

Available online at www.sciencedirect.com

Transactions of Nonferrous Metals Society of China

www.tnmsc.cn

Trans. Nonferrous Met. Soc. China 19(2009) 1271-1279

A thermodynamic approach to assess glass-forming ability of bulk metallic glasses

JI Xiu-lin (纪秀林)¹, PAN Ye(潘 冶)²

1. Engineering Research Center of Dredging Technology of Ministry of Education, Hohai University,

Changzhou 213022, China;

2. School of Materials Science and Engineering, Southeast University, Nanjing 211189, China

Received 28 September 2008; accepted 6 March 2009

Abstract: According to the Gibbs free energy difference between liquid and crystal, a thermodynamic glass-forming ability(GFA) parameter related to characteristic temperatures, onset crystallization temperature(T_x) and liquidus temperature(T_1), was proposed for evaluating the GFA of bulk metallic glasses(BMGs). The new parameter defined as $\omega = T_1(T_1+T_x)/(T_x(T_1-T_x))$ has good correlation with the critical section thickness(Z_c) of Ca-Mg-Cu BMGs. Being verified by the glasses data, including oxide glasses, which were used to validate the former GFA parameters, ω is one of the most reliable and applicable GFA parameters among T_{rg} (= T_g/T_1), γ (= $T_x/(T_1+T_g)$), α (= $T_x/(T_1-T_g)$, and so on. Finally, predicting GFA of Cu-Ag-Zr-Ti and Cu-Zr-Ti-Al BMGs using ω was compared with the experimental results.

Key words: glass-forming ability; bulk metallic glass; Gibbs free energy

1 Introduction

Whether the vitrification of an alloy is easy or difficult, glass-forming ability(GFA) is vital to develop new bulk metallic glasses(BMGs). Scientific efforts for quantification of GFA have been started when the first Au-Si metallic glass was reported[1]. TURNBULL[2] identified reduced glass transition temperature(T_{rg}), which is the ratio of glass transition temperature(T_g) to liquidus temperature(T_1), as a GFA gauge. INOUE et al [3] proposed the supercooled liquid region ΔT_x (= T_x - T_g , where T_x is the onset crystallization temperature of the glass) to measure GFA. Since 2002, LU and LIU[4-6] have published a serial of papers to show the strongest correlation of the GFA parameter $\gamma (=T_x/(T_1+T_g))$ with the GFA of various glass formers among the parameters suggested so far. Therefore, γ has been frequently used to predict the GFA of alloys today.

However, the predominant situation of γ is challenged in recent two years by other GFA indicators, $\alpha(=T_x/T_1)[7]$, $\delta(=T_x/(T_1-T_g)[8]$, ϕ (= $T_{rg}(\Delta T_x/T_g)^{0.143})[9]$, $T_{rx}(=T_x/T_s)$, where T_s is onset temperature of solidification)[10], and so on. Origins of those GFA parameters mentioned above obtained from time —

temperature—transformation(TTT) diagram analysis[5, 7–10] or kinetics analysis, such as viscosity[11], fragility[9] and homogenous nucleation and growth[4, 8]. Lately, LU et al[1] restated that γ was still the best GFA indicator in terms of reliability and applicability.

In this work, based on thermodynamic analysis, mainly Gibbs free energy difference between liquid and crystal, a new GFA parameter was proposed and the new glass criterion was validated with lots of experimental data to assess the GFA of BMGs.

2 Origins of new parameter

Gibbs free energy difference(ΔG_{l-s}) between liquid and crystal means the driving force of crystallization. In a supercooled alloying liquid, the less ΔG_{l-s} means the more stable and the better GFA of the liquid. Thus, ΔG_{l-s} plays an important role in appraising the GFA of BMGs and the GFA parameter maybe has a solid interrelationship with ΔG_{l-s} . In this way, a new GFA indicator was developed by this approach.

Scientific efforts for ΔG_{l-s} estimation of the supercooled alloying liquid have started for a long time and many approximate expressions of ΔG_{l-s} have been derived [12–14]. The expression developed by THOMPSON and

Corresponding author: JI Xiu-lin; Tel: +86-519-85191969; E-mail: xiulinji@gmail.com DOI: 10.1016/S1003-6326(08)60438-0

SPAEPEN[12] is one of the most important and reliable:

$$\Delta G_{\rm l-s} = \frac{2\Delta H_{\rm m} T (T_{\rm m} - T)}{T_{\rm m} (T_{\rm m} + T)} \tag{1}$$

where $T_{\rm m}$ is the melting temperature; $\Delta H_{\rm m}$ is the enthalpy of fusion; and *T* is the temperature of the supercooled liquid.

As discussed above, GFA of metallic glasses is associated with ΔG_{l-s} . So, their relationship can be expressed as follows:

$$GFA \propto \frac{1}{\Delta G_{l-s}} \propto \frac{T_m(T_m + T)}{\Delta H_m T(T_m - T)}$$
 (2)

At slower cooling rates, the glass freezes at lower temperature. But the glass produced at higher cooling rates undergoes structural relaxation readily at lower temperature[15]. So, T_g detected from DSC (differential scanning calorimetry) is different from the actual freezing temperature of an metallic glass. But the expression of ΔG_{I-s} is derived from continuous cooling process. Therefore, it is not surprising that the GFA parameter directly using Eq.(2) has no good correlation with GFA.

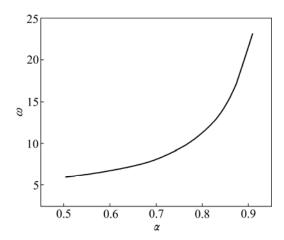
For glass transition of an alloying system, two equilibrium states, amorphous and liquid states, should be emphasized. From the viewpoint of heating process, the glass is still in amorphous state before system temperature exceeds T_x and the alloying system is not in a real liquid state before it reaches T_1 . That is to say, T_x and T_1 are thermal stability gauges of the glass and the liquid, respectively[7]. Thus, T_1 but T_m characterizes the temperature of a liquid state and T_x but T_g characterizes the temperature of an amorphous state. Therefore, T and T_m in Eq.(2) are substituted by T_x and T_1 , respectively, meaning that GFA is in inverse proportion to the Gibbs free energy difference of the alloying system from T_1 to T_x . So, the following expression can be obtained from Eq.(2):

$$GFA \propto \frac{1}{\Delta H_{m}} \cdot \frac{T_{l}(T_{l} + T_{x})}{T_{x}(T_{l} - T_{x})}$$
(3)

If there is no inner relationship between $\Delta H_{\rm m}$ and $T_{\rm l}$ (or $T_{\rm x}$), the above expression can be simplified as

$$GFA \simeq \frac{T_1(T_1 + T_x)}{T_x(T_1 - T_x)}$$
(4)

Hence, the new parameter ω for inferring the relative GFA among BMGs is defined as


$$\omega = \frac{T_{\rm l}(T_{\rm l} + T_{\rm x})}{T_{\rm x}(T_{\rm l} - T_{\rm x})} \tag{5}$$

To reveal the validity of ω as a GFA parameter,

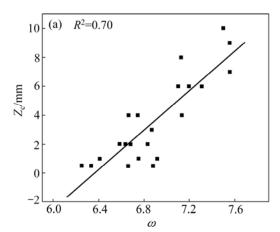
Eq.(5) is deduced as:

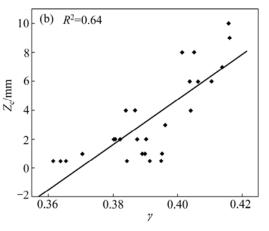
$$\omega = \frac{T_1(T_1 + T_x)}{T_x(T_1 - T_x)} = \frac{T_1}{T_1 - T_x} \cdot \frac{T_1 + T_x}{T_x} = \frac{T_1/T_x}{T_1/T_x - 1} \cdot \left(\frac{T_1}{T_x} + 1\right)$$
(6)

Compared with T_1 , the difference between T_x and T_g is very little, usually less than 5% T_1 for the characteristic temperatures of BMGs. Therefore, the GFA parameters, $T_{rg}=T_g/T_1[2]$, $\gamma=T_x/(T_g+T_1)[4-6]$ and $\alpha=T_x/T_1[7]$ are close, respectively, to T_x/T_1 , $T_x/(T_x+T_1)$ and T_x/T_1 . All the GFA parameters, T_{rg} , γ and α can be treated as functions of T_x/T_1 . On the other hand, Eq.(6) indicates that ω is also the function of T_x/T_1 . And the positive correlation between ω and α is illustrated in Fig.1. So, ω not only has the accordant trends of GFA description with α , but also expands the difference of values between descriptive parameters. And it may be more effective than other GFA parameters.

Fig.1 Function relationship between GFA parameters ω and α

3 Results and discussion


3.1 Correlation between new parameters and GFA


The most direct GFA indicator is the critical cooling $rate(R_c)$ and the critical section thickness(Z_c). Unfortunately, it is very difficult to measure $R_{\rm c}$ experimentally and Z_c is rough. Table 1 shows the glass temperature($T_{\rm g}$), transition onset crystallization temperature(T_x), liquidus temperature(T_l) and Z_c of Ca-Mg-Cu BMGs. The data in Table 1 were obtained from Ref.[16]. And the calculated GFA indicators (y and ω) are also listed in Table 1. The relationships between ω , γ and Z_c are shown in Fig.2. In order to reveal how closely the GFA indicators (γ and ω) correspond to the actual experimental data of Z_c , the statistical correlation parameter, R^2 , was also computed. The higher the R^2 , the more reliable the GFA parameter. As shown in Fig.2, R^2

1272

Alloy	$T_{\rm g}/{ m K}$	$T_{\rm x}/{ m K}$	$T_{\rm l}/{\rm K}$	$T_{\rm m}/{ m K}$	Z _c /mm	$\Delta H_{\rm x}/({\rm J}\cdot{\rm g}^{-1})$	γ	ω
$Ca_{40}Mg_{30}Cu_{30}$	395	430	694	647	0.5	91	0.395	6.872
$Ca_{40}Mg_{25}Cu_{35}$	399	436	680	650	4.0	89	0.404	7.133
Ca45Mg30Cu25	401	436	717	627	1.0	94	0.390	6.748
Ca45Mg25Cu30	400	438	678	627	6.0	132	0.406	7.198
Ca45Mg19Cu36	399	428	714	649	0.5	106	0.385	6.661
$Ca_{47.5}Mg_{22.5}Cu_{30}$	399	440	673	625	6.0	154	0.410	7.306
Ca50Mg30Cu20	402	439	731	627	2.0	104	0.387	6.672
Ca50Mg25Cu25	400	439	655	627	9.0	129	0.416	7.557
Ca ₅₀ Mg _{22.5} Cu _{27.5}	400	442	663	627	10.0	150	0.416	7.500
$Ca_{50}Mg_{20}Cu_{30}$	401	442	690	628	8.0	139	0.405	7.126
Ca ₅₃ Mg ₂₃ Cu ₂₄	406	439	655	627	7.0	134	0.414	7.557
Ca55Mg25Cu30	398	428	668	627	8.0	125	0.402	7.127
Ca55Mg20Cu25	399	426	720	628	2.0	106	0.381	6.588
Ca55Mg15Cu30	397	437	706	626	3.0	137	0.396	6.865
Ca55Mg10Cu35	397	422	770	629	0.5	98	0.362	6.250
$Ca_{58}Mg_{18}Cu_{24}$	388	426	667	628	6.0	119	0.404	7.101
$Ca_{60}Mg_{25}Cu_{15}$	390	416	676	628	2.0	102	0.390	6.825
$Ca_{60}Mg_{20}Cu_{20}$	387	412	678	629	4.0	105	0.387	6.743
$Ca_{60}Mg_{15}Cu_{25}$	396	428	687	627	1.0	99	0.395	6.910
$Ca_{60}Mg_{13}Cu_{27}$	394	426	701	628	1.0	98	0.389	6.744
Ca ₆₅ Mg ₂₅ Cu ₁₀	405	429	691	637	0.5	96	0.391	6.886
$Ca_{65}Mg_{20}Cu_{15}$	386	405	679	636	2.0	101	0.380	6.633
$Ca_{65}Mg_{15}Cu_{20}$	383	409	682	630	4.0	115	0.384	6.664
Ca ₆₅ Mg ₁₀ Cu ₂₅	388	420	711	630	2.0	114	0.382	6.579
Ca ₆₅ Mg ₅ Cu ₃₀	403	424	757	630	0.5	89	0.366	6.332
$Ca_{70}Mg_{20}Cu_{10}$	356	385	702	659	0.5	87	0.364	6.252
Ca ₇₀ Mg ₁₀ Cu ₂₀	385	407	713	670	1.0	107	0.371	6.412

Table 1 $T_{\rm g}$, $T_{\rm x}$, $T_{\rm l}$, $T_{\rm m}$, $Z_{\rm c}$, $\Delta H_{\rm m}$ and calculated γ and ω for Ca-Mg-Cu BMGs

Fig.2 Correlation between Z_c and ω (a), γ (b) for Ca-Mg-Cu BMGs

of ω is 0.70, but the corresponding R^2 of γ is 0.64, indicating the new GFA parameter ω is more reliable than γ for Ca-Mg-Cu BMGs.

3.2 Comparison of ω and other GFA parameters

To verify the reliability of the new GFA parameter and to compare it with others, more BMGs data with their characteristic temperatures $(T_g, T_x \text{ and } T_l)$ and Z_c , together with more calculated GFA parameters are listed in Table 2. The data in Table 2 were obtained from Table 1 in Ref.[4] and Table 1 in Ref.[8], which are used to interpret γ and α . The relationships between GFA indicators $(T_{rg}, \gamma, \alpha, \delta, \phi \text{ and } \omega)$ and the actual experimental data of Z_c , are shown in Fig.3. By comparing R^2 of every GFA indicator shown in Figs.3(a)–(f), R^2 of ω is obviously higher than others, and the order of GFA indicators from the best to the worst is ω , δ , α , ϕ , γ and T_{rg} . This result suggests the ω is the best GFA parameter. The relationship between the GFA and ω for these BMGs can be expressed as

$$Z_{c} = -77.98 + 11.93\omega \tag{7}$$

Besides $T_{\rm rg}$, γ , α , δ and ϕ , other GFA parameters, such as $\Delta T_{\rm rg}$ (= $(T_{\rm x}-T_{\rm g})/(T_{\rm l}-T_{\rm g})$)[17], $\Delta T_{\rm x}$, $T_{\rm rgx}$ (= $(T_{\rm g}T_{\rm x})/(T_{\rm l}T_{\rm m})$)[18] and $K_{\rm gl}$ (= $(T_{\rm x}-T_{\rm g})/(T_{\rm m}-T_{\rm x})$)[19] are also compared with ω . R^2 of $\Delta T_{\rm rg}$ and $\Delta T_{\rm x}$ calculated with data in Table 2 are 0.27 and 0.13, respectively, which are clearly lower than 0.53 of ω . From the viewpoint of emphasis on the two states, the relationships between GFA and those GFA parameters which import other characteristic temperatures beyond the amorphous and the liquid state will be injured. For example, T_g/T_1 is a better representation of GFA than T_g/T_m [20]. R^2 of T_{rgx} and K_{gl} calculated with data in Table 1 are 0.53 and 0.42, respectively, which are obviously lower than 0.64 of γ and 0.70 of ω . On the other hand, except α and ω , all other GFA parameters mentioned above need the knowledge of T_g or T_s . However, T_g is not usually available for some glasses[7] and T_s needs to be measured during cooling of liquid, which increases the operational complexity. Based on above comparison, it can be concluded that ω is one of the most reliable and applicable GFA parameters.

3.3 Comparison of ω in glasses including oxides

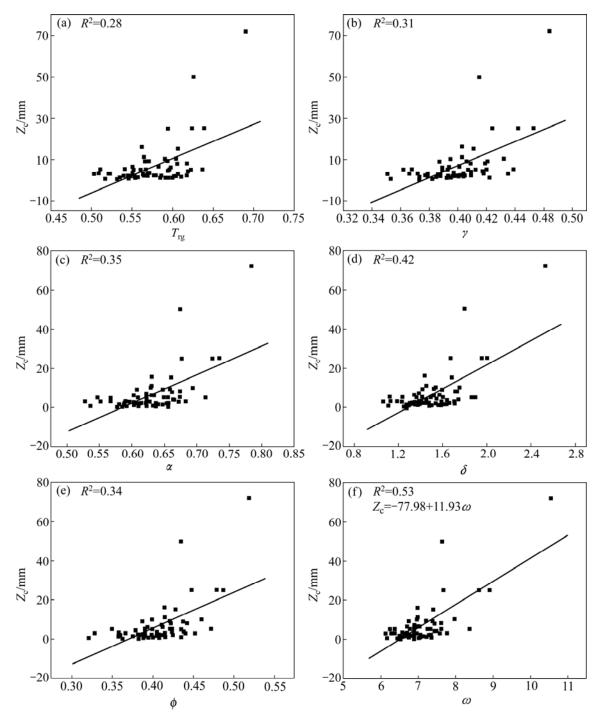

To verify the applicability of the new GFA parameter, $T_{\rm g}$, $T_{\rm x}$, $T_{\rm l}$ and $R_{\rm c}$ of some BMGs and oxide glasses are listed in Table 3, together with the calculated GFA parameters. The data of BMGs and oxide glasses in Table 3 were obtained from Table 3 in Ref.[4] and Table 2 in Ref.[6], respectively, which are applied to interpreting γ . According to the data in Table 3, six plots of the critical cooling rate as the functions of the parameters, $T_{\rm rg}$, γ , α , δ , ϕ and ω , respectively, are shown in Fig.4. The statistical factor R^2 for these regressions are

Table 2 T_{g} , T_{x} , T_{l} , Z_{c} and calculated T_{rg} , γ , α , δ , ϕ and ω for reported BMGs

Alloy	$T_{\rm g}/{ m K}$	$T_{\rm x}/{ m K}$	$T_{\rm l}/{\rm K}$	Z _c /mm	$T_{\rm rg}$	γ	α	δ	ϕ	ω
$Mg_{80}Ni_{10}Nd_{10}$	454.2	470.5	878.0	0.6	0.517	0.353	0.536	1.110	0.321	6.175
Mg ₇₅ Ni ₁₅ Nd ₁₀	450.0	470.4	789.8	2.8	0.570	0.379	0.596	1.384	0.366	6.625
Mg ₇₀ Ni ₁₅ Nd ₁₅	467.1	489.4	844.3	1.5	0.553	0.373	0.580	1.297	0.358	6.483
Mg ₆₅ Ni ₂₀ Nd ₁₅	459.3	501.4	804.9	3.5	0.571	0.397	0.623	1.451	0.405	6.909
$Mg_{65}Cu_{25}Y_{10}$	424.5	479.4	770.9	7.0	0.551	0.401	0.622	1.384	0.411	6.897
Zr ₆₅ Al _{7.5} Cu _{17.5} Ni ₁₀	656.5	735.6	1 167.6	16.0	0.562	0.403	0.630	1.439	0.415	6.993
$Zr_{57}Ti_5Al_{10}Cu_{20}Ni_8$	676.7	720.0	1 145.2	10.0	0.591	0.395	0.629	1.537	0.399	6.977
Zr _{41.2} Ti _{13.8} Cu _{12.5} Ni ₁₀ Be _{22.5}	623.0	672.0	996.0	50.0	0.626	0.415	0.675	1.802	0.435	7.630
La55Al25Ni20	490.8	555.1	941.3	3.0	0.521	0.388	0.590	1.232	0.390	6.570
$La_{55}Al_{25}Ni_{10}Cu_{10}$	467.4	547.2	835.0	5.0	0.560	0.420	0.655	1.489	0.435	7.329
$La_{55}Al_{25}Cu_{20}$	455.9	494.8	896.1	3.0	0.509	0.366	0.552	1.124	0.358	6.277
La55Al25Ni5Cu10Co5	465.2	541.8	822.5	9.0	0.566	0.421	0.659	1.516	0.437	7.378
$La_{66}Al_{14}Cu_{20}$	395.0	449.0	731.0	2.0	0.540	0.399	0.614	1.336	0.407	6.812
$Pd_{40}Cu_{30}Ni_{10}P_{20}$	576.9	655.8	836.0	72.0	0.690	0.464	0.784	2.531	0.519	10.553
$Pd_{81.5}Cu_2Si_{16.5}$	633.0	670.0	1 097.3	2.0	0.577	0.387	0.611	1.443	0.384	6.774
Pd _{79.5} Cu ₄ Si _{16.5}	635.0	675.0	1 086.0	0.8	0.585	0.392	0.622	1.497	0.394	6.894
Pd77.5Cu6Si16.5	637.0	678.0	1 058.1	1.5	0.602	0.400	0.641	1.610	0.407	7.128
$Pd_{77}Cu_6Si_{17}$	642.4	686.4	1 128.4	2.0	0.569	0.388	0.608	1.412	0.388	6.750
Pd _{73.5} Cu ₁₀ Si _{16.5}	645.0	685.0	1 135.9	2.0	0.568	0.385	0.603	1.395	0.382	6.697
Pd _{71.5} Cu ₁₂ Si _{16.5}	652.0	680.0	1 153.6	2.0	0.565	0.377	0.589	1.356	0.360	6.568
$Pd_{40}Ni_{40}P_{20}$	590.0	671.0	991.0	25.0	0.595	0.424	0.677	1.673	0.448	7.671
$Nd_{60}Al_{15}Ni_{10}Cu_{10}Fe_5$	430.0	475.0	779.0	5.0	0.552	0.393	0.610	1.361	0.400	6.765
$Nd_{61}Al_{11}Ni_8Co_5Cu_{15}$	445.0	469.0	744.0	6.0	0.598	0.394	0.630	1.569	0.394	6.997

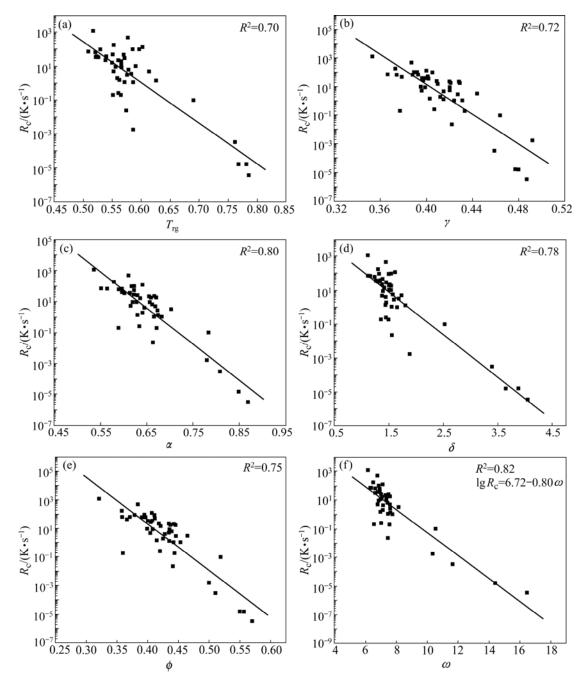
JI Xiu-lin, et al/Trans. Nonferrous Met. Soc. China 19(2009) 1271-1279

ontinue										
Alloy	$T_{\rm g}/{ m K}$	$T_{\rm x}/{ m K}$	$T_{\rm l}/{\rm K}$	Z _c /mm	$T_{\rm rg}$	γ	α	δ	ϕ	ω
Cu ₆₀ Zr ₃₀ Ti ₁₀	713.0	763.0	1 151.0	4.0	0.619	0.409	0.663	1.742	0.424	7.44
Cu ₅₄ Zr ₂₇ Ti ₉ Be ₁₀	720.0	762.0	1 130.0	5.0	0.637	0.412	0.674	1.859	0.424	7.62
$Ti_{34}Zr_{11}Cu_{47}Ni_8$	698.4	727.2	1 169.2	4.5	0.597	0.389	0.622	1.545	0.379	6.89
$Ti_{50}Ni_{24}Cu_{20}B_1Si_2Sn_3$	726.0	800.0	1 310.0	1.0	0.554	0.393	0.611	1.370	0.400	6.77
Cu55Zr42.5Ga2.5	709.0	762.0	1 199.0	1.0	0.591	0.399	0.636	1.555	0.408	7.06
Cu _{57.5} Zr _{37.5} Ga ₅	745.0	785.0	1 241.0	1.0	0.600	0.395	0.633	1.583	0.395	7.02
Cu _{57.5} Zr ₄₀ Ga _{2.5}	723.0	776.0	1 198.0	1.5	0.604	0.404	0.648	1.634	0.415	7.22
Cu _{42.5} Zr ₄₀ Ga _{7.5}	744.0	777.0	1 218.0	1.5	0.611	0.396	0.638	1.639	0.391	7.09
Cu55Zr40Ga5	736.0	779.0	1 193.0	2.0	0.617	0.404	0.653	1.705	0.411	7.29
Cu _{52.5} Zr _{42.5} Ga ₅	733.0	777.0	1 187.0	2.0	0.618	0.405	0.655	1.711	0.413	7.31
Cu ₄₆ Zr ₅₄	696.0	746.0	1 201.0	2.0	0.580	0.393	0.621	1.477	0.398	6.88
Cu ₄₆ Zr ₄₇ Al ₇	705.0	781.0	1 163.0	3.0	0.606	0.418	0.672	1.705	0.441	7.57
$Cu_{46}Zr_{37}Al_7Y_{10}$	665.0	743.0	1 118.0	4.0	0.595	0.417	0.665	1.640	0.438	7.46
$Cu_{46}Zr_{45}Al_7Y_{12}$	693.0	770.0	1 143.0	8.0	0.606	0.419	0.674	1.711	0.443	7.61
$Cu_{46}Zr_{42}Al_7Y_5$	672.0	772.0	1 113.0	10.0	0.604	0.432	0.694	1.751	0.460	7.97
Y ₅₆ Al ₂₄ Co ₂₀	636.0	690.0	1 085.0	2.0	0.586	0.401	0.636	1.537	0.412	7.06
Y ₃₆ Sc ₂₀ Al ₂₄ Co ₂₀	645.0	760.0	1 034.0	25.0	0.624	0.453	0.735	1.954	0.487	8.90
Y ₃₆ Sc ₂₀ Al ₂₄ Co ₁₀ Ni ₁₀	645.0	731.0	1010.0	25.0	0.639	0.442	0.724	2.003	0.479	8.62
Ca ₇₀ Mg ₁₅ Zn ₁₅	371.0	389.0	686.0	5.0	0.541	0.368	0.567	1.235	0.351	6.38
$Ca_{65}Mg_{10}Zn_{25}$	378.0	414.0	686.0	6.0	0.551	0.389	0.603	1.344	0.394	6.70
Ca ₆₅ Mg ₂₀ Zn ₁₅	380.0	405.0	666.0	9.0	0.571	0.387	0.608	1.416	0.387	6.74
Ca ₆₀ Mg ₁₅ Zn ₂₅	382.0	426.0	676.0	11.0	0.565	0.403	0.630	1.449	0.415	6.99
Ca ₆₅ Mg ₁₅ Zn ₂₀	379.0	412.0	624.0	15.0	0.607	0.411	0.660	1.682	0.428	7.40
Mg ₆₅ Cu ₂₅ Er ₁₀	422.0	480.0	766.0	3.0	0.551	0.404	0.627	1.395	0.415	6.95
Mg ₆₅ Cu ₁₅ Ag ₁₀ Er ₁₀	427.0	465.0	733.0	6.0	0.583	0.401	0.634	1.520	0.412	7.04
Mg ₆₅ Cu _{7.5} Ni _{7.5} Zn ₅ Ag ₅ Y ₁₀	426.0	464.0	717.0	9.0	0.594	0.406	0.647	1.595	0.421	7.21
Ti ₅₀ Ni ₁₅ Cu ₃₂ Sn ₃	686.0	759.0	1 283.0	1.0	0.535	0.385	0.592	1.271	0.388	6.58
Ti ₅₀ Ni ₁₅ Cu ₂₅ Sn ₃ Be ₇	688.0	733.0	1 207.0	2.0	0.570	0.387	0.607	1.412	0.386	6.73
Ti ₄₅ Ni ₁₅ Cu ₂₅ Sn ₃ Be ₇ Zr ₅	680.0	741.0	1 142.0	5.0	0.595	0.407	0.649	1.604	0.422	7.23
Ti ₄₀ Zr ₂₅ Ni ₈ Cu ₉ Be ₁₈	624.0	668.0	1 009.0	8.0	0.618	0.409	0.662	1.735	0.423	7.42
Ti ₅₀ Cu _{42.5} Ni _{7.5}	670.0	708.0	1 226.0	0.2	0.546	0.373	0.577	1.273	0.363	6.46
Ti _{47.5} Zr _{2.5} Cu _{42.5} Ni _{7.5}	673.0	720.0	1 225.0	1.5	0.549	0.379	0.588	1.304	0.375	6.55
Ti _{42.5} Zr _{2.5} Hf ₅ Cu _{42.5} Ni _{7.5}	677.0	726.0	1 203.0	2.5	0.563	0.386	0.603	1.380	0.387	6.70
Ti _{41.5} Zr _{2.5} Hf ₅ Cu _{42.5} Ni _{7.5} Si ₁	680.0	730.0	1 199.0	5.0	0.567	0.389	0.609	1.407	0.390	6.75
Au55Cu25Si20	348.0	383.0	654.0	0.5	0.532	0.382	0.586	1.252	0.383	6.53
$Au_{46}Ag_5Cu_{29}Si_{20}$	395.0	420.0	664.0	1.0	0.595	0.397	0.633	1.561	0.401	7.02
Au ₅₂ Pd _{2.3} Cu _{29.2} Si _{16.5}	393.0	427.0	651.0	2.0	0.604	0.409	0.656	1.655	0.425	7.33
Au ₄₉ Ag _{5.5} Pd _{2.3} Cu _{26.9} Si _{16.3}	401.0	459.0	644.0	5.0	0.623	0.439	0.713	1.889	0.472	8.36
Ce ₆₀ Al ₁₀ Ni ₁₀ Cu ₂₀	374.0	441.0	672.0	1.0	0.557	0.422	0.656	1.480	0.435	7.34
$Ce_{57}Al_{10}Ni_{12.5}Cu_{15.5}Nb_5$	369.0	415.0	677.0	2.0	0.545	0.397	0.613	1.347	0.405	6.79
$Ce_{70}Al_{10}Ni_{10}Cu_{10}$	359.0	377.0	714.0	3.0	0.503	0.351	0.528	1.062	0.328	6.13
$Ce_{65}Al_{12.5}Ni_{12.5}Cu_{10}$	371.0	402.0	709.0	3.0	0.523	0.372	0.567	1.189	0.367	6.38
$Ce_{60}Al_{15}Ni_{15}Cu_{10}$	390.0	468.0	685.0	3.0	0.525	0.435	0.683	1.586	0.452	7.77
$Ce_{65}Al_{10}Ni_{10}Cu_{10}Nb_5$	359.0	384.0	702.0	5.0	0.511	0.362	0.547	1.120	0.349	6.24

Fig.3 Correlations between Z_c and T_{rg} (a), γ (b), α (c), δ (d), ϕ (e) and ω (f) for BMGs

high among which R^2 of ω is the highest. This suggests a reliable relationship between the GFA and ω for these BMGs and oxide glasses. And this relationship is expressed in an approximation formula:

$$\lg R_{\rm c} = 6.72 - 0.80\omega$$
 (8)


3.4 Applications of ω in bulk metallic glasses

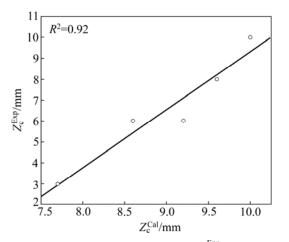
As an applicable GFA parameter, ω should indicate the actual GFA of BMGs. A centimeter-diameter Cu-based BMG had been developed[21]. Their experimental data and the calculated values are listed in Table 4. Values of ω and the calculated values of Z_c are computed with Eq.(5) and Eq.(7), respectively. The relationship between the experimental values of Z_c (Z_c^{Exp}) and the calculated values of Z_c (Z_c^{Cal}) is shown in Fig.5. Although the values of Z_c^{Cal} are not usually equal to the values of Z_c^{Cal} for every alloying composition, they present a solid linear relationship with 0.92 of R^2 . Therefore, with the knowledge of T_x and T_1 , the critical section thickness and the critical cooling rate of the alloy

JI Xiu-lin, et al/Trans. Nonferrous Met. Soc. China 19(2009) 1271-1279

Table 3 T_g , T_x , T_l , R_c and calculate Sample		$T_{\rm x}/{\rm K}$	$\frac{1}{T_l/K}$	R _c /mm				δ	~	
Mg ₈₀ Ni ₁₀ Nd ₁₀	T _g /K 454.2	470.5	878.0	1251.4	$\frac{T_{\rm rg}}{0.517}$	γ 0.353	α 0.536	<i>o</i> 1.110	φ 0.321	ω 6.175
$Mg_{75}Ni_{15}Nd_{10}$	454.2	470.3	789.8	46.1	0.570	0.333	0.596	1.384	0.366	6.625
	467.1	489.4	844.3	178.2	0.553	0.373	0.590	1.297	0.358	6.483
$Mg_{70}Ni_{15}Nd_{15}$										
$Mg_{65}Ni_{20}Nd_{15}$	459.3	501.4	804.9	30.0	0.571	0.397	0.623	1.451	0.405	6.909
$Mg_{65}Cu_{25}Y_{10}$	424.5	479.4	770.9	50.0	0.551	0.401	0.622	1.384	0.411	6.897
Zr ₆₅ Al _{7.5} Cu _{17.5} Ni ₁₀	656.5	735.6	1 167.6	1.5	0.562	0.403	0.630	1.439	0.415	6.993
Zr ₅₇ Ti ₅ Al ₁₀ Cu ₂₀ Ni ₈	676.7	720.0	1 145.2	10.0	0.591	0.395	0.629	1.537	0.399	6.977
Zr _{41.2} Ti _{13.8} Cu _{12.5} Ni ₁₀ Be _{22.5}	623.0	672.0	996.0	1.4	0.626	0.415	0.675	1.802	0.435	7.630
La55Al25Ni20	490.8	555.1	941.3	67.5	0.521	0.388	0.590	1.232	0.390	6.570
La55Al25Ni10Cu10	467.4	547.2	835.0	22.5	0.560	0.420	0.655	1.489	0.435	7.329
$La_{55}Al_{25}Cu_{20}$	455.9	494.8	896.1	72.3	0.509	0.366	0.552	1.124	0.358	6.277
La55Al25Ni5Cu10Co5	465.2	541.8	822.5	18.8	0.566	0.421	0.659	1.516	0.437	7.378
$La_{66}Al_{14}Cu_{20}$	395.0	449.0	731.0	37.5	0.540	0.399	0.614	1.336	0.407	6.812
$Pd_{40}Cu_{30}Ni_{10}P_{20} \\$	576.9	655.8	836.0	0.1	0.690	0.464	0.784	2.531	0.519	10.553
Pd _{81.5} Cu ₂ Si _{16.5}	633.0	670.0	1 097.3	500.0	0.577	0.387	0.611	1.443	0.384	6.774
Pd _{79.5} Cu ₄ Si _{16.5}	635.0	675.0	1 086.0	100.0	0.585	0.392	0.622	1.497	0.394	6.894
Pd77.5Cu6Si16.5	637.0	678.0	1 058.1	125.0	0.602	0.400	0.641	1.610	0.407	7.128
Pd _{71.5} Cu ₁₂ Si _{16.5}	652.0	680.0	1 153.6	0.2	0.565	0.377	0.589	1.356	0.360	6.568
Ti ₃₄ Zr ₁₁ Cu ₄₇ Ni ₈	698.4	727.2	1 169.2	100.0	0.597	0.389	0.622	1.545	0.379	6.898
45Na2O-45B2O3-10Al2O3	627	732	1 182	100	0.530	0.405	0.619	1.319	0.411	6.868
44Na ₂ O-44B ₂ O ₃ -12Al ₂ O ₃	632	739	1 173	24.4	0.539	0.409	0.630	1.366	0.418	6.993
43Na ₂ O-43B ₂ O ₃ -14Al ₂ O ₃	637	735	1 157.5	16.1	0.550	0.410	0.635	1.412	0.421	7.054
42Na ₂ O-42B ₂ O ₃ -16Al ₂ O ₃	653	748	1 1 3 0	6.5	0.578	0.420	0.662	1.568	0.439	7.427
41Na ₂ O-41B ₂ O ₃ -18Al ₂ O ₃	655	763	1 117	1.1	0.586	0.431	0.683	1.652	0.453	7.775
$40Na_2O-40B_2O_3-20Al_2O_3$	656	765	1 148	1.1	0.571	0.424	0.666	1.555	0.442	7.495
37Na ₂ O-37B ₂ O ₃ -26Al ₂ O ₃	672	773	1 205	2	0.558	0.412	0.641	1.450	0.425	7.138
36Na ₂ O-36B ₂ O ₃ -28Al ₂ O ₃	682	759	1 235	5.3	0.552	0.396	0.615	1.373	0.404	6.816
$35Na_2O-35B_2O_3-30Al_2O_3$	696	776	1 251	9.4	0.556	0.399	0.620	1.398	0.408	6.879
34Na ₂ O-34B ₂ O ₃ -32Al ₂ O ₃	709	823	1 252	9.6	0.566	0.420	0.657	1.516	0.436	7.358
$33.4Na_2O-33.4B_2O_3 - 33.2Al_2O_3$	736	887	1 262	3.3	0.583	0.444	0.703	1.686	0.465	8.153
15CaO-22Al ₂ O ₃ -63SiO ₂ *	1173	1 298	1 493	3.4×10^{-6}	0.786	0.487	0.869	4.056	0.570	16.463
5CaO-22Al ₂ O ₃ -63SiO ₂ -2Na ₂ O*	1133	1 253	1 476	1.6×10^{-5}	0.768	0.480	0.849	3.653	0.557	14.410
5CaO-22Al ₂ O ₃ -63SiO ₂ -2Na ₂ O	1155	1 255	1 470	1.6×10^{-5}	0.781	0.480	0.849	3.883	0.550	14.410
$15CaO-22Al_2O_3-655IO_2-41IO_2$	1138	1 238	1 462	1.0 \ 10	0.781	0.477	0.849	3.883	0.330	14.410
63SiO ₂ -2Na ₂ O-4TiO ₂ *	1133	1 201	1 486	3.2×10^{-4}	0.762	0.459	0.808	3.402	0.510	11.66
Na ₂ O-2SiO ₂	687	915	1 173	1.7×10^{-3}	0.586	0.492	0.780	1.883	0.500	10.37
SiO ₂ -43CaO	1017	1 178	1 773	2.3×10^{-2}	0.574	0.422	0.664	1.558	0.441	7.465
SiO ₂ -50CaO	1017	1 154	1 817	2.6×10^{-1}	0.560	0.407	0.635	1.443	0.420	7.056
SiO ₂ -54.8CaO	1076	1 173	1 753	5.1	0.614	0.415	0.669	1.733	0.435	7.539
Li ₂ O-2SiO ₂	738	899	1 339	0.2	0.551	0.433	0.671	1.496	0.443	7.576
BaO-2SiO ₂	974	1 137	1 690	3	0.576	0.427	0.673	1.588	0.446	7.598
Na ₂ O-2CaO-3SiO ₂	849	991	1 537	4.3	0.552	0.415	0.645	1.440	0.428	7.181

* means the data in mass fraction; the other data are in molar fraction.

Fig.4 Correlations between R_c and T_{rg} (a), γ (b), α (c), δ (d), ϕ (e) and ω (f) for glasses including BMGs and oxides


Alloys	$T_{\rm g}/{ m K}$	$T_{\rm x}/{ m K}$	$T_{\rm l}/{\rm K}$	ω	Z_{c}^{Exp}/mm	$Z_{\rm c}^{\rm Cal}/{ m mm}$
Cu ₆₀ Zr ₃₃ Ti ₇	740	768	1 191	7.182	3	7.7
Cu ₅₄ Ag ₆ Zr ₃₃ Ti ₇	709	738	1 135	7.256	6	8.6
$Cu_{46.4}Ag_{11.6}Zr_{35}Ti_7$	689	732	1 119	7.312	6	9.2
Cu _{44.25} Ag _{14.75} Zr ₃₅ Ti6	693	730	1 112	7.345	8	9.6
Cu44.25Ag14.75Zr36Ti5	700	734	1 115	7.372	10	10.0

can be estimated approximately using Eqs.(7) and (8), respectively. Of course, these two expressions would be refined by more data of glasses to predict GFA of BMGs. Moreover, GFA of Cu-Zr-Ti-Al alloys [22] is described parameter. The characteristic by ω temperatures of the alloys are listed together with GFA parameters in Table 5. The results of scanning electron microscopy(SEM) and X-ray diffractometry(XRD)

1278

JI Xiu-lin, et al/Trans. Nonferrous Met. Soc. China 19(2009) 1271-1279

Alloys	$T_{\rm g}/{ m K}$	$T_{\rm x}/{ m K}$	$\Delta T_{\rm x}/{ m K}$	$T_{\rm m}/{ m K}$	$T_{\rm l}/{\rm K}$	$T_{\rm rg}$	γ	ω
Cu ₆₀ Zr ₃₃ Ti ₇ [21]	740	768	28	1 144	1191	0.621	0.398	7.182
$(Cu_{60}Zr_{33}Ti_7)_{99}Al_1$	725	770	45	1 121	1176	0.616	0.405	7.320
(Cu60Zr33Ti7)97Al3	714	762	48	1 117	1150	0.621	0.409	7.437
(Cu60Zr33Ti7)95Al5	738	777	39	1 1 1 8	1186	0.622	0.404	7.326

Fig.5 Actual critical section thickness Z_c^{Exp} vs calculated critical section thickness Z_c^{Cal} for Cu-based BMGs

indicated the GFA of Cu-Zr-Ti-Al alloys are enhanced firstly and then depressed with minor additions of Al. Compared with the GFA parameters in Table 5, ΔT_x , γ and ω are accordant to these experimental results, but except $T_{\rm rg}$, showing that ω is one of the best applicable and reliable GFA parameters.

4 Conclusions

1) Based on the analysis of Gibbs free energy between liquid and crystal, a new GFA parameter, $\omega = T_1(T_1+T_x)/[T_x(T_1-T_x)]$, is suggested for bulk metallic glasses.

2) Together with other GFA parameters proposed formerly, including T_{rg} , γ , α , δ and ϕ , ω was verified with alloying and oxide glasses. Results indicate the new GFA parameter ω is the most reliable and applicable approach to assess the GFA of various glasses.

3) ω is applied to estimating the GFA of Cu-Ag-Zr-Ti and Cu-Zr-Ti-Al BMGs and the predicted data are consistent with the experimental results.

Acknowledgments

The authors would like to thank Dr. CAI An-hui (Institute of Powder Metallurgy, Central South University, China) for helpful discussions.

References

 LU Z P, BEI H, LIU C T. Recent progress in quantifying glass-forming ability of bulk metallic glasses [J]. Intermetallics, 2007, 15: 618-624.

[2] TURNBULL D. Under what conditions can a glass be formed [J]. Contemp Phys, 1969, 10(5): 473-488.

- [3] INOUE A, ZHANG T, MASUMOTO T. Reductilization of embrittled La-Al-Ni amorphous alloys by viscous flow deformation in a supercooled liquid region [J]. J Non-Cryst Solids, 1993, 156/158: 598–602.
- [4] LU Z P, LIU C T. A new glass-forming ability criterion for bulk metallic glasses [J]. Acta Mater, 2002, 50: 3501–3512.
- [5] LU Z P, LIU C T. Glass formation criterion for various glass-forming systems [J]. Phys Rev Lett, 2003, 91: 115505 1–4.
- [6] LU Z P, LIU C T. A new approach to understanding and measuring glass formation in bulk amorphous materials [J]. Intermetallics, 2004, 12: 1035–1043.
- [7] MONDAL K, MURTY B S. On the parameters to assess the glass forming ability of liquids [J]. J Non-Cryst Solids, 2005, 351: 1366–1371.
- [8] CHEN Q J, SHEN J, ZHANG D L, FAN H B, SUN J F, MCCARTNEY D G. A new criterion for evaluating the glass-forming ability of bulk metallic glasses [J]. Mater Sci Eng A, 2006, 433: 155–160.
- [9] FAN G J, CHOO H, LIAW P K. A new criterion for the glass-forming ability of liquids [J]. J Non-Cryst Solids, 2007, 353: 102–107.
- [10] KIM J H, PARK J S, LIM H K, KIM W T, KIM D H. Heating and cooling rate dependence of the parameters representing the glass forming ability in bulk metallic glasses [J]. J Non-Cryst Solids, 2005, 351: 1433–1440.
- [11] TAKEUCHI A, INOUE A. Calculations of dominant factors of glass-forming ability for metallic glasses from viscosity [J]. Mater Sci Eng A, 2004, 375/377: 449–454.
- [12] THOMPSON C V, SPAEPEN F. On the approximation of the free energy change of crystallization [J]. Acta Metall, 1979, 27(12): 1855–1859.
- [13] LAD K N, RAVAL K G, PRATAP A. Estimation of Gibbs free energy difference in bulk metallic glass forming alloys [J]. J Non-Cryst Solids, 2004, 334/335: 259–262.
- [14] MONDAL K, CHATTERJEE U K, MURTY B S. Gibbs free energy of crystallization of glass forming liquids [J]. Appl Phys Lett, 2003, 83: 671–673.
- [15] CHEN H S. Metallic glasses [J]. Chinese J Phys, 1990, 28(5): 407–425.
- [16] SENKOV O N, SCOTT J M, MIRACLE D B. Composition range and glass forming ability of ternary Ca-Mg-Cu bulk metallic glasses [J]. J Alloy Compd, 2006, 424: 394–399.
- [17] XIAO X S, FANG S S, WANG G M, HUA Q, DONG Y D. Influence of beryllium on thermal stability and glass-forming ability of Zr-Al-Ni-Cu bulk amorphous alloys [J]. J Alloy Compd, 2004, 376: 145–148.
- [18] SENKOV O N, SCOTT J M. Glass forming ability and thermal stability of ternary Ca-Mg-Zn bulk metallic glasses [J]. J Non-Cryst Solids, 2005, 351: 3087–3094.
- [19] CABRAL JR A A, FREDERICCI C, ZANOTTO E D. A test of the Hruby parameter to estimate glass-forming ability [J]. J Non-Cryst Solids, 1997, 219: 182–186.
- [20] LU Z P, TAN H, LI Y, NG S C. The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses [J]. Scripta Mater, 2000, 42(7): 667–673.
- [21] DAI C L, GUO H, SHEN Y, LI Y, MA E, XU J. A new centimeter-diameter Cu-based bulk metallic glass [J]. Scripta Mater, 2006, 54: 1403–1408.
- [22] JI X L, PAN Y, CAI A H. The effect of Al on glass forming ability of Cu-based bulk metallic glasses [J]. J Cent South Univ Technol, 2007, 14(S2): 20–23.