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Fig.1 Microstructure and texture of ZX21 sheets after hot rolling and annealing: (a) Optical microstructure; (b) XRD pole figures
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Fig.2 Schematic diagrams showing different cold rolling paths: (a) RD-rolling; (b) TD-rolling; (c) 45°-rolling; (d) Clock-rolling
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Fig. 3 Optical microstructures of ZX21 cold-rolling sheets before((al), (bl), (c1), (d1)) and after((a2), (b2), (c2), (d2)) annealing at
360 C for 2 h: (al), (a2) RD-rolling; (bl), (b2) TD-rolling; (c1), (c2) 45°-rolling; (d1), (d2) Clock-rolling
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Fig. 4 XRD pole figures of ZX21sheets before((al), (bl), (c1), (d1)) and after annealing for 1 h((a2), (b2), (c2), (d2)) and 2 h((a3),
(b3), (c3), (d3)): (al), (a2), (a3) RD-rolling; (bl), (b2), (b3) TD-rolling; (c1), (c2), (c3) 45°-rolling; (d1), (d2), (d3) Clock-rolling
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Fig. 5 EBSD analysis results of cold rolled sample after annealing at 360 ‘C for 2 min: (a) RD-rolling; (b) TD-rolling;

(c) 45°-rolling; (d) Clock-rolling
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Fig. 6 EBSD analysis results of cold rolled sample after annealing at 360 ‘C for 2 h: (a) RD-rolling; (b) TD-rolling; (c) 45°-rolling;
(d) Clock-rolling
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Table 1

along different directions under tension of ZX21 sheets after

annealing at 360 C for2 h
Yield

Yield strength, ultimate strength and elongation

Ultimate

Tensi El tion/
Sample di::lcstli(::'n strength/  strength/ ong/a ron
MPa MPa °
RD 123 212 6.4
RD-rolling 45° 106 182 5.6
TD 94 216 9.0
RD 85 143 5.0
TD-rolling 45° 94 150 4.1
TD 110 169 4.2
RD 93 171 5.5
45°-rolling 45° 119 190 4.4
TD 111 182 4.7
Multi- RD 124 217 7.8
directional 45° 118 240 11.9
rolling D 122 243 12.9
250 - (b)
200 -
]
[T
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g
g 100
H
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0 002 004 006 008 010 012 0.14
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g
g 100 H
F
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7 360 ‘CiB/k 2 h JG ZX21 MRAFLEANF 7 1) b [ B0 . 79— 3 o AR 4 A it 28

Fig. 7 True stress—strain tensile curves along different directions of cold-rolled ZX21 sheets after annealing at 360 ‘C for 2 h:

(a) RD-rolling; (b) TD-rolling; (c) 45°-rolling; (d) Clock-rolling
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Fig. 8 Schmid factor (SF,..,) analysis of different deformation modes in RD-cold-rolled sheet when tension along different

directions: (a) RD; (b) TD; (c) 45° with respect to RD
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Fig. 9 Schmid factor analysis of different deformation modes in TD-cold-rolled sheet when tension along different directions: (a)

RD; (b) TD; (c) 45° with respect to RD
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Fig. 10 Schmid factor analysis of different deformation modes in 45°-cold-rolled sheet when tension along different directions:

(a) RD; (b) TD; (c) 45° with respect to RD
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Fig. 11 Schmid factor analysis of different deformation modes in DX-cold-rolled sheet when tension along different directions: (a)

RD; (b) TD; (c) 45° with respect to RD
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Tailor mechanism of texture and mechanical properties in
ZX21 alloy sheets with different cold rolling paths

TAN Chao-lan, HUANG Guang-jie, HUANG Xin-de, CAO Ling-fei, CAO Yu, ZHANG Cheng-hang, LI Wei

(College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China)

Abstract: The influence of cold rolling path on texture and mechanical anisotropy in ZX21 alloy sheets was investigated.
The results show that double peaks appear in the basal texture after unidirectional rolling, which subsequently change into
oft-basal texture with double peaks distributing perpendicular to the cold rolling path after annealing. The distribution of
recrystallization texture is associated with the preferential nucleation and growth of recrystallized grains. The
multi-directional rolling can weaken the preferential orientation of grains, whilst a circle-like texture distribution is
obtained with the decrease of grain size after annealing. The yielding anisotropy is optimized by decreasing the difference
of Schmid factor when tensioning along various directions and hence improves the mechanical property of sheets.

Key words: Mg alloy; rolling path; texture; anisotropy
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