Article ID: 1003 - 6326(2003) 05 - 1235 - 04 # Stability of calcium silicate in basic solution ¹⁰ LIU Guirhua(刘桂华), LI Xiaorbin(李小斌), PENG Zhirhong(彭志宏), ZHOU Qiursheng(周秋生) (School of Metallurgical Science and Engineering, Central South University, Changsha 410083, China) **Abstract:** Mixture of CaO and SiO₂ was sintered at 1 200 or 1 400 °C according to the mole ratio of CaO/SiO₂ of 1 or 2, and then calcium silicate was leached in pure caustic or soda solution. The results indicated that calcium silicate exists much more stably in caustic solution than that in soda solution, and CaOSiO₂ is more stable than β -2CaOSiO₂ whether in caustic solution or in soda solution. The increase of sintering temperature favored the stability of calcium silicate in the leaching process. When β -2CaOSiO₂ was leached in soda solution, the increase of leaching temperature and time resulted in decomposing of more calcium silicate. And when β -2CaOSiO₂ was leached in caustic solution at high temperature, much 2CaOSiO₂H₂O but little CaOSiO₂H₂O appeared in slag. Key words: calcium silicate; stability; caustic/soda solution CLC number: TF 821 Document code: A #### 1 INTRODUCTION In alumina production by sintering process, the mole ratio of CaO/SiO₂ is about 2 in order to form β - 2CaOSiO_2 . The β - 2CaOSiO_2 exists relatively stably in the leaching process, and then discharges together with the red mud. But some β-2CaOSiO₂ is to be decomposed, and then converts into hydrate garnet or sodium hydrate alumino-silicate. This process is often called as the secondary reaction. There are two different opinions in the cause of decomposition of β-2CaO SiO_2 , the first is that β -2CaOSiO₂ is decomposed into SiO₂(OH)²⁻ and Ca(OH)₂ for OH⁻ anion in caus tic solution, and then converts into CaO SiO2 H2O which hinders the secondary reaction in turn. The second is that β -2CaOSiO₂ is decomposed into SiO₂ $(OH)_{2}^{2-}$ and $CaCO_{3}$ into CO_{3}^{2-} in the soda solution^[1-5]. Lately, new technologies in sintering process have reported, that the composition of the sintering also changes, and the secondary reaction takes in different degrees^[6-9]. This paper begin from using lime and quartz to produce calcium silicate according to the mole ratio of CaO/SiO_2 of 1 or 2, and then the calcium silicate is leached in caustic solution or soda solution to study the stability of calcium silicate. #### 2 EXPERIMENTAL #### 2. 1 Preparation of calcium silicate CaO was made from Ca(OH) $_2(A.R.)$, calcined in a muffle at 850 $^{\circ}$ C for 2 h. SiO $_2(A.R.)$ was dried at 110 °C for 2 h. SiO_2 and CaO were mixed according to the mole ratio of CaO/SiO_2 of 1 or 2, and then the mixture was placed in a corundum crucible, firstly pre-calcined at 850 °C for about 10 min, then calcined at 1 200 or 1 400 °C for 1h in another muffle, finally the sinter(calcium silicate) was placed in desicator. ### 2. 2 Leaching of calcium silicate The caustic solution or soda solution was made from NaOH(A.R.) or Na₂CO₃(A.R.). In every experiment, 50 mL basic solution and 3 g calcium silicate were mixed in reactor, and leached for 30 min or 60 min, and then the concentration of SiO₂ in the filtrate was detected by spectrophotometer. The slag was washed with boiling water and dried, and then analyzed by using X-ray diffractometer (D/max-rA, Japan) #### 3 RESULTS AND DISCUSSION #### 3. 1 Stability of calcium silicate in caustic solution The thermodynamic calculation results^[10] indicated that both 2CaOSiO₂ and CaOSiO₂ will form in the sintering process when mixture contained CaO and SiO₂, but the content of β-2CaOSiO₂ or CaO·SiO₂ is different at different ratios of CaO/SiO₂. It is necessary to know the reaction activity of CaO·SiO₂ and the effect on sintering. Now the study on the stability of calcium silicate is in pure caustic solution or soda solution because the same product, hydrate garnet, can easily form in aluminate solution after β-2CaOSiO₂ or CaOSiO₂ is decomposed. Received date: 2002 - 10 - 31; Accepted date: 2003 - 01 - 15 ① Foundation item: Project(G1999064910) supported by the National Key Fundamental Research and Development Program of China; project (50274076) supported by the National Natural Science Foundation of China Firstly different calcium silicates were calcined under different conditions, as listed in Table 1. The results in Table 1 indicated that the effect of temperature on the sintering appearance is obvious, hard and dark color sinter might be resulted from CaO reacting with SiO₂ sufficiently at high temperature, but the incompact and pale color sinter at low temperature. Secondly the leaching experiments were carried out in caustic solution(ρ_{Na_2O} = 101.21 g/L), the results were listed in Table 2. Table 1 Sintering conditions of calcium silicate | No. | Calcium
silicate
(expected) | Mole ratio
of CaO/
SiO ₂ | Calcined
tempera-
ture/°C | Time/
h | Appearance of sinter | |-----|------------------------------------|---|---------------------------------|------------|----------------------| | 1 | $CaOSiO_2$ | 1 | 1 400 | 1 | Hard | | 2 | $CaOSiO_2$ | 1 | 1 200 | 1 | Incompact | | 3 | $2 {\rm CaOSiO}_2$ | 2 | 1 400 | 1 | Hard | | 4 | 2CaOSiO_2 | 2 | 1 200 | 1 | Incompact | **Table 2** Results of calcium silicate leached | in caustic solution | | | | | | | | |--|---------------------------------|--------------|--|---------------------|--|--|--| | Kind of calcium
silicate and
sintering temperature | Leaching
temperar
ture/°C | Time/
min | $\begin{array}{c} \rho_{SiO_2}/\\ gL^{-1} \end{array}$ | η_{1SiO_2} / % | | | | | | 85 | 30 | 0. 130 | 0.42 | | | | | $CaOSiO_2$, 1 400 °C | 85 | 60 | 0. 156 | 0.50 | | | | | | 100 | 60 | 0. 479 | 1.54 | | | | | C-06:0 1 200 °C | 85 | 30 | 0. 200 | 0.64 | | | | | CaOSiO₂, 1 200 ℃ | 85 | 60 | 0. 173 | 0.56 | | | | | | 85 | 30 | 0. 140 | 0.67 | | | | | 2CaOSiO ₂ , 1 400 ℃ | 85 | 60 | 0. 173 | 0.83 | | | | | | 100 | 60 | 0. 381 | 1.82 | | | | | 2C-05:0 1 200 °C | 85 | 30 | 0. 170 | 0.81 | | | | | 2CaOSiO ₂ , 1 200 ℃ | 85 | 60 | 0. 342 | 1.63 | | | | It is indicated that all concentration of SiO₂ are less than 0.5 g/L, and η_{ISiO_2} (the rate of SiO₂ in caustic solution) is less than 2%, due to that little calcium silicate is leached out in caustic solution, which is consistent with the results from thermodynamic calculation, i. e. CaO•SiO₂ can't be reacted sufficiently with OH $^-$ to form CaO·SiO₂•H₂O, but β -2CaOSiO₂ can be reacted with OH $^-$ to form CaO·SiO₂•H₂O when temperature is more than 70 $^{\circ}$ C $^{[10]}$. Meanwhile, the results also indicated that the sintering temperature affects η_{ISiO_2} because η_{ISiO_2} of β -2CaOSiO₂ sintered at 1 200 $^{\circ}$ C is large than that at 1 400 $^{\circ}$ C. Unexpectedly, a little white deposition appeared in the filtrate at the end of washing. It is necessary to know what it is. So the deposition was filtrated argain, and the content of SiO_2 was less than 2.1% but the content of CaO was more than 50% in the white deposition. Based on this fact, the white deposition must be $Ca(OH)_2$. On the other hand, the phenomenon indicated indirectly that it is difficult for $CaOSiO_2H_2O$ to form in the leaching process because there are some $Ca(OH)_2$ in slag and $SiO_2(OH)_2^{2-}$ in solution. ## 3. 2 Stability of calcium silicate in soda solution The leaching experiment was conducted in soda solution(ρ_{Na_2O} = 101.21 g/L), the results were listed in Table 3. Table 3 Results of calcium silicate leached in sada salution | in soda solution | | | | | | | | | |---|--------------------------------|--------------|--|---------------------------|--|--|--|--| | Kind of calcium
silicate and
sintering
temperature | Leaching
temperæ
ture/°C | Time/
min | $\begin{array}{c} \rho_{SiO_2} \text{/} \\ (\text{ g}^{\bullet} \text{ L}^{-1}) \end{array}$ | η _{2SiO2} /
% | | | | | | | 85 | 30 | 0. 645 | 2.08 | | | | | | CaOSiO ₂ , 1 400 ℃ | 85 | 60 | 0. 685 | 2.21 | | | | | | | 100 | 60 | 0. 545 | 1.76 | | | | | | 0.000 1.000 % | 85 | 30 | 3.420 | 11.02 | | | | | | CaOSiO₂, 1 200 ℃ | 85 | 60 | 3. 504 | 11. 29 | | | | | | | 85 | 30 | 1. 340 | 6. 40 | | | | | | 2CaOSiO₂, 1 400 ℃ | 85 | 60 | 1. 902 | 9.09 | | | | | | | 100 | 60 | 2. 130 | 10.18 | | | | | | 26.06:0. 1.200.26 | 85 | 30 | 2. 900 | 13.86 | | | | | | 2CaOSiO ₂ , 1 200 ℃ | 85 | 60 | 3. 092 | 14.77 | | | | | | | | | | | | | | | Compared with the results in Table 2, η_{2SiO_2} (the rate of SiO_2 in soda solution) was much larger than η_{1SiO_2} , which showed that calcium silicate appears more stable in caustic solution than that in soda solution. The results (Table 3) indicated that the sintering temperature has fair effect on η_{2SiO_2} . For example, when $CaOSiO_2$ was leached at 85 °C for 30 min in soda solution, η_{2SiO_2} for sintering at 1 400 °C and at 1 200 °C were 2.08% and 11.02%, respectively. Simultaneously, $CaO \, SiO_2$ and $\beta \, -2CaO \, \cdot SiO_2$ showed different stability in soda solution, the leaching temperature and time have little effect on η_{2SiO_2} when $CaO \, SiO_2$ (sintered at 1 400 °C) is leached. However, the behavior of $\beta \, -2CaOSiO_2$ was different. The increase of the sintering temperature favored the stability of $\beta \, -2CaOSiO_2$. However, the increase of leaching temperature or time resulted in increasing of η_{2SiO_2} . Compared with the results in Tables 2 and 3, the decomposition of β -2CaO·SiO₂ was easier than that of CaOSiO₂, especially in soda solution, and the stability of CaOSiO₂ appeared better than that of β -2CaOSiO₂ whether in caustic solution or in soda solution. Furthermore, the secondary reaction might be attributed to the decomposition of β -2CaOSiO₂ in soda solution when conventional sintering is in the leaching process. # 3. 3 Analysis of component of solid^[11, 12] When the ratio of CaO/SiO₂ was 1, and sintering temperature was 1 400 °C, there were much CaO SiO₂ and a little β -2CaOSiO₂ in sinters(Fig. 1(a)). After calcium silicate was leached in caustic solution (Fig. 1(b)), β -2CaO·SiO₂ disappeared, but some Ca (OH)₂ appeared for β -2CaO·SiO₂ decomposed into SiO₂ (OH)₂ and Ca (OH)₂. Based on the fact that the concentration of SiO₂ is little Fig. 1 XRD patterns of CaOSiO₂ (original CaOSiO₂ sintered at 1 400 °C(a), solid from leaching in caustic solution (b) and solid from leaching in soda solution(c)) (a) —CaOSiO₂, 2CaOSiO₂, quartz; (b) —CaOSiO₂, Ca(OH)₂, and little 2CaOSiO₂H₂O; (b) —CaOSiO₂, Ca(OH)₂, and little 2CaOSiO₂H₂O; (c) —CaOSiO₂, CaCO₃ in caustic solution (Table 2), it can be summed up that the SiO_2 in solution mainly dates from the decomposition of β -2CaO·SiO₂, not from CaO·SiO₂. Furthermore, it is difficult to find CaO·SiO₂·H₂O in slag. When calcium silicate was leached in soda solution (Fig. 1(c)), the main components were CaOSiO₂ and CaCO₃ in the slag, and there wasn't $\beta\text{-}2\text{CaOSiO}_2$ either. And that SiO₂ in solution was high (Table 3), which might result from the decomposition of β -2CaOSiO₂ and CaOSiO₂. Fig. 2 was XRD patterns of CaOSiO₂ sintered at 1 200 °C. Compared with the results from Fig. 1(a), though there were CaOSiO₂ and β -2CaO·SiO₂, the intensity of characteristic peak of calcium silicate appeared infirmly, and more quartz and CaO were found (Fig. 2(a)). When the calcium silicate was leached at 85 °C in caustic solution (Fig. 2(b)), β -2CaO·SiO₂ decomposed, so the main components were CaOSiO₂, Ca(OH)₂ and quartz in slag. All indicated that the high temperature favors the formation of CaOSiO₂ in the sintering process. Fig. 3 was the XRD pattern of slag after β -2CaO•SiO₂ was leached in caustic solution. β -2CaOSiO₂, little quartz and Ca(OH)₂ were found in the slag. Furthermore, much 2CaOSiOH₂O but little CaO• Fig. 2 XRD patterns of CaOSiO₂ (original CaOSiO₂ sintered at 1 200 °C(a), solid from leaching in caustic solution(b)) (a) −CaOSiO₂, 2CaOSiO₂, CaO, quartz; (b) −CaOSiO₂, Ca(OH)₂, quartz, and little CaOSiO2H2O Fig. 3 XRD pattern of solid from leaching in caustic solution when β-2CaOSiO₂ sintered at 1 400 °C SiO₂H₂O was also found in slag. The reason might be that the solubility of CaOSiO₂·H₂O was high. Perhaps, CaOSiO₂·H₂O might not be the key product of calcium hydrate silicate in leaching process. #### 4 CONCLUSIONS - 1) There are $CaOSiO_2$ and β -2 $CaOSiO_2$ in the sinters. Temperature affects the preparation of calcium silicate obviously, the ratio of CaO/SiO_2 only affects the content of $CaOSiO_2$ or β -2CaO• SiO_2 . - 2) CaOSiO₂ and β-2CaOSiO₂ appear stablely in caustic solution but unstably in soda solution. CaO•SiO₂ is more stable than β-2CaO·SiO₂ is. The secondary reaction mainly accounts for the decomposition of calcium silicate in the soda solution. - 3) To β-2CaO·SiO₂, the increase of leaching temperature and time leads to more calcium silicate decomposing in soda solution, and the decomposition also occurs at high temperature in caustic solution. - 4) After β-2CaOSiO₂ is leached in caustic so- lution, much 2CaOSiO₂H₂O but little CaO SiO₂·H₂O are found in slag. #### REFERENCES - [1] YANG Zhong yu. Technology of Alumina Production (revised) [M]. Beijing: Metallurgical Industry Press, 1993. 230 245. (in Chinese) - [2] YUAN Huæ jun. The research on secondary reaction in sinter mixture leaching [J]. Journal of Guizhou Institute of Technology, 1995, 24(2): 1-6. (in Chinese) - [3] YUAN Yi, XIANG Yang, HUANG Fang, et al. An elementary analysis on the secondary of leaching sintering mixture of aluminium [J]. Light Metals, 1999(1): 18 21. (in Chinese) - [4] Bauxite L J. Society of Mining Engineers of American Institute of Mining, Metallurgical and Petroleum Engineers M. New York: Inc, 1984. 780 786. - [5] Vtoroe I. Alumina Production[M]. Moskva: Metallurgy, 1978. 184. (in Russian) - [6] Lin I J, Maltz N S. Alpha dicalcium silicate formation and the special features of its hydration and interactions with aluminate solution [J]. Journal of Materials Synthesis and Processing, 1997, 5(6): 411-418. - [7] ZHENG Shang-guang, YANG Zhong-yu, HU Sherr xing. Improvement of hydrometallurgical flowsheet in sodar lime sintering process[A]. Eckert C E. Light Metals[C]. California: TMS, 1999. 77 83. - [8] XUE Sheng-hui. Sintering of low Al₂O₃/ SiO₂ ratio crude material and leaching of grog—a study[J]. Mining and Metallurgical Engineering, 1996, 23(4): 43 47. (in Chinese) - [9] LI Xiao bin. The technology of alumina production by intensified sintering process [P]. CN 1241533, 2000. - [10] LIU Gur hua, LI Xiaσ bin, PENG Zhr hong. behavior of calcium silicate in the leaching process [J]. Trans Nonferrous Met Soc China, 2003, 13(1): 213 216. - [11] ZHOU Zhr qin, LI Feng. Rapid quantitation determination of hydrate calcium silicate[J]. Chinese Journal of Spectroscopy Laboratory, 2001, 18(5): 627 629. (in Chinese) - [12] Berry L G. Powder Diffraction File (series) [M]. Pennsylvania: Joint Committee on Powder Diffraction Standards, 1982. (Edited by HUANG Jin song)