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Abstract: Shear localization in linear strain softening heterogeneous material under simple shear was investigated analyt

cally. The closedform solutions obtained based on gradient plasticity theory considering interactions and interplaying a-

mong microstructures due to heterogeneity of metal material show that in the normal direction of shear band, elastic shear

displacement is linear; while plastic and total shear displacement are nomrlinear. Elastic shear strain in the band is uniform

and the norruniformity of total shear displacement stems from localized plastic shear displacement. In the center of the

band, plastic and total shear displacement all reach their maximum values. In strainsoftening process, elastic displace

ment decreases as flow shear stress decreases. Contrarily, plastic and total shear displacement increase and manifest shear

localization occurs progressively. Under the same shear stress level, plastic and total shear displacement increase as strain

softening modulus and elastic shear modulus decrease. The present analytical solutions were compared with many experr

mental results and the agreement is good.
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1 INTRODUCTION

Failure process of materials is particularly com-
plex, which is a problem involved in multrscale and
many disciplines. Though scientists from many coun-
tries have contributed some important results for the
problem in recent years, further investigations by me-
chanical scientists, physicists and material scientists
are necessary to obtain a full understanding of the
failure mechanisms.

Especially in last 20 years, as a mechanism of
progressive failure, the problem of localization has at-
tracted topic interest. As a consequence of softening,
damage and accordingly large deformation tend to ac-
cumulate within the narrow bands, the so-called shear
band. As a precursor to the final rupture, localization
can be observed in a wide class of ductile metal mate-
rials.

A few investigators studied the characteristics of
shear localization. What is the reason for that? One is
that spurious mesh sensitivity can not be overcome in
numerical simulation due to the fact that classical con-
stitutive equations do not contain any physical proper
ty with the dimension of length. The other is that in
the context of classical continuum theories at a given
point the physical state of a body is completely deter
mined by the state of the material. So, it is not possi-

ble to predict the thickness of shear band, localized
deformation, non-uniform displacement and velocity
in shear band. Moreover, in classical plastic theory
slip line or surface has zero thickness, which is not in
agreement with many experimental observations.

Motivated mainly by difficulties above, a number
of modifications and generalization from the standard
continuum description have been proposed. One of
the approaches is gradient continuum that incorpo-
rates the second order gradient of plastic strain in the
yield function! "™

The paper is organized as follows. Firstly, two
different mechanisms for shear localization are dis-
cussed. Secondly, the gradient-dependent plasticity is
briefly introduced and analysis of shear localization is
carried out. Moreover, the relation between mi
crostructures and strain gradient or characteristic scale
of ductile metal materials is discussed. At last, pre-
sent analytical results obtained are discussed and are

compared with experimental results.
2 ANALYSIS OF SHEAR DEFORMATION

2.1 Two different mechanisms for shear localiza-
tion
Because of diversity of materials, geometry,

scales of observation and loading conditions, a number
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of mechanisms of localization have been suggested.
Shawki et all® have classified the mechanisms into
two main categories: one is mechanism that is associ-
ated with localization during the quasrstatic, isother
mal deformation of rate-independent materials; the
other one is concerned with localization during the dy-
namic, adiabatic deformation of rate-sensitive materi-
als. The present mechanism of localization belongs to
the first category.

2.2 Introduction to gradient dependent plasticity
and its progress

Based on the early nomrlocal elasticity models

proposed by Eringen et al_m , the definition of nonrlo-

cal plastic shear strain ¥’ can be expressed as the

weighted average of its local counterpart ¥’ over a
surrounding length L:

o —HLg(g ¥(y+ §dE (1)

where y denotes coordinate, Eisa point of interest
and g( &) represents the Gaussian distribution weight
function.

g( &) function can be expressed as follows:

g( 9= exp(- &/41%) (2)
where [ is the internal length parameter.

This integral in Eqn. (1) can be evaluated by ex-

panding ¥’ (y + &) into a Taylor series around the
point & 0

Y(y+ §= ¥(y)+ M(;y &+
jme (3)

The combination of Eqn. (3) and (1) yields the

following definition of the norrlocal plastic strain:

S - .LI , .LI
W= ) e(8Y(y)dEs + ) e(F)
Md &&+
A L ran 3
With the assumption of 1sotr0pic influence of the
averaging equation, the integrals of the odd terms
vanish. Truncating the Taylor series of Eqn. (4) after

the quadratic term leads to the following definition of
the nomrlocal plastic shear strain:

WP = g(&) , d"¥(y)
Y= ,l:;p[L n!lL dy" gdg (5)

Using Eqn.(2), the following expression for
norr local plastic shear strain can be derived

—_ 2 \p

(6)

The present formula of non-local plastic shear
strain can be seen as a particular case of three-dimen-
Substi

tuting norrlocal plastic shear strain in Eqn. (6) for lo-

sional expression proposed by Ellen et all”!

cal plastic shear strain in classical plastic theory, we
can consider the effects of microstructures in the con-

text of classical plastic theories.

In numerical simulation aspects, many kinds of
variational principles, finite element formulations and
algorithms have been proposed for gradient plasticity

models, recently[l_sl. However, unfortunately, in
analytical aspects, only a few analytical solutions for
strain localization based on gradient-dependent plas-
- [1, 7713]

ticity were proposed :

2.3 Microstructures and gradient dependent plas-
ticity

For most of the materials the texture is heteroge-
neous and any microstructure will be influenced sig-
nificantly by its neighborhoods. The extent of long-
range interaction is governed by the characteristic
length that depends on mean grain diameter. More-
over, the interactions among microstructures occur
only in shear band and outside the band the effect can
be ignored. Microstructures of different kinds of met-
als are of very importance and have been studied ex-

tensively by experiments''* ', In a word, the sec
ondrorder strain gradient term describes the interac

tions and interplaying among microstructures.

2.4 Analysis of strain, displacement and velocity
in shear band

2.4.1 Classical plastic theory for brliner constitu-
tive relation

We suppose that localization is initiated at the
peak shear stress and the shear deformation shown in
Fig. 1 only occurs in the horizontal direction. The
slope of shear stress —shear strain curve up to the
peak can be considered approximately the same con-
stant G. So, in the elastic regime, the shear elastic
modulus G governs the relation between shear stress
and elastic shear strain: T= GY. The brlinear dia
gram of constitutive relation is shown in Fig. 2. The
absolute slope of shear stress —shear strain curve can
also be considered approximately the constant A usu-
ally referred to as strain softening modulus. For sim-
plicity, the shear band is treated as a one-dimensional
shear problem. In the conventional one dimensional
plasticity theory for linear strain softening material,
the flow shear stress Tis an explicit function of T,

A G, and the accumulated plastic shear strain ¥’, i

e.
G\,
T= T-
2.4.2 Inclusion of secondrorder spatial derivative

and analysis
Substituting Eqn. (6) for Eqn. (7), we can get
the follow ing expression:
3 b
S vy 2 iﬁ) (8)
It is supposed that the shear band has a thick-
The bounda

T= T(:_

ness w beyond the peak shear stress .
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Fig. 1 Deformation of shear band after
onset of localization
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Fig.2 Simplified shear stress vs shear strain
(i. e. constitutive relation)

ry condition is

Y= 0at y= Fw/2 (9)

Applying the boundary condition, the results is
T.=

w= = I- cos(%)/cos(lz‘?) ( 10)

—GA

where c¢= Ct+ X We are now interested in the ape

riodic solution that results in the steepest descending
branch. This solution is obtained by requiring
D
gf: 0 (11)
So, we can obtain the smallest nontrivial argu-
ment of w and local plastic shear strain, respectively

w= 2] (12)
T- T
¥= ~—(1+ cos 4;) (13)

Total shear strain in shear band becomes

Y= Y4+ ¥’ where Y= T/ G, so that

_ X, W= x
Y_G+ - (1+cosl) (14)

2.4.3 Total shear strain, displacement and velocity
according to complex constitutive relation

In fact, the shear constitutive relation shown in
Fig. 3 is more complex than that of present analysis.
But as peak shear stress is attained, we can assume
that specimen unloads alone a straight line AB whose
slope is referred to as shear elastic modulus G. For
simplicity, in strain softening regime the shear
stress —shear strain curve can be approximately con-
sidered as a line whose absolute slope is called strain
softening modulus A Thus, in the coordinate system
YOT the constitutive relation is still brlinear. Residu-
al plastic strain ¥ in pre peak stage is uniform and is
equal to the length of line segment 00’. So, for
complex constitutive relation beyond the peak stress,
the total and plastic shear strain has the form as fol-

lows:
T, =T ¥
Y_G+ v+ T (1+Cosl) (15)
T— T
Y= v+ = (1+ cos f) (16)

Integrating the total shear strain, we can get

v X r
d(y) = [ vay = (e vy

T- T

—(y+ Isiny) (17)
where d(y) is total shear displacement along the
shear stress direction. When y= w/2, the displace-
ment d(y) reaches its maximum d,,/ 2. d,, shown in
Fig. 1 is the relative displacement between the upper
and lower boundary of the shear band
T— T

(18)

dn= (ET+ YY) w+ LW

The displacement d(y) can be composed of elas-
tic and plastic shear displacement. The elastic and
plastic part can be given, respectively

du(y)= (G+ )y (19)
T—- T
dy(y)= = (y+ Isin ) (20)

Considering that the residual strain is a constant
and differentiating Eqns. (19) and (20) with respect
to time lead to

T
ve(y)= "oy (21)
- T .
vo(y)= = (y+ lsin ) (22)
where v.(y) and v,(y) are elastic and plastic shear

velocity respectively, Tis shear stress rate while in
strairrsoftening regime its value is always negative.

The total shear velocity is

v(y)=ve(y)+ vy(y) (23)
3 EXAMPLES AND DISCUSSION

For simplicity in present analysis , let the re
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Fig. 3 Complex constitutive relation and its simplification

sidual plastic shear strain ¥'= 0.

3.1 Characteristics of shear deformation

Herein, we take parameters as follows: w = 100
Um, G= 80x 10’ Pa, A= 0.2G and T.= 10° Pa,
The influences of flow shear stress on shear deforma-
tion may be seen from Figs.4 = 6. In the normal line
of shear band, elastic shear displacement is linear.
However, in the normal line of shear band, both
plastic and total shear displacement are non-linear. In
the boundary of shear band, they all attain their max-
imum. Due to the fact that shear strain denotes the
tangent line of shear displacement, in shear band, e
lastic shear strain is uniform, and plastic shear strain
and total shear strain are norruniform. The reason for
the norruniformity of total shear strain stems from
plastic shear strain. Elastic shear displacement is de-
creased with decreasing flow shear stress in strain
softening regime. Contrarily, plastic shear displace-
ment and total shear displacement have been in-
creased. Similarly, elastic shear strain is decreased,
and plastic shear strain and total shear strain are in-
creased monotonously in shear band. In conclusion,
after localization is initiated, localized deformation de-
velops progressively and more and more non-uniform
deformations are localized in shear band, as observed

in many tests 7 181,

3.2 Influences of softening modulus on shear dis-
placement

Herein, we take parameters as follows: w = 100
Um, G= 80 x 10’ Pa, T= 0. 77T and T.= 10° Pa,
The influences of flow shear stress on shear deforma-
tion may be seen from Figs. 7 and 8. For the same
flow shear stress level, plastic shear displacement and
total shear displacement are increased as strain-soften-
ing modulus is decreased.

3.3 Influence of shear modulus on shear displace
ment
In order to investigate the effect of elastic

¥/1075m
o

-1.0 -0.5 0 0.5 1.0
d./10"m

Fig. 4 Distribution of elastic shear displacement
with different flow shear stresses

y/1075m
[

dy/107'm

Fig. 5 Distribution of plastic shear displacement
with different flow shear stresses

modulus on shear displacement, let w = 100 Hm,
A= 16x10°Pa, T= 0. 7T and T.= 10° Pa. From
Figs. 9 and 10, we can see that under the same shear
stress level larger plastic shear displacement and total
shear displacement are caused by lowering elastic
shear modulus.
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Fig. 6 Distribution of total shear displacement
with different flow shear stresses
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Fig. 7 Distribution of plastic shear displacement
with different softening moduli
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Fig. 8 Distribution of total shear displacement
with different softening moduli

3.4 Experimental results for shear localization of
metals

In the shearing process after localization oc

curs, any line in the normal line of shear band no

longer remains
[17, 18]

straight line, as observed in

tests Compared with many experimental re -

dp/l 077m

Fig. 9 Distribution of plastic shear displacement
with different elastic shear moduli

ar G=1.0G,
G=0.SGO

y/10™5m
=)

_, | G=8.0G,
G=4.0G,
| G=2.0G,

d/107"m

Fig. 10 Distribution of total shear displacement
with different elastic shear moduli

sults for shear localization, the present analytical so-
lutions on shear localization based on gradient-depen-
dent plasticity considering microstructures interaction
due to heterogeneous texture are able to predict the
localized characteristics of shear band successfully.

4 CONCLUSIONS

After shear localization is initiated, shear band
develops progressively and more and more non-uni-
form shear deformations are localized in shear band.
Elastic shear strain in the band is uniform and the
norruniformity of total shear displacement stems from
localized plastic shear displacement. Moreover. shear
modulus and strairrsoftening modulus have a quite
opposite influence on shear deformation. The present
analytical solution can be used to predict the localized
characteristics of shear band, as can be observed in
many experimental tests for shear localization of duc
tile metal materials.
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