3$

XIE You-qing, et al/Trans. Nonferrous Met. Soc. China 19(2009) 1599-1617

 10^{-3} nm³.

If after forming solid solution there is no splitting of atomic volume state, Eqs.(12) and (13) become into Eq.(11). Therefore, the additive law of volumes of characteristic atoms may be also named as the general Zen's law.

3.3 Relation between Vegard's law and general Vegard's law

The Vegard's law indicates that the average lattice parameter of a solid solution is the concentration-weighted average of the lattice parameters (a_A^0, a_B^0) of the constituent elements. For Au_{1-x}Cu_x alloys, it is:

$$a_V(x) = x_{Au} a_{Au}^0 + x_{Cu} a_{Cu}^0$$
(14)

In the SSA framework, the average lattice parameter of an alloy may be similarly obtained by the concentration (x_i^A, x_i^B) -weighted average of the lattice parameter (a_i^A, a_i^B) of the characteristic crystals, which may be thought to be obtained by splitting lattice parameter states of the constituent elements. If we use the lattice parameters of characteristic crystal instead of volumes of corresponding characteristic atoms, Eqs.(12) and (13) become, respectively

$$a(x, T, \sigma) = x_{Au} a_0^{Au}(T) + x_{Cu} a_I^{Cu}(T) + \sum_{i=0}^{I} \left[\left(\frac{i}{I} \right)^2 x_i^{Au}(x, \sigma) \right] \left(a_I^{Au}(T) - a_0^{Au}(T) \right) + \sum_{i=0}^{I} \left[\frac{2I(I-i) - (I-i)^2}{I^2} x_i^{Cu}(x, \sigma) \right] \cdot \left(a_0^{Cu}(T) - a_I^{Cu}(T) \right)$$
(15)

$$a(x, T, 0) = x_{Au} a_0^{Au}(T) + x_{Cu} a_I^{Cu}(T) + \frac{(I-1)x_{Au} x_{Cu}^2 + x_A x_{Cu}}{I} \left(a_I^{Au}(T) - a_0^{Au}(T) \right) + \frac{(I-1)x_{Au}^2 x_{Cu} + I x_{Au} x_{Cu}}{I} \left(a_0^{Cu}(T) - a_I^{Cu}(T) \right) (16)$$

where, $a_0^{\text{Au}} = 0.407 \ 83 \text{ nm}$, $a_I^{\text{Au}} = 0.401 \ 12 \text{ nm}$, $a_I^{\text{Cu}} = 0.361 \ 52 \text{ nm}$, $a_0^{\text{Cu}} = 0.367 \ 05 \text{ nm}$.

If there is no split of lattice parameter state, Eqs.(15) and (16) become Eq.(14). Therefore, the additive law of lattice parameter of characteristic crystals may be also named as the general Vegard's law.

3.4 Difference between Vegard's law and Zen's law

The lattice parameter a(x) of disordered Au_{1-x}Cu_x alloys can be obtained approximately by Vegard's law and by Zen's law. The latter may be rewritten as

$$a_Z(x) = \left(x_{\rm Au} (a_{\rm Au}^0)^3 + x_{\rm Cu} (a_{\rm Cu}^0)^3\right)^{(1/3)}$$
(17)

Eqs.(14) and (17) are not equal in value. In order to understand the difference between Vegard's law and

Zen's law, the first and the second derivative of $a_V(x)$ and $a_Z(x)$ with respect to x have been obtained, respectively:

$$\begin{cases} \frac{da_{V}(x)}{dx_{Au}} = a_{Au}^{0} - a_{Cu}^{0} \\ \frac{d^{2}a_{V}(x)}{dx_{Au}^{2}} = 0 \end{cases}$$
(18)
$$\begin{cases} \frac{da_{Z}(x)}{dx_{Au}} = (1/3) ((a_{Au}^{0})^{3} - (a_{Cu}^{0})^{3}) \cdot (x_{Au}(a_{Au}^{0})^{3} + x_{Cu}(a_{Cu}^{0})^{3})^{(-2/3)} \\ (x_{Au}(a_{Au}^{0})^{3} + x_{Cu}(a_{Cu}^{0})^{3})^{(-2/3)} \\ \frac{d^{2}a_{Z}(x)}{dx_{Au}^{2}} = (-2/9) ((a_{Au}^{0})^{3} - (a_{Cu}^{0})^{3})^{(-5/3)} < 0 \end{cases}$$
(19)

From Eqs.(18) and (19), it can be known that the $a_V(x)$ is a linear function of concentration x, and the $a_Z(x)$ is a convex function of concentration x. This means that $a_Z(x) > a_V(x)$ in the range 0 < x < 1. Using the same method, it can be demonstrated that $a_{g,Z}(x,T,\sigma) > a_{g,V}(x,T,\sigma)$.

We suggest that the general Zen's law should be adopted in theory, because the volume is an extensive property, which obeys the additive law (Eq.(1)), but the lattice parameter is not extensive property.

3.5 Relationship between partial and average molar (atomic) properties of components

In the SSA framework, the integral extensive property q of a given alloy is described directly by combination of the average molar (atomic) properties q_A and q_B of A- and B-components (see Eq.(1)).

The traditional thermodynamics of alloys is a framework of the total energy and total volume unable to be separated. Therefore, the integral extensive property of a given alloy is described indirectly by the partial molar properties $q'_{\rm A}$ and $q'_{\rm B}$ of A- and B-components [21]:

$$q(x) = x_{\rm A} q'_{\rm A}(x) + x_{\rm B} q'_{\rm B}(x)$$
(20)

According to definition of the partial molar property[21], it can be derived that

$$\begin{cases} q'_{\rm A}(x) = q(x) - x_{\rm A} dq(x) / dx_{\rm A} \\ q'_{\rm B}(x) = q(x) - x_{\rm B} dq(x) / dx_{\rm B} \end{cases}$$
(21)

The general relation expression between the partial and average molar properties of alloy components have been established:

$$\begin{cases} q'_{A}(x) = q_{A}(x) + x_{B}dq_{A}(x)/dx_{A} - x_{B}^{2}(dq_{A}(x)/dx_{A} - dq_{B}(x)/dx_{A}) \\ q'_{B}(x) = q_{B}(x) + x_{A}dq_{B}(x)/dx_{B} - x_{A}^{2}(dq_{B}(x)/dx_{B} - dq_{A}(x)/dx_{B}) \end{cases}$$
(22)

1614

The partial molar (atomic) property functions derived from nine q(x)-functions of binary disordered alloys are shown in Table 8.

From these equations, the following inferences can be drawn.

1) From Eq.(21), it can be known that the partial molar properties $q'_{\rm A}$ and $q'_{\rm B}$ are dependent on the integral property function, but independent on it is combinational means of average molar properties of alloy components. This means that their partial properties do not represent the average properties of components.

2) From Eq.(22), the identical equation between the integral property of the partial molar properties and the combinational property of the average molar properties of components can be derived:

$$x_{\rm A}q'_{\rm A}(x) + x_{\rm B}q'_{\rm B}(x) \equiv x_{\rm A}q_{\rm A}(x) + x_{\rm B}q_{\rm B}(x)$$
 (23)

3) From Eq.(22), the differential equation and its constraining equation between partial and average molar properties can be derived, respectively,

$$\begin{cases} \Delta q_{\rm A}(x) = q'_{\rm A}(x) - q_{\rm A}(x) = x_{\rm B} dq_{\rm A}(x) / dx_{\rm A} - x_{\rm B}^{2} (dq_{\rm A}(x) / dx_{\rm A} - dq_{\rm B}(x) / dx_{\rm A}) \\ \Delta q_{\rm B}(x) = q'_{\rm B}(x) - q_{\rm B}(x) = x_{\rm A} dq_{\rm B}(x) / dx_{\rm B} - x_{\rm A}^{2} (dq_{\rm B}(x) / dx_{\rm B} - dq_{\rm A}(x) / dx_{\rm B}) \end{cases}$$
(24)

and

$$x_{\rm A}\Delta q_{\rm A}(x) + x_{\rm B}\Delta q_{\rm B}(x) = 0 \tag{25}$$

4) From Eq.(22), the Gibbs-Duhem equation can be derived:

$$\begin{cases} dq'_{A}(x) = x_{B} [2(dq_{A}(x) - dq_{B}(x)) + x_{A}d(dq_{A}(x)/dx_{A}) + x_{B}d(dq_{B}(x)/dx_{A})] \\ dq'_{B}(x) = -x_{A} [2(dq_{A}(x) - dq_{B}(x)) - x_{A}d(dq_{A}(x)/dx_{B}) - x_{B}d(dq_{B}(x)/dx_{B})] \end{cases}$$

$$x_{\rm A} dq'_{\rm A}(x) + x_{\rm B} dq'_{\rm B}(x) = 0$$
 (26)

3.6 Relationship between lattice parameter and ordering degree of Au₃Cu-, AuCu- and AuCu₃-type ordered alloys

The relationship between the lattice parameter and ordering degree σ of compounds like AuCu₃ cannot be reliably measured, since the accessible equilibrium range of long range ordering σ is too limited. This difficulty was side-stepped by GIALANELLA et al[22–23], who used a ball-mill to progressively destroy ordering degree in Ni₃Al, which has the same superlattice as AuCu₃. In the SSA framework, this relation can be satisfactorily described. The results are shown in Figs.6 and 7.

Table 8 Nine partial molar (atomic) property $q'_{\alpha}(x)$ -functions of binary disordered alloys in SSA framework

No.	Function
1	
2	$\begin{aligned} \dot{q}_{\rm A} &= q_{\rm A}^{0} + \left[\left(I(q_{I}^{\rm A} - q_{\rm A}^{0}) + (2I - 1)(q_{\rm 0}^{\rm B} - q_{\rm B}^{0}) \right) / I \right] \mathbf{x}_{\rm B}^{2} - \left[(2I - 1)(q_{\rm 0}^{\rm B} - q_{\rm B}^{0}) / I \right] \mathbf{x}_{\rm B}^{2} \\ \dot{q}_{\rm B} &= q_{\rm B}^{0} + \left[\left(I(q_{I}^{\rm A} - q_{\rm A}^{0}) - (I - 2)(q_{\rm 0}^{\rm B} - q_{\rm B}^{0}) \right) / I \right] \mathbf{x}_{\rm A}^{2} + \left[(2I - 1)(q_{\rm 0}^{\rm B} - q_{\rm B}^{0}) / I \right] \mathbf{x}_{\rm A}^{3} \end{aligned}$
3	$\begin{aligned} \dot{q}_{\rm A} &= q_{\rm A}^{0} + \left[\left(I(q_{I}^{\rm A} - q_{\rm A}^{0}) + (q_{0}^{\rm B} - q_{\rm B}^{0}) \right) / I \right] x_{\rm B}^{2} + \left[(2I - 1)(q_{0}^{\rm B} - q_{\rm B}^{0}) / I \right] x_{\rm B}^{2} \\ \dot{q}_{\rm B} &= q_{\rm B}^{0} + \left[\left(I(q_{I}^{\rm A} - q_{\rm A}^{0}) - (3I - 2)(q_{0}^{\rm B} - q_{\rm B}^{0}) \right) / I \right] x_{\rm A}^{2} - \left[(2I - 1)(q_{0}^{\rm B} - q_{\rm B}^{0}) / I \right] x_{\rm A}^{3} \end{aligned}$
4	$\begin{aligned} \dot{q}_{\rm A} &= q_{\rm A}^{0} - \left[\left((I-2)(q_{I}^{\rm A} - q_{\rm A}^{0}) - I(q_{0}^{\rm B} - q_{\rm B}^{0}) \right) / I \right] x_{\rm B}^{2} + \left[(2I-1)(q_{I}^{\rm A} - q_{\rm A}^{0}) / I \right] x_{\rm B}^{3} \\ \dot{q}_{\rm B} &= q_{\rm B}^{0} + \left[\left((2I-1)(q_{I}^{\rm A} - q_{\rm A}^{0}) + I(q_{0}^{\rm B} - q_{\rm B}^{0}) \right) / I \right] x_{\rm A}^{2} - \left[(2I-1)(q_{I}^{\rm A} - q_{\rm A}^{0}) / I \right] x_{\rm A}^{3} \end{aligned}$
5	$\begin{aligned} q_{\rm A}^{'} &= q_{\rm A}^{0} - \left[\left((I-2)(q_{I}^{\rm A} - q_{\rm A}^{0}) - (2I-1)(q_{0}^{\rm B} - q_{\rm B}^{0}) \right) / I \right] x_{\rm B}^{2} + \left[(2I-1)\left((q_{I}^{\rm A} - q_{\rm A}^{0}) - (q_{0}^{\rm B} - q_{\rm B}^{0}) \right) / I \right] x_{\rm B}^{3} \\ q_{\rm B}^{'} &= q_{\rm B}^{0} + \left[\left((2I-1)(q_{I}^{\rm A} - q_{\rm A}^{0}) - (I-2)(q_{0}^{\rm B} - q_{\rm B}^{0}) \right) / I \right] x_{\rm A}^{2} - \left[(2I-1)\left((q_{I}^{\rm A} - q_{\rm A}^{0}) - (q_{0}^{\rm B} - q_{\rm B}^{0}) \right) / I \right] x_{\rm A}^{3} \end{aligned}$
6	$\begin{aligned} q'_{\rm A} &= q^{0}_{\rm A} - \left[\left((I-2)(q^{\rm A}_{I} - q^{0}_{\rm A}) - (q^{\rm B}_{0} - q^{0}_{\rm B}) \right) / I \right] x^{2}_{\rm B} + \left[(2I-1) \left((q^{\rm A}_{I} - q^{0}_{\rm A}) + (q^{\rm B}_{0} - q^{0}_{\rm B}) \right) / I \right] x^{3}_{\rm B} \\ q'_{\rm B} &= q^{0}_{\rm B} + \left[\left((2I-1)(q^{\rm A}_{I} - q^{0}_{\rm A}) - (3I-2)(q^{\rm B}_{0} - q^{0}_{\rm B}) \right) / I \right] x^{2}_{\rm A} - \left[(2I-1) \left((q^{\rm A}_{I} - q^{0}_{\rm A}) + (q^{\rm B}_{0} - q^{0}_{\rm B}) \right) / I \right] x^{3}_{\rm A} \end{aligned}$
7	$\begin{aligned} q'_{\rm A} &= q^{0}_{\rm A} + \left[(3I-2)(q^{\rm A}_{I} - q^{0}_{\rm A}) - I(q^{\rm B}_{0} - q^{0}_{\rm B}) \right] / I \right] x^{2}_{\rm B} - \left[(2I-1)(q^{\rm A}_{I} - q^{0}_{\rm A}) / I \right] x^{3}_{\rm B} \\ q'_{\rm B} &= q^{0}_{\rm B} + \left[\left((q^{\rm A}_{I} - q^{0}_{\rm A}) + I(q^{\rm B}_{0} - q^{0}_{\rm B}) \right) / I \right] x^{2}_{\rm A} + \left[(2I-1)(q^{\rm A}_{I} - q^{0}_{\rm A}) / I \right] x^{3}_{\rm A} \end{aligned}$
8	$\begin{aligned} \dot{q_{\rm A}} &= q_{\rm A}^0 + \left[(3I-2)(q_{\rm I}^{\rm A}-q_{\rm A}^0) + (2I-1)(q_{\rm 0}^{\rm B}-q_{\rm B}^0) \right) / I \right] x_{\rm B}^2 - \left[(2I-1)((q_{\rm I}^{\rm A}-q_{\rm A}^0) + (q_{\rm 0}^{\rm B}-q_{\rm B}^0)) / I \right] x_{\rm B}^3 \\ \dot{q_{\rm B}} &= q_{\rm B}^0 + \left[\left((q_{\rm I}^{\rm A}-q_{\rm A}^0) - (I-2)(q_{\rm 0}^{\rm B}-q_{\rm B}^0) \right) / I \right] x_{\rm A}^2 + \left[(2I-1)((q_{\rm I}^{\rm A}-q_{\rm A}^0) + (q_{\rm 0}^{\rm B}-q_{\rm B}^0)) / I \right] x_{\rm A}^3 \end{aligned}$
9	$\begin{aligned} q'_{\rm A} &= q^{0}_{\rm A} + \left[\left(\overline{(3I-2)}(q^{\rm A}_{I} - q^{0}_{\rm A}) + (q^{\rm B}_{0} - q^{0}_{\rm B}) \right) / I \right] x^{2}_{\rm B} - \left[(2I-1) \left((q^{\rm A}_{I} - q^{0}_{\rm A}) - (q^{\rm B}_{0} - q^{0}_{\rm B}) \right) / I \right] x^{3}_{\rm B} \\ q'_{\rm B} &= q^{0}_{\rm B} + \left[\left((q^{\rm A}_{I} - q^{0}_{\rm A}) + (3I-2)(q^{\rm B}_{0} - q^{0}_{\rm B}) \right) / I \right] x^{2}_{\rm A} + \left[(2I-1) \left((q^{\rm A}_{I} - q^{0}_{\rm A}) - (q^{\rm B}_{0} - q^{0}_{\rm B}) \right) / I \right] x^{3}_{\rm A} \end{aligned}$

Fig.6 Relationship between lattice parameter and ordering degree for L12-Au3Cu, L10-AuCu and L12-AuCu3 compounds

Fig.7 Relationship between lattice parameter and ordering degree for L12-Au3Cu, L10-AuCu and L12-AuCu3 type ordered alloys

References

- XIE You-qing, TAO Hui-jing, PENG Hong-jian, LI Xiao-bo, LIU Xin-bi, PENG Kun. Atomic states, potential energies, volumes, stability and brittleness of ordered FCC TiAl₂ type alloys [J]. Physica B, 2005, 366: 17–37.
- [2] XIE You-qing, PENG Kun, LIU Xin-bi. Influences of x_{TI}/x_{A1} on atomic states, lattice constants and potential energy planes of ordered FCC TiAl-type alloys [J]. Physica B, 2004, 344: 5–20.
- [3] XIE You-qing, LIU Xin-bi, PENG Kun, PENG Hong-jian. Atomic states, potential energies, volumes, stability and brittleness of ordered FCC TiAl₃-type alloys [J]. Physica B, 2004, 353: 15–33.
- [4] XIE You-qing, PENG Hong-jian, LIU Xin-bi, PENG Kun. Atomic states, potential energies, volumes, stability and brittleness of ordered FCC Ti₃Al-type alloys [J]. Physica B, 2005, 362: 1–17.
- [5] LUPIS C P P. Chemical thermodynamics of materials [M]. Amsterdam: North-Holland, 1983. 438-469.
- [6] KIKUCHI R. A theory of cooperative phenomena [J]. Phys Rev, 1951, 81: 988–1003.
- [7] ASTA M, de FONTAIN D, van SCHILFGAARDE M, SLUITER M, ATHFESSEL M. First-principles phase-stability of fcc alloys in the Ti-Al system [J]. Phys Rev, 1992, 46: 5055–5072.
- [8] ASTA M, de FONTAIN D, van SCHILFGAARDE M. First-principles study of phase stability of Ti-Al intermetallic compounds [J]. Mater Res, 1993, 8: 2554–2568.
- [9] SUNDMAN B, FRIES S G, OATES A W. A calphad assessment of the Au-Cu system using the cluster variation method [J]. Z Metallkd, 1999, 90: 267–273.
- [10] XIE You-qing. Atomic energies and Gibbs energy functions of Ag-Cu alloys [J]. Science in China (series E), 1998, 41: 146–156.
- [11] XIE You-qing, ZHANG Xiao-dong. Atomic volumes and volumes functions of Ag-Cu alloys [J]. Science in China (series E), 1998, 41: 157–168.
- [12] XIE You-qing, LI Xiao-bo, LIU Xin-bi, PENG Hong-jian, NIE Yao-zhuang. Potential energy sequences of characteristic atoms on

basis of heats of formation of disordered $Au_{(1-x)}Cu_x$ alloys(I) [J]. Journal of Materials Science and Engineering, 2009, 3: 51–68.

- [13] XIE You-qing, LIU Xin-bi, LI Xiao-bo, PENG Hong-jian, NIE Yao-zhuang. Potential energies of characteristic atoms on basis of experimental heats of formation of AuCu and AuCu₃ compounds (I) [J]. Trans Nonferrous Met Soc China, 2009, 19(5): 1243–1256.
- [14] XIE You-qing, LIU Xin-bi, LI Xiao-bo, PENG Hong-jian, NIE Yao-zhuang. Potential energy sequences of characteristic atoms on basis of heats of formation of disordered $Au_{(1-x)}Cu_x$ alloys(II). [J]. Journal of Materials Science and Engineering, 2009, 6: 44–57.
- [15] XIE You-qing, LIU Xin-bi, LI Xiao-bo, PENG Hong-jian, NIE Yao-zhuang. Potential energies of characteristic atoms on basis of experimental heats of formation of AuCu and AuCu₃ compounds (II) [J]. Trans Nonferrous Met Soc China, 2009, 19(5): 1257–1270.
- [16] CAHN R W. Lattice parameter changes on the disordering intermetallies, Intermeter and volume changes on disordering intermetallies [J]. Intermetallics, 1999, 7: 1089–1094.
- [17] BHATIA M L, CAHN R W. Lattice parameter and volume changes on disordering intermetallics [J]. Intermetallics, 2005, 13: 474–483.
- [18] LU S S, LIANG C K. Existence of the CuAu₃ long-range order in the Cu-Au system [J]. K'o Hsueh T'ung Pao, 1966, 17(9): 395–396. in Chinese (Crys structure; experimental).
- [19] VEGARD L, DALE H. An investigation of mixed crystals and alloys [J]. Z Kristallogr, 1928, 67: 148–161. (in German) (Equi. Diagram, Crys structure; experimental).
- [20] PEARSON W B. The chemistry and physics of metals and alloys [M]. New Youk: Wiley-Interscience, 1972.
- [21] WALTER J M. Physical chemistry [M]. London: Longman Group limited, 1976: 230.
- [22] GIALANELLA S, NEWCOMB S, CAHN R W. Ordering and disordering of alloys [M]. London: Elsevier Applied Science, 1992: 67.
- [23] GIALANELLA S, CAHN R W, MALAGELADA J, SURIÑACH S, BARÓM D, YAVARI A R. Kinetics of ordering transformations in metals [M]. Warrendale, P.A: TMS, 1992: 161.

(Edited by YANG Hua)