Article ID: 1003 - 6326(2003) 06 - 1381 - 04

Structure and micro-tribological properties of PTFE/ Al₂O₃ micro-assembling film [©]

TANG Hui(汤 卉), JIA Hui-juan(贾会娟), SHAO Jun-peng(邵俊鹏) (Department of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150080, China)

Abstract: In order to improve the wear resistance of elastic metallic plastic thrust bearing pad, micro assembling PTFE/ Al_2O_3 multiplayer film was developed by alternating radio frequency (RF) magnetron sputtering PTFE and Al_2O_3 targets. For enhancing the adhesion of the interfaces between PTFE and Al_2O_3 film, N^+ implantation was employed. The structure, mechanical and micro tribological properties were studied by XPS, X-ray photoelectron spectrometer and atomic force and friction force microscope (AFM/FFM). The results show that the multiplayer consists of Al_2O_3 component and crystalline PTFE. The hardness of the multiplayer modified by ion implantation is less than that of Al_2O_3 , but its toughness is greatly improved. The friction coefficient of PTFE/ Al_2O_3 multiplayer modified by ion implantation is much lower than that of Al_2O_3 film, and its resistance to wear is much greater than that of PTFE film. Therefore the wear resistance of elastic metallic plastic thrust bearing pad is greatly improved.

Key words: multi-layer film; PTFE; ion implantation; Al₂O₃

CLC number: TB 383 Document code: A

1 INTRODUCTION

Compared with Babbitt pads of thrust bearing, the elastic metallic plastic pads possess the combination of reliable running, excellent performance, flexible operation, convenient installation and long service life. Therefore the elastic metallic plastic pads are widely employed in vertical electric machines of hydropower plants. Polytetrafluoroethylene (PTFE) has been used as the surface material of the elastic metallic plastic pads because of its low friction coefficient and electrical insulation[1]; but its strength and wear resistance are not good enough. For solving this problem, several methods have been proposed, based directly on physical intermingle. To improve the compressibility, creepocity and wear resistance, method of filling glass fiber into PTFE has been developed in Toshiba Company^[2] of Japan. As a result, the friction coefficient of elastic metallic plastic pads is higher than that of the former ones. And in order to lower the friction coefficient, MoS₂ is filled into these pads. MoS₂ is a nice solid lubricant with low shear strength due to its HCP structure. The friction and wear of the mechanical elements coated with MoS₂ films can be reduced effectively; especially in vacuum or in dry air environments. However, the function of MoS₂ in humid environments usually decreases greatly, which results in the limitation of its application. Al₂O₃ is a hard material with good wear resistance. According to the characteristics of PTFE and Al₂O₃, the idea of laminate structure is chosen to design a multi-layer with relatively low friction coefficient and high wear resistance. The micro-assembling PTFE/Al₂O₃ multi-layer film was prepared by ion beam alternatively sputtering PTFE and Al₂O₃ targets, and the PTEE film is modified by N⁺ implantation. The structure and micro-tribological properties of the multi-layer film are investigated.

2 EXPERIMENTAL

The micro-assembling PTFE/Al₂O₃ multi-layer was prepared by Ar⁺ beam alternatively sputtering pure PTFE and Al₂O₃ targets using an alternating radio frequency (RF) magnetron sputtering system^[3-5]. The elastic metallic plastic pad was used as substrate. The multiplayer was designed to 10 layers with alternative PTFE and Al₂O₃ layer. The inner was Al₂O₃ layer and the outer was PTFE layer. The deposition rate of PTFE and Al₂O₃ layer was 15 nm/min and 8 nm/min respect tively, so the sputtering time was chosen 5 min for each PTFE layer and 10min for each Al₂O₃ layer. The thickness of each PTFE layer was almost the same as that of Al₂O₃ layer (80 nm). In order to enhance adhesion of interfaces, N⁺ implantation^[6-8] was employed for each PTFE layer and not for Al₂O₃ layer. The implantation was carried out with 50 keV and a dose of $1 \times 10^{17} \text{N}^+$ / cm². Adjusting the acceleration energy and the ion current during the implantation can control the penetration depth and the dopant dose. Detail parameters of the sputtering process are listed in Table 1.

① Foundation item: Project(2002AA5CG023) supported by the Scientific Tackle Key Problem of Harbin, China

Received date: 2002 - 12 - 24; **Accepted date:** 2003 - 09 - 03

Table 1 Parameters of magnetron sputtering							
Samples	Base pressure/ 10 ⁻³ Pa	Sputtering energy/ keV	Sputtering current/ mA	Pressure of argon/ 10 ⁻³ Pa	Pressure for deposition/ 10 ⁻³ Pa	$ \begin{array}{c} Temperature/\\ \mathbb{C} \end{array} $	
PTFE	1.5	1.5	35	5. 1	1.4-1.8	35	
$\mathrm{Al_2O_3}$	1.5	3. 2	110	5. 1	1.4-1.8	35	

In order to compare with the PTFE/ Al_2O_3 multi-layer, pure PTFE and pure Al_2O_3 films are also prepared using the same deposition parameters as listed in Table 1. The deposition time is 50 min for pure PTFE film and 95 min for Al_2O_3 film. The film thickness of pure PTFE and pure Al_2O_3 is almost the same as that of PTFE/ Al_2O_3 multi-layer.

3 RESULTS AND DISCUSSION

3. 1 Structure analysis

The chemical bond and phase composition are determined by PHI-5300 X-ray photoelectron spectrometry and X-ray diffractometry. The C 1s spectrum of the PTFE film is shown in Fig. 1.

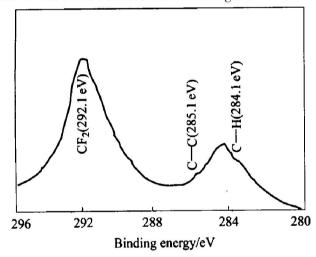


Fig. 1 C 1s spectrum of as deposited PTFE film

It can be observed that the film is mainly composed of C- F bond ((292.1 ± 0.1) eV). Meanwhile there are small amounts of C- C ((285.1 ± 0.2) eV) and C- H ((284.2 ± 0.2) eV) bonds. The results show that the chemical bonds of the deposited film coincide with those of the bulk PTFE.

The X-ray diffraction patterns^[9] of the pure PTFE, pure Al_2O_3 , PTFE/ Al_2O_3 multiplayer and PTFE/ Al_2O_3 multiplayer modified by ion implantation are shown in Fig. 2. In the X-ray diffraction pattern of PTFE/ Al_2O_3 multiplayer, there are not only pure PTFE's diffraction peak at $2\theta \approx 25^\circ$ but also pure Al_2O_3 peak at $2\theta \approx 25^\circ$. Apart from these two peaks, there are no other peaks in the multiplayer. PTFE component in pure PTFE film and PTFE/ Al_2O_3 multiplayer is in the crystalline state, but Al_2O_3 component in pure Al_2O_3 film and PTFE/ Al_2O_3 multiplayer

appears to be in the diffused scattering pattern. This proves that the multi-layer consists of Al_2O_3 component and crystalline PTFE. The ESCA analysis shows that there are some Al and N compound in the outer layer PTFE of PTFE/ Al_2O_3 multi-layer modified by ion implantation. Therefore, in the interfaces of PTFE and Al_2O_3 , the atomic intermingle is involved by N⁺ implantation, and adhesion is enhanced between the interfaces of PTFE and Al_2O_3 .

3. 2 Mechanical properties

Table 2 shows the film thickness, micro-hardness and toughness of pure PTFE, pure Al₂O₃, PTFE/Al₂O₃ multiplayer and PTFE/Al₂O₃ multiplayer er modified by N⁺ implantation. The thickness of PTFE/Al₂O₃ multiplayer is almost the same as that of pure PTFE and pure Al₂O₃ films. The hardness of the PTFE film is very low, but its critical load is very high. The Al₂O₃ film have high hardness and low toughness different from PTFE film. Through assembling of PTFE and Al₂O₃ films, the PTFE/Al₂O₃ multiplayer not only has high hardness but also has relatively high toughness, i. e. the comprehensive properties of multiplayer are superior to those of pure PTFE film or pure Al₂O₃ film. The PTFE/Al₂O₃ multiplayer modified by ion implantation is superior to the others.

Table 2 Film thickness and mechanical properties of deposited film

Samples	Film thickness/	M icro- hardness/ M Pa	Critical load/ N
PTFE	750	60	> 0.98
$\mathrm{Al_2O_3}$	750	2 128	0. 127
PTFE/Al ₂ O ₃	770	1 437	0.441
PTFE/Al ₂ O ₃ assisted by ion implantation	770	1 856	0. 343

A series of experimental results show that the strength and toughness of the PTFE/ Al_2O_3 multiplayer can be varied with the thickness and number of PTFE and Al_2O_3 films and the adhesion of N^+ implanted in PTFE layer of PTFE/ Al_2O_3 multiplayer.

3. 3 Characteristics of micro-friction and wear

The observation of micro-tribological behavior is carried out in an atomic force and friction force

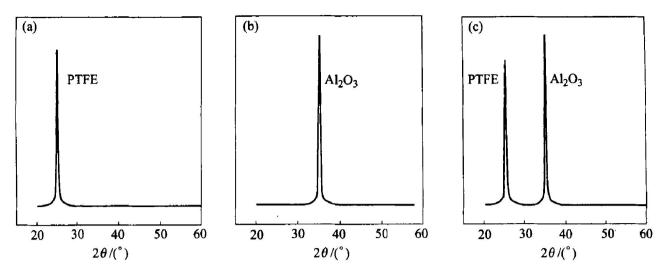


Fig. 2 X-ray diffraction patterns of PTFE, Al₂O₃ and PTFE/Al₂O₃ film

microscope (AFM/FFM). Fig. 3 shows the dependence of micro-friction force signal of pure PTFE film, pure Al₂O₃ film, PTFE/Al₂O₃ multi-layer and PTFE/Al₂O₃ multiplayer modified by N⁺ implanted on load. It can be observed that the micro-friction force signals of Al₂O₃ film and PTFE/Al₂O₃ multir layer are almost linear with load. For pure PTFE film, when the load is less than 70 nN, the microfriction force signal increases linearly with the load. When the load is greater than 70 nN, the micro-friction force signal does not increase with the load, while remains about constant. When the load is above 70 nN, the surface morphologies of the pure PTFE film and PTFE/Al₂O₃ multiplayer are scratched, but there are no worn marks on the surfaces of pure Al₂O₃ film and PTFE/Al₂O₃ multiplayer modified by ion implantation. According to the friction theory^[13] and the relationship between the friction force and friction force signal, the friction coefficient factor of pure PTFE film is the smallest (0.057), the second is the PTFE/Al₂O₃ multiplayer modified by plantation (0.088), the third is PTFE/Al₂O₃

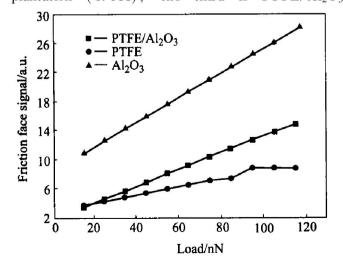
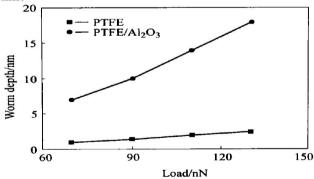



Fig. 3 Dependence of friction on load of PTFE, Al₂O₃ and PTFE/Al₂O₃ film

multir layer (0. 108) and the largest is pure Al_2O_3 film (0. 162).

When the load is greater than 70 nN, the worn mark is started to form on pure PTFE and PTFE/ Al_2O_3 films, but there is no obvious worn mark on pure Al_2O_3 film. The dependence of worn depth of PTFE and PTFE/ Al_2O_3 films on load is shown in Fig. 4. The worn depths of PTFE and PTFE/ Al_2O_3 film are also in nano-scale; the worn depth of PTFE/ Al_2O_3 multi-layer is about one tenth of that of PTFE film at the same load, and the worn depth of PTFE/ Al_2O_3 multi-layer modified by ion implantation is about one fifteenth of that of PTFE film at the same load. Although the wear resistance of PTFE/ Al_2O_3 multi-layer modified by ion implantation is less than that of Al_2O_3 , it is much greater than that of PTFE film.

Fig. 4 Dependence of worn depth on load of PTFE and PTFE/Al₂O₃ film

4 CONCLUSIONS

- 1) The deposition PTFE components of pure PTFE film and PTFE/Al₂O₃ multiplayer are in crystalline state, and their structures are the same as that of bulk PTFE. In the friction and wear process, the pure PTFE film has high lubricity, low friction coefficient and low wear resistance.
 - 2) The PTFE layer in PTFE/Al₂O₃ multiplayer

is located between two Al_2O_3 layers. Because of the interaction between PTFE and Al_2O_3 layer, the multiplayer combines the superior characteristics of PTFE and Al_2O_3 films.

3) The multi-layer modified by ion implantation has high comprehensive properties, i. e. the combination of high hardness, high toughness, low friction coefficient and high wear resistance. So this surface modification technique for enhancing properties such as wear resistance and wear surface hardness is effective for elastic metallic plastic pads.

REFERENCES

- [1] Suzuki H, Mashiko S. Adhesive force mapping of friction-transferred PTFE film surface [J]. Appl Phys, 1998, 66: 1271 – 1274.
- [2] DAI Harli. The development and application of plastic pad in Japan [J]. News of Great Electric Machines, 2002, 160: 9 - 10.
- [3] WU Zi-qin, WANG Bing. The Growth of Thin Solid Film [M]. Beijing: Science Press, 2001. (in Chinese)
- [4] Affinto J, Martin P, Grose M. Thin solid films [J]. Science, 1995, 270(1): 514.
- [5] ZHANG Lide, MOU Jimei. Nano Material and Nano

- Structure [M]. Beijing: Science Press, 2001. (in Chinese)
- [6] Fuch G, Abonnean R, Treilleux M, et al. Ion beam mixing of Cur Al₂O₃ interfaces for enhanced adhesion [J]. Mater Sci Eng, 1989, A109: 83.
- [7] Lee E H, Lewis M B. Improved surface properties of polymer materials by multiple ion beam treatment[J]. J Mater Res, 1991(6): 610-628.
- [8] Ochsner R, Kluge A A. Improvement of surface properties of polymers by ion implantation[J]. Nuclear Instruments and Methods in Physics Research, 1993, B80/81: 1051 1054.
- [9] Moulder J F, Stickle W F, Sobol P E, et al. Handbook of X-Ray Photoelectron Spectroscopy [M]. Minnesota: Physical Electronics Inc. Press, 1995. 213.
- [10] Roberts S G, Page T F. The effects of N⁺ and B⁺ implantation on the hardness behavior and near surface structure of SiC [J]. Mater Sci, 1986, 21: 457.
- [11] Rarneta P J, Page J F. The friction and hardness of ionimplanted sapphire [J]. Wear, 1987, 114: 85.
- [12] Sood D K, Baglin J E E. Ion beam induced modification of energy of adhesion for copper films on Al₂O₃ substrates [J]. Nucl Instr Meth, 1987, B19/20: 954.
- [13] WEN Shr zhu. Theory of Tribology in Nano Scale [M]. Beijing: Tsinghua University Press, 1998. (in Chinese)

(Edited by HE Xue feng)