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Abstract: Two layer BP neural network was designed for the semtsolid apparent viscosity simulation. The apparent vis-
cosity simulations of Si-15% Pb alloy and AF4. 5% Cur 1. 5% M g alloy stirred slurries were carried out. The trained BP

neural network forecast the curve of the apparent viscosity versus solid volume fraction of Sir15% Pb alloy, under the con-

dition of shear rate, Y= 150 s™ ', and cooling rate of G= 0.33 ‘C/min. The simulation results are well agreement with

the experimental values given in references. The fitted mathematical formula of Sir 15% Pb alloy apparent viscosity, under

the condition of the cooling rate of G= 0.33 C/min, was obtained by optimization method. The results show that the

precision of apparent viscosity simulation value by neural network is much better than that of its calculation value by fitted

mathematical formula.
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1 INTRODUCTION

Since the thixotropic properties of vigorously
stirred timrlead slurries were discovered by Spencer et
all ! at MIT, investigation and application of the se-
mtsolid technology have been developed quickly. The
study on the apparent viscosity is not only of theoreti-
cal but also of utilization significance. Many investi-
gators have carried out a great deal of experimental
research and put forward many mathematical models
of the semrsolid apparent viscosity. Some of these
models, which are related to popular exponential
function and a classical power-law equation, are listed
in the following.

A model of apparent viscosity related to the solid
volume fraction is expressed by exponential func
[2].

M= Aexp(B } (1)
Another related to the shear rate is expressed by
a classical powerlaw equation:

tion

M= kY (2)
A combination model of Eqns. (1) and (2) is
N,= Aexp(B YY" (3)

A similar form of model (3) was used in Ref.
[3]:
M= Aexp(B ®y"& " (4)
Other mathematical models of apparent viscosity
can be found in Refs. [4 7 11].

Because there are many factors affecting the se-
misolid apparent viscosity in a complicated way, and
the present mathematical models usually consider only
one or two factors, the error of semrsolid apparent
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viscosity is large between the experimental value and
the computing value by the present fitted mathemati-
cal formulae. This not only reduces the fitting preci
sion, but also limits its application. However, it is
too difficult to improve the fitting precision of semr
solid apparent viscosity by adding more factors in a
mathematical model.

In this article, the authors make an attempt to
simulate the semrsolid apparent viscosity by BP neu-
ral network. According to the traits of neural net-
work and the dominating factors affecting semrtsolid
apparent viscosity, two-layer BP neural network is
designed for the semrsolid apparent viscosity simula-
tion. And the apparent viscosity simulations are car-
ried out on Smrl5% Pb alloy and Al
4.5% Cur 1. 5% Mg alloy stirred slurries. The trained
BP neural network is used to forecast the apparent
viscosity curve of Sn15% Pb alloy, related to solid
volume fraction, under the condition of shear rate, Y

= 150 s™ ', and cooling rate of G= 0.33 ‘C/ min.

2 DESIGN OF BP NEURAL NETWORK AND ITS
IMPLEMENT

It is well known that three dominating factors
affecting the semrsolid apparent viscosity are solid
volume fraction % shear rate Y and cooling rate
G'"", and that two-layer nonlinear BP neural net-
work should be adequate as universal approximations
2 Based on these two
points, two-layer nonlinear BP neural network ( Fig.

of any nonlinear function

1), is designed for semrsolid apparent viscosity simu-
lation. The BP neural network has three node layers,
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which are input nodes x; (ie % Y, G), hidden
nodes y;, and output node O;(ie T,).

Fig. 1 BP neural network for semrsolid
apparent viscosity simulation

The training of the BP neural network is to up-
T;) and

threshold values 0, in order to reduce the value of

date its weighted interconnections ( w g,

sum-squared network error function along with nega
tive gradient direction. Let w; be weighted intercon-
nections between input nodes and hidden nodes, and
T be weighted interconnections between hidden
nodes and the output node. As the desired response of
the output node is ¢;, the computing formulae of the
BP neural network are as follows' "'
The outputs of hidden nodes are

yi= S 1(net;) (5)

where net; = E,wijxj - 0, and f1 is a transfer
J
function.
The computing output of the output node is
0,= fz( nel[) (6)

where net;= ZThyi - 6 ,and f, is a transfer func

tion.
The sum-squared network error function of the
output node is

E= 5 Xiu- 0’ (7)

The equations for updating weighted intercon-
nections are

wi(k+ 1)= wy(k)+ NOx;

Ti(k+ 1)= Tu(k)+ T8y, (8)
where TNand T are learning rates.

Transfer functions usually used are the linear
function and sigmoid function as follows:

f(x)=x (9)

f(x)=1(1+e ") (10

3 SIMULATION RESULTS

The authors make use of experimental data of
Si-15% Pb alloy apparent viscosity in Ref. [ 11],
which were obtained in the solid volume fraction
range between 0. 10 and 0. 61, the shear rate range

between 115s™ ' and 750 s™ ', and the cooling rate of
0.33 C/min and 25 C/min, respectively, and per
form the neural network simulation. Firstly, the pa-
rameters of the BP neural network are determined.
Let the number of hidden nodes be 20, and learning
rates = T = 0. 000 8, transfer function f'; be sig-
moid function, and transfer function f, be linear
function, and the maximum training times of the BP
neural network be 80 000. Secondly, input data are
normalized. Thirdly, the BP neural network is
trained. Finally, the trained BP neural network ob-
tains the simulation results of the Sn-15% Pb alloy ap-
parent viscosities as follow ing:

1) The curve of the output node sum-squared er-
ror versus training times ( Epoch) of the BP neural
network is shown in Fig. 2, in which the dashed line
presents the given error value for terminating training
the BP neural network. The sum-squared network er
ror of the output node is 20. 237 8, after the BP neu-
ral network is trained.

2) Fig. 3 indicates that the apparent viscosity
simulation value of Sir15% Pb alloy slurries sheared
continuously, at cooling rate of G = 0. 33 C/min,
increases with increasing solid volume fraction.

3) Some of the apparent viscosity simulation val-
ues and experimental values are listed in Table 1, in
which the data in bracket are experimental values in
Ref. [ 11].

4) Fig. 4 gives the curve of apparent viscosity
forecasted by the trained BP neural network versus
solid volume fraction, under the condition of shear

150 s,
0.33 C/min. For comparison, Fig.4 also shows the

rate Y = and cooling rate of G =
two experimental curves of apparent viscosity, with
shear rate Y= 115 s™ " and v= 230 s~ ' respectively,
at the same cooling rate.

In order to compare the precision of neural net-
work simulation with that of the fitted mathe
matical formula , the authors choose Eqn.(4) as
the representative of the fitted mathematical eque

104
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102 +

Sum-squared error

101

Training times/104

Fig.2 Curve of sum-squared network error
vs training times( Epoch)
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Fig. 3 Apparent viscosity vs solid volume fraction of Sor15% Pb alloy
sheared continuously at cooling rate G= 0.33 C/min
Table 1 Comparison between apparent viscosity simulation values and experimental values
Initial shear rate, Yo/s~ ! Initial shear rate, Yo/s~ !
@, (cooling rate, G= 0.33 ‘C/min) (cooling rate, G= 25 C/min)
115 230 350 750 115 230 450 750

0.20  2.42(2.5) 1.08(1.2) 0.47(0.4) 0.47(0.3)  1.16(1.2)  1.10(1.2)  0.34(0.2)  0.01(0.1)
0.30 5.09(5)  2.20(2.5)  1.26(1)  0.72(0.7)  2.34(2.5)  2.55(2.5 1.02(1.2)  1.03(1.0)
0.35  8.90(8.7) 3.32(3.5) 1.94(1.7) 0.95(1.2)  4.49(4.5)  4.36(4.5  4.03(4)  2.52(2.5)
0.40  37.78(40)  5.70(5) 2.84(3)  1.31(1.3)  12.80(13)  9.98(10) 8.03(8) 5. 90(6)
0.45  99.81(100) 14.01(15) 4.98(6.2)  1.84(2) 39.83(40)  36.88(37)  17.82(18)  11.98(12)
0.50 = 41.20(40) 12.30(12.5) 2.52(2.6)  84.79(85)  99.59(100) 41.54(42)  29.82(30)

0.55 - 79.83(80)  31.54(32)  3.26(3) - - - 79. 58( 80)

tion. With the experimental data of Snr15% Pb alloy are also shown in Figs. 3 and 4. The maximum abso-

apparent viscosity''"!, under the condition of the lute error betw een the calculation values by Eqn. (11)

cooling rate G = 0. 33 C/min, the parameters of and the experimental values is 11.57.

Eqn. (4) are determined by the optimization In order to prove that BP neural network is ap-

method ' and the fitted mathematical formula of Sn- plied to semrsolid apparent viscosity simulation of

15% Pb alloy apparent viscosity becomes other metals, the authors also perform the apparent
N, = 10. 762 lexp ( 30. 453 7 %) viscosity simulation of AF4. 5% Cu-1. 5% Mg alloy

- 2.74092 ¢ 1.167 92 (11) stirred slurries. The B-spline curves of its apparent

The upparent vimsity cirves fom B, ( 11) viscosity simulation values and the experiment values
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in Ref. [ 5] are given in Fig. 5. It also shows that the
simulation results are well consistent with experimen-
tal values.
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Fig. 4 Apparent viscosity simulation curve of

Sn-15% Pb alloy sheared continuously
at cooling rate G= 0.33 C/min
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Fig. 5 Apparent viscosity vs shear
rate of AF4.5% Cur1. 5% Mg alloy

4 ANALYSIS OF SIMULATION RESULTS

From Figs. 3, Fig. 5 and Table 1, it is easy to
know that the apparent viscosity simulation values of
these two alloys by the BP neural network are well a
greement with experimental values. For Sn15% Pb

alloy, the maximum absolute error between the simu-
lation values by the BP neural network and experi-
mental values is 2. 22, which is much less than that
between the calculation values by Eqn. (11) and the
experimental values. From Fig. 4, we know that the
curve of apparent viscosity predicted by the BP neural
network, with shear rate Y= 150 s™ !, lies between
the curves composed of experimental values, with
shear rate Y= 115s™ "and Y= 230 s™ '. This accords
with the fact that the apparent viscosity decreases
with increasing shear rate.
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