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Simulation of aging process of lead frame copper alloy by
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Abstract: The aging hardening process makes it possible to get higher hardness and electrical conductivity of lead frame

copper alloy. The process has only been studied empirically by triat and error method so far. The use of a supervised artifr

cial neural network( ANN) was proposed to model the norr linear relationship between parameters of aging process with re-

spect to hardness and conductivity properties of Cur CrZr alloy. The improved model was developed by the Levenberg

Marquardt training algorithm. A basic repository on the domain knowledge of aging process was established via sufficient

data mining by the network. The results show that the ANN system is effective and successful for predicting and analyzing

the properties of Cur Cr-Zr alloy.
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1 INTRODUCTION

The functions of lead frame in electronic packing
are providing channels for electronic signals between
devices and circuits, and fixing devices on circuit
boards. Lead frame alloys are required to have high
strength and good formability as well as high electri-
cal and thermal conductivity . Cubase alloys are the
most popular lead frame alloys and are used in plastic
packaging application due to their high thermal and
electrical conductivity as well as high strength! ™).
The aging hardening process in fabrication of lead
frame copper alloy makes it possible to get higher me-
193] The process has

only been studied empirically by trialand-error
[678]

chanical and electrical properties
method so far For this reason, it is important
and indispensable to simulate the aging processes by
numerical methods in order to optimize process de-
sign.

Being a kind of data mining and artificial intelli-
gence techniques, neural networks( NN) are devel
oped to model the way in which the human brain pro-
cesses information. A neural network is a massively
parallekdistributed processor that has a neural
propensity for storing experiential knowledge and
making it available for future use. Unlike convention-
al, explicitly programmed computer programs, neural

networks are trained through the use of previous ex-
ample data and then iteratively adjusted the weights
of the neurons until the output for a specific network
is close to the desired one. Furthermore neural net-
works possess many excellent properties such as out-
standing nonlinear approximation, auto-adaptation
and association capability. As a complex non-linear
system, NN models have been widely employed to
map the indeterminate relationship between cause and

effect variables in many fields! *'1

In the present
work a universal ANN program is designed on the ba-
sis of improvement upon BP training algorithms. Us-
ing this program, a two-hidderrlayer network is con-

structed to simulate aging processes in fabrication of

high properties Cu-0. 3% Cr-0. 15% Zr alloy.

2 COLLECTION OF INPUT/ OUTPUT PARAME-
TERS

The selection of input/ output variables is a very
important aspect of neural network modeling. Usual-
ly this choice is based on the background of a process.
In the present work the followings are used as input
parameters: the aging temperature( T') and the aging
time( ¢).
properties acquirement: hardness and electrical con-
ductivity.

The knowledge of a specific field is implicated in

Output variables are determined by the
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the existing training samples, so an appropriate
dataset with good distribution is significant for reli
able training and performance of neural networks. To
ensure reasonable distribution and enough information
containing of the dataset, aging processes are covered
with different parameters. The aging temperatures
are 400, 450, 500, 550, 600 and 650 C; the aging
time 0 min, 15 min, 30 min, 45 min, 1 h, 1.5h, 2 h,
3h, 4h, 5h, 6h, 7h, 8h, 9h, 10h, 11 h. So the

total samples reach 96.

3 DESIGN OF HIDDEN LAYERS AND NEURONS

Hidden layers perform abstract functions, name-
ly, they can extract characteristic knowledge impli-
cated in input data. So it is the hidden layers that
give neural networks the ability to deal robustly with
nonlinear and complex problems. However different
algorithms of BP networks have different limitations
in practice. For instance, it is difficult for a single
hidden-layer network to improve its closeness of-fit if
it has too few hidden nodes; while too many hidden
nodes enable it to memorize (overfit) the training
dataset, which produces poor generalization perfor
mance. At present there isn t a valid analysis formula
for designing hidden layers and “it is an art to decide
the quantity of nodes per hidden layer”, so a trade off
exists between generalization performance and the
complexity of training procedure when designing the
topology of a neural network.

A lot of computational instances show that two-
hidderrlayer neural networks are suitable. If the di-
mension of input layers N are not too large, N and
N, are the quantity of nodes in the first and the sec
ond hidden layer respectively, N = N. Adjusting N »
ensures both the generalization performance and the
rate of the convergence satisfactory. After many
times of triakand-error computation by the ANN pro-
gram, perfect topology ({2, 2, 4, 2}) of the hard-

Aaw=—(JTT +iD"JTe

aw'=(JII+ 4D e | aw'=~( J]1,+2, 1\ 0] e

ness and conductivity outputs are found.

4 IMPROVEMENT ON BP TRAINING ALGO-
RITHMS

An error back-propagation ( BP) network is se-
lected because of its greater capability of association
and generalization. The weights of the neurons are it-
eratively adjusted in accordance with the error correc
tion rule until the output for a specific network is
close to the desired output. The classical error correc
tion rule is the steepest descent algorithm, but the
method suffers from the drawback that the rate of
convergence is reduced rapidly near the extreme
points of the objective function; while to the second
order algorithms such as GaussNewton algorithm,
the rate of convergence is reduced rapidly far from the
extreme points of the objective function! ',

The method used in this paper is the Levenberg-
Marquardt ( LM ) algorithm (as shown in Fig. 1)
which is a kind of quasrNewton methods. The
weights of the neurons are iteratively adjusted by:

w(not )= w(no)- (J'"J+ N) 'g, (1)
where g, =g/2, g is the gradient of the error func
tion E with respect to the weight and bias variables
w; J"'is the transposed matrix of J; I is the identity
matrix which has the same dimensions with J'J; A
is an adjustable constant multiplier and when it is
down to zero, Eqn. (1) is just approximate Newton s
method; when MAis large, it becomes the steepest de-
scent algorithm with a small step size( as shown in
Fig. 2).
rate near an error minimum, so the aim is to shift to-
wards Newton s method as quickly as possible. Thus,
Ais decreased after each successful step (reduction in

Newton’ s method is faster and more accu-

performance function) and is increased only when a
tentative step would increase the performance func

fanY
9
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Fig. 1 Model of Levenberg-M arquardt( LM) algorithm
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Fig. 2 Descent directions of three algorithms

S RESULTS AND DISCUSSION OF PREDICTION

To test the generalization performance of the
trained networks, the relation between the predicted
values from the trained neural network and the tested
data are shown in Table 1. Very good agreements be-
tween them are achieved(see Table 1), which indr
cates that the trained networks take on optimal gener-
alization performance. This also demonstrates, as a
typical data mining technique, neural networks can
find the basic pattern information implied in a great
number of experimental data, extract useful rules and
then use these rules for obtaining reasonable predicted
results.

After neural networks are trained successfully,
all domain knowledge extracted out from the existing
samples is stored as digital forms in weights associated
with each connection between neurons. Making full
use of the domain knowledge stored in the trained
networks, three-dimensional graph is drawn in Fig.
3. Obviously, the graph exhibits much more profes-
sional know ledge.

5.1 Effects of process parameters on hardness
The variation of hardness with increasing

temperature and time reveals that the time to peak

hardness decreases with increasing temperature as
shown in Fig. 3. With enhance of the temperature,
the initial kinetic of the precipitation is higher, which
leads to shorter time to reach peak hardness. The
peak hardness values for 3 h and 4 h are HV 108. 6
and HV 108. 3 at 503 'C and 486 C respectively as
shown in Fig. 4 and Fig. 5. At the peak hardness the
fuller precipitation is available and the hardening ef-
fect is optimum. This indicates that the precipitates
are coherent with the matrix.

Fig. 6 is a plot of hardness as a function of time

at 500 C.

5.2 Effects of process parameters on electrical comr
ductivity

Fig. 7 reveals that the electrical conductivity in-
creases with increasing the time and temperature.
The highest conductivity reaches 79. 3% IACS at 600
‘Cfor 11 h. The higher temperature and the longer
time bring about more precipitates. The growth of
precipitates reduces the contents of solute atom in ma-
trix and results in a continuous increase in electrical
conductivity dur
ing the aging. So the conductivity in Cu 0. 3Cr
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Fig. 3 Hardness with regard to temperature
and time

Table 1 Tested data and predicted values

Inputs Predicted values Tested data
T emperature/ C Time/ h Hardness(HV)  Conductivity( IACS)/ % Hardness(HV)  Conductivity( IACS) / %
450 1 98 45 99 49
450 2 100 55 101 58
450 3 106 68 106 70
470 1 101 54 101 55
470 2 104 65 103 65
470 3 107 75 104 73
500 1 106 67 104 68
500 2 108 75 103 73
500 3 107 76 104 75
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Fig. 6 Hardness with regard to time at 500 C

0. 15Zr lead frame alloy remains at a higher level. Af-
ter 600 C the electrical conductivity decreases slight-
ly, which is attributed mainly to the solution of the
precipitates in the matrix again. The solute atoms in
matrix can act as obstacles for the movement of con-
duction  electron  and  increase the  densr
ty of electron scanning centers — lattice imperfec -
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Fig. 7 Conductivity with regard to
temperature and time
tions.

Fig. 8 shows the conductivity first increases with
increasing temperature then decreases.

Fig. 9 shows the conductivity increases with in-
creasing time.

From the preceding analyses, it is suggested that
both the hardness and electrical conductivity

can be increased through the control of precipitati -
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Fig. 8 Conductivity with regard to
temperature( t= 4 h)
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Fig. 9 Conductivity with regard to time at 500 C
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on during the aging treatment of Cu-0. 3Cr-0. 15Zr
lead frame alloy. The best combination of hardness
(between 106 HV and 108 HV) and conductivity
(from 71% to 76% IACS) is achieved at 470 =510 C

from 3 h to 4 h for Cu0. 3Cr-0. 15Zr lead frame al-
loy.

6 CONCLUSIONS

1) A neural network model of aging processes
has been built. The improved model is developed by
the Levenberg-Marquardt training algorithm. High
precision of the model and a good generalization per
formance are demonstrated.

2) The ANN system is effective and successful
for predicting and analyzing the properties of Cur
0.3Cr0. 15Zr lead frame alloy. The optimized pro-
cessing parameters are 470 =510 C and 3 =4 h.
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