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Abstract: Under certain cutting conditions in end milling, the signs of cutting forces change from positive to negative during a 
revolution of the tool. The change of force direction causes the cutting dynamics to be unstable which results in chatter vibration. 
Therefore, cutting force signal monitoring and classification are needed to determine the optimal cutting conditions and to improve 
the efficiency of cut. Artificial neural networks are powerful tools for solving highly complex and nonlinear problems. It can be 
divided into supervised and unsupervised learning machines based on the availability of a teacher. Hybrid neural network was 
introduced with both of functions of multilayer perceptron (MLP) trained with the back-propagation algorithm for monitoring and 
detecting abnormal state, and self organizing feature map (SOFM) for treating huge datum such as image processing and pattern 
recognition, for predicting and classifying cutting force signal patterns simultaneously. The validity of the results is verified with 
cutting experiments and simulation tests. 
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1 Introduction 
 

End milling processes have been so widely used in 
precision machinery industries such as mechanical parts 
and die manufacturing. Several studies for end milling 
have been performed and reported [1−3]. Mattellotti 
[1]clarified geometric relationships between tool paths 
and cutting variables in end milling processes. Under 
certain cutting conditions, signs of cutting forces 
acquired by tool dynamometer change from positive to 
negative and vice versa during one revolution [4]. And it 
has been reported that chatter vibration can occur at the 
condition of relatively small axial depth cut [5]. 

Multilayer perceptron (MLP) which is a supervised 
neural network algorithm has been widely studied in the 
abnormal defect diagnosis of cutting process [6]. And 
self-organizing feature map (SOFM) is a very useful 
pattern recognition algorithm which selects the neuron 
whose randomized weight vectors match input vectors 
with the winning neuron and its neighborhood neurons 
[7−8]. 

In this study, the presence of cutting force reversal 

and chatter vibration are predicted, based on hybrid 
neural network combining SOFM neural network with 
multilayer perceptron (MLP) algorithm. For improving 
the quality of the classification performance. And the 
cutting experiments and simulation tests are carried out 
on commercially available aluminum AL6061 and 
SM45C to verify the validity of cutting force signal 
pattern recognition. 
 
2 Cutting force signals in end milling 
 

Fig.1 illustrates a down end milling process.  
In this study, the cutting action of tool bottom edges 

is prevented by using a grooved workpiece, as shown in 
Fig.1. 

Fig.2(a) and (b) show the measured and predicted 
cutting forces when the radial depth of cut, Dr, are 3 and 
4 mm respectively. In both cases, the axial depth of cut, 
Da, is 7 mm. 

When the radial depth of cut, Dr, is 4 mm, the 
cutting force component experiences minus values right 
after cutting edge enters the workpiece as seen in the 
figure. 
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Fig.1 Schematic diagram of down end-milling process 
 

 
Fig.2 Two cases of cutting force signals acquired by tool 
dynamometer (axial depth of cut, Da=7 mm) (a) Dr=3 mm; (b) 
Dr=4 mm 
 

The mechanism of such a cutting force reversal can 
be explained by a cutting force coordinate. 

Fig.3(a) and (b) show the variations of resultant 
cutting force direction during one revolution of cutting 
tool. In the figures, the abscissas represent the cutting 
force component Fy, while the ordinates represent the 
cutting force component Fx. 

As seen in the figures, varying extent of resultant 

 

 
Fig.3 Variations of resultant cutting force angle and its 
direction with respect to tool rotation: (a) Dr=3 mm(AL6061); 
(b) Dr=4 mm(AL6061) 
 
cutting force, R increases from 63.7˚ to 79.9˚ when the 
radial depth of cut, Dr, increases from 3 to 4 mm. When 
Dr is 3 mm, resultant cutting force vectors occupy only in 
the first quadrant of force coordinates. But in case Dr is 4 
mm, the vectors occupy the second quadrant except for 
the first one [9]. 

Fig.4 shows simulated cutting force Fy according to 
the variation of the specific cutting resistance of 
tangential direction, Kt, when the axial depth of cut, Da, 
is 7 mm, radial depth of cut, Dr, is 2 mm and the specific 
cutting resistance of radial direction, Kr, is 1 161.9 
N/mm2, respectively. 

As shown in the figure, the cutting force reversal can 
also occur when the ratio of the specific cutting 
resistance of tangential and radial direction, rk, is 
relatively large.  

These cases have been reported when cutting 
difficult-to-cut materials such as Inconnel [9]. 

Fig.5 shows the cutting forces with their high 
frequency components when the radial depth of cut, Da 
(4 mm) is the same to the case in Fig.2(b), but the axial 
depth of cut, Da (0.6 mm) is much smaller. 
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Fig.4 Relationships between simulated cutting force Fy and 
time 
 

 
Fig.5 High frequency components in cutting force curves (Dr= 
4 mm, Da=0.6 mm) 
 

From the figure, it is observed that much more high 
frequency components in the force curves and the 
relative magnitudes of minus force components are much 
larger than those in Fig.2(b). This cutting force reversal 
is to be an important factor to induce chatter vibration 
during cutting process. 
 
3 Hybrid neural network methodology 
 
3.1 Multilayer perceptrons (MLP) 

MLP network consists of sensory units that 
constitute the input, one or more hidden and output 
layers of computation nodes. And the model of each 
neuron in the network includes a nonlinear activation 
function. 

Fig.6 illustrates the architecture of MLP with two 
hidden layers. 

As shown in the figure, MLP network consists of 
two passes, a forward pass and a backward pass. During 
the forward pass, input vectors are applied to the sensory 
nodes and its effect propagates through the network layer 

 

 
Fig.6 Two passes of MLP (x: input vector; y: output vector; w: 
synapticweight; l: input layer; k, j: hidden layer; i: outputlayer; 
h: signoidfunction) 
 
to layer. Finally, outputs are produced as the actual 
response and the synaptic weights are all fixed. On the 
other hand, during the backward pass, the synaptic 
weights are all adjusted in accordance with an 
error-correction rule [10]. 
 
3.2 Self organizing feature map (SOFM) 

The principal goal of the SOFM is to transform an 
incoming signal pattern of arbitrary dimension into one 
or two dimensional discrete map, and to perform this 
transformation adaptively in a topologically ordered 
fashion. Fig.7 illustrates the SOFM the model. 
 

 
Fig.7 Architecture of SOFM model based on competitive 
learning 
 

As shown in the figure, the network consists of 
input layer and competitive layer where the topological 
ordering of the weight vectors takes place. 

Therefore, SOFM is converged with an accurate 
statistical quantification of the input space, and its 
synaptic weights are updated by 
 

)()()1( jikjjiji mxZnmnm −+=+ α               (1) 
 
where  m is a synaptic mass, α is a learning rate and Z is 
a Gaussian neighborhood function [10]. 
 
3.3 Hybrid neural network 

Fig.8 illustrates the hybrid neural network with both 
functions of MLP and SOFM. 

SOFM combines with MLP by using the final 
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learned mass with both of input and output information, 
nearest to output in MLP as input of SOFM. If new input 
vectors are applied to the network, output vectors are 
predicted in MLP part and classified in SOFM algorithm. 
 

 
Fig.8 Hybrid neural network 
 
4 Cutting experiments 
 

Table 1 shows the tool geometry and cutting conditions. 
The experiments were carried out under different cutting 

 
conditions to investigate the force reversal and chatter 
vibration. 
 
5 Results and discussion 
 
5.1 Cutting experiment results 

Table 2 presents input data for training in 
network. 

As shown in the table, AL6061 and SM45C are set as 
0.1 and 0.5, respectively, and if there is a cutting force 
reversal and chatter vibration occurs, the value is set as 
one, otherwise, 0. 

Table 3 shows the rest of cutting experiment results 
except for 12 training input values of total 16 tests. This 
data are used for testing in the hybrid neural network. 
 
5.2 Learning process in MLP 

Fig.9 shows the performance of learning using 
MLP. 

As shown in the figure, the error is converged to 0 
for 16 000 epochs when hidden layers are 2, the hidden 
nodes of hidden layers are 11 each and learning rate is 
0.01. 

 
Table 1 Cutting input conditions 

Tool Helix angle/(˚) Number of tooth Tool radius/mm Workpiece Radial depth of 
cut/mm 

HSS End-mill 30 2 5 AL6061, SM45C 3, 4 
Axial depth of 

cut/mm 
Spindle 

speed/(r·min−1) Feedrate/(mm·min−1)
Feed per 

tooth/(mm·tooth−1)
Cutting circumstance Sampling rate for data 

acquisition/Hz 

0.6, 2, 7, 15 1 200 150 0.065 Dry 3 000 
 
Table 2 Input data for training in network 

Cutting condition  Calculated value  Cutting experiment result 
No. 

a b c  d e f  g h 

1 0.1 3 2  0.36 0.016 1 1.787 9  0 0 

2 0.1 3 7  0.41 0.180 3 6.264 5  0 0 

3 0.1 3 15  0.38 0.229 9 13.426 6  0 0 

4 0.1 4 0.6  0.32 0.001 4 0.714  1 1 

5 0.1 4 7  0.40 0.135 5 8.353  1 0 

6 0.1 4 15  0.37 0.277 5 17.902 5  1 0 

7 0.5 3 0.6  0.43 0.0016 8 0.534 9  0 1 

8 0.5 3 2  0.45 0.016 1 1.787 9  0 0 

9 0.5 3 15  0.44 0.229 9 13.426 6  0 0 

10 0.5 4 0.6  0.40 0.001 4 0.714  1 1 

11 0.5 4 2  0.42 0.012 2 2.384 4  1 0 

12 0.5 4 7  0.46 0.135 5 8.353  1 0 

a: Material; b: Radial depth of cut; c: Axial depth of cut; d: Ratio of specific cutting resistance of radial and tangential direction Kr 
and Kt; e: Ratio of total uncut chip area and the area which a cutting edge escapes from workpiece during one revolution; f: Total 
Area; g: Force reversal; h: Chatter vibration 
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Table 3 Data sets for testing hybrid neural network 
Cutting condition  Calculated value  Cutting experiment result 

No. 
a b c  d e f  g h 

1 0.1 3 0.6  0.32 0.001 6 0.534 9  1 0 
2 0.1 4 2  0.33 0.012 2 2.384 4  0 0 
3 0.5 3 7  0.49 0.180 3 6.264 5  1 1 
4 0.5 4 15  0.43 0.277 5 17.902  0 1 

a: Material; b: Radial depth of cut; c: Axial depth of cut; d: Ratio of the specific cutting resistance of radial and tangential direction 
Kr and Kt; e: Ratio of total uncut chip area and the area which a cutting edge escapes from workpiece during one revolution; f: Total 
Area; g: Force reversal; h: Chatter vibration 
 
 

 

Fig.9 Learning performance in MLP 
 
5.3 Learning process in SOFM 

Fig.10 shows the convergence phase in a 
two-dimensional lattice of 12×12. 

Fig.10(a) shows the initial condition of the two 
dimensional lattice and Fig.10(b) shows the condition of 
the lattice at 500 iterations. Fig.10(c) shows the 
condition of the lattice at the end of convergence phase. 

Fig.10(a) and (b) show the learning results in SOFM 
and computer experiment for classification after 10 000 
iterations. 
 
5.4 Comparison of cutting experiment and simulation 

Table 4 shows the comparison of cutting experiment 
and computer simulation results. 
 
Table 4 Comparison of experiment and simulation results 

Cutting condition  
Calculated 

value 
 
Cutting experiment 

result No. 
a b c  g h  g h 

1 0.1 3 0.6  0 1  0 1 
2 0.1 4 2.0  1 0  1 0 
3 0.5 3 7.0  0 0  0 0 
4 0.5 4 15.0  1 1  1 1 

a: Material; b: Radial depth of cut; c: Axial depth of cut; g: 
Force reversal; h: Chatter vibration 

 
 

 
Fig.10 Convergence of SOFM: (a) Initial mass; (b) Iteration 
5%; (c) End of convergence 
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Fig.11 Computer experiment for adaptive pattern classification 
(a) Learning results in SOFM; (b) Gaussian neighborhood 
function centered on winning neuron of 12th pattern 

 
The prediction results are completely matching well 

with the cutting experiment results as shown in Table 4. 
As shown in Fig.11, recognized patterns are in 

coincidence with the patterns presented in Table 2. 
 
6 Conclusions 
 

1) Hybrid neural network combining MLP and 
SOFM algorithms is introduced for predicting and 
classifying cutting force signal patterns simultaneously. 

2) Both the cutting force reversal signal and chatter 
vibration occurrence signal pattern in end milling are 
predicted and classified perfectly by hybrid neural 
network. 
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