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Abstract: Rapidly solidified Alg7Ni;CusNds metallic glasses were prepared by using melt spinning. Its calorimetric be-

havior was characterized by using differential scanning calorimeter. The metallic glasses were partially crystallized under

continuous heating regime. Primary crystallization was studied through structural characterization of the amorphous and

partially crystallized ribbons by means of conventional X-ray diffraction and transmission electron microscopy with selected

area electron diffraction. The results show that, the asspun ribbons are fully amorphous and homogeneous on the micron

scale, but contain high density of nanoscale quenched-in clusters or crystallite embryos. Primary crystallization mainly

leads to formation of two phase mixture of o Al nanocrystalline and residual amorphous phase. Precipitation of o Al
nanoparticles is limited by buildup and overlapped diffusion field of solute atoms with low diffusion rate. At the earlier

stage of primary crystallization the crystal nuclei exhibit high density and growth rate. With the o Al crystal growing, the

crystal growth rate decreases, and even at the later stage further crystallization into & Al crystal becomes difficult to occur

due to thermal stabilization of the residual nickel and neodymium-enriched amorphous phase, the saturated values of crys-

tallized volume fraction and o Al crystal diameter getting to 20% ~30% and 5~ 15 nm.
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1 INTRODUCTION

Many AFbased amorphous/ nanocrystalline alloys
containing transition metal (TM = Fe, Co, Ni, Cu,
etc) and rare earth (RE= La, Y, Ce, Nd, etc) ele
ments have an attractive combination of mechanical
[173]

properties In the last ten years a wide interest

was spurred to research primary crystallization of Ak
rich metallic glasses ™! .

The nanophase composites of AFTM-RE system
can be obtained by a suitable processing combination
of rapid solidification and heat treatment "', As an
important wellFcontrolled method, annealing treat-
ment based on primary crystallization was used widely
to devitrify the AFrich metallic glasses, to produce
the novel nanophase composites consisting of the nov-
el ultra fine microstructure with large quantity of o
Al nanoparticles embedded dispersively in an AFrich

amorphous matrix''” !, and the optimum diameter
and volume fraction of primary nanocrystalline parti

cles are around 5 = 20 nm and 20% ~ 30%, respec
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tively'*"'. However, many further studies ought to be
done carefully in order to control effectively devitrifi-
cation process to obtain an ideal nanoscale structure
with optimized combination of mechanical properties.

In this work, our purpose is to examine nanos-
tructural evolution during primary crystallizion in

rapidly solidified AFNrCuNd metallic glass under

continuous heating regime.
2 EXPERIMENTAL

The Al based metallic glass ribbons, less than 3
mm wide and 30 Pm thick, were prepared by using a
single copper roll melt-spinner. Chemical composition

( mole fraction, %) of the ribbons was Alg;

NiyCusNds! 71,

Differential scanning calorimetric ( DSC) curve
of the asquenched ribbons was obtained under con-
tinuous heating regime at 40 ‘C/ min in an Ar atmo-
sphere by using a Perkin-Elmer DSC-7. The as
crystallized partially

quenched specimens were

through heating continuously up to various tempera
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tures between 90 C and 310 C at 40 C/min. The
specimens were cooled at 160 C/ min after thermal
exposure.

X-ray diffraction (XRD) was used to identify
phases existing in the asspun and annealed ribbons
and to measure the relative amount and mean diame-
ter of primary crystallized particles in these ribbons.
The XRD experiment was carried out in a SIEMENS
D500 X-ray diffraction meter with a monochromatic
Cu Kq( A= 1. 541 8 U) radiation, scanning over a
narrow range of scattering angle (20= 30° —50°) at a
step of 0. 03",

The HRTEM foils were prepared by ion milling
in a liquid nitrogen (N;) bath, and examined in a
CM 30 high resolution transmission electron micro-
scope at 300 kV, and the HRTEM images were ana-
lyzed using the digital micrograph software, and se-
lected area electron diffraction ( SAED) patterns by

using the ProcessDiffration software 2.

3 RESULTS AND ANALYSIS

3.1 Two main exothermic transformation during
devitrification of Alg;Ni;Cu;Nd; metallic glass
under continuous heating regime

Fig. 1 shows the DSC curve of the

Alg7Ni;CusNds amorphous alloy under continuous

heating regime at a heating rate of 40 C/min. Two

main exothermic peaks are observed on the curve,

w hich devitrifying

stages I, X-ray diffraction patterns in Fig. 2 indir

cates that, the first broad and asymmetric peak corre-
sponds to primary crystallization of the amorphous

correspond to two main
[13716

phase to precipitate Al crystal particles, and the sec
ond sharp one corresponds to further transformation
of the residual amorphous phase into a multrphase
mixture of Al crystal plus some intermetallic com-
pounds, mainly AI3Ni, AlgCusNd and Al;1Nds;. The
second DSC peak consists of two overlapped subr
peaks. It is indicated that two reactions that are not
completely separated occur in the residual amorphous
phase during secondary crystallization.

3. 2 HRTEM structural characterization of Algr
Ni;Cu;Nd; metallic glass during primary
crystallization under continuous heating
regime

XRD pattern of the as prepared samples, as seen
in Fig. 2, shows typical amorphous mound. No ap-
preciable crystalline peaks appear. This result is con-
firmed further by HRTEM and SAED, as shown in

Fig.3(a). Maze contrast of HRTEM image and dif-

fuse halo of SAED pattern suggest that the as

quenched Alg7NizCusNd3 ribbon mainly consists of a

fully and homogeneously amorphous phase. How ev-
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Fig. 1 DSC curve of Alg7NizCusNds3

amorphous alloy under continuous heating
regime at heating rate of 40 C/ min
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Fig. 2 Typical XRD patterns of as-spun ribbon

and its annealed samples heated continuously to
various temperatures at heating rate of 40 C/ min

er, it is worth noting that, some areas in the asspun
samples show high density of quenchedin nuclei, or
cluster and even a few Al crystal of <5 nm in diame-
ter, as shown clearly in Fig. 3(b). Hence, the as
quenched ribbon exhibits a uniform amorphous mi
crostructure but with nanoscale compositional or
structural heterogeneity.

When heated continuously at 40 C/min, the o
Al crystal nuclei form, multiply and grow rapidly in
the asspun Alg7 Ni;CuzNd3 metallic glass. With in-
creasing temperature, the annealed ribbons develop
gradually into typical primary crystallized morpholo-
gies, as shown in Fig. 4. In the sample heated up to
310 C, very close to onset temperature of the second
DSC peak, high dense oAl crystalline particles, 5~ 15
nm in diameter, embed dispersively in the amorphous ma
trix with random orientation. The five diffusion rings in
the inset of Fig. 4 correspond to Al ( 111), (200),
(220), (311), and (222) planes, respectively. About
60% ( volume fraction ) of amorphous phase still
remains in the annealed ribbon, by which the oAl
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Fig. 3 Bright field HRTEM micrographs and SAED pattern from as quenched Alg7Ni;CusNd3

ribbon, showing fully amorphous structure, but with highly dense quenchedin clusters
and even a few crystallite embryos in some regions

Fig. 4 Bright field HRTEM micrographs and

SAED pattern from annealed ribbon
heated continuously up to 310 C

particles were separated with each other.

Hence, primary crystallization below onset tem-
perature of the second DSC peak results in forming
two-phase mixture of the oAl crystal plus the Ni,
Nd and Cuenriched residual amorphous phase in the
rapidly solidified Alg7Ni7CusNd; metallic glass.

3.3 Change of volume fraction and mean diameter
of primary crystallized Al particles calculated
by fitting of X-ray diffraction patterns with
heating temperature

Assuming that the annealed ribbons consist of
only two phases of the remained amorphous phase and

the Al particles after primary crystallization, volume
fraction Foyq of primary crystallized Al particles in
the two-phase mixture is measured by fitting their
corresponding XRD spectra through the follow ing re-

lationship,
I= (1_ Fcryst) X [amorph‘l' Fcryst X Icryst ( 1)
where [ is the intensity of experimental XRD spec

tra from the measured sample, [.norph, from the full
amorphous ribbon, and /.y, from pure nanocrys
talline phase. The XRD spectra from pure nanocrystal
with different grain radii are calculated by using the

Debye equation' > )

1(g) = L 20i(a)fi(a)(sinlars)/ (4ri))
(2)

where [I( ¢) is angle-dependent intensity from co-
herent scattering, sums over i and j are over all the
atoms, r; is the distance between atom i and j, the
fs are angledependent atomic scattering factors ,
and ¢ = 4T&in( 0)/ A Here, the following discrete
form of the Debye equation is used to fit the intensity

of the experimental XRD Spectra[ BB

2
1051 = S T )

where I(S) is the diffraction intensity, /¢ is the in-

cident intensity, f (S) is the scattering factor, S is
and r; and
p(ri) are inter-atomic distance and number of times

the scattering parameter ( S = ¢/27),

that a given inter-atomic distance r; occurs.

This fitting method can also give us mean size
d ryst of Al nanocrystal particles in the amorphous ma-
trix, which equals the grain size of pure nanocrystal
selected to fit best the experimental XRD spectra.
Fig. 5 shows the fitting results of the experimental
and calculated XRD spectra, and they are in good
agreement with each other. It is indicated that the
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Fig. 5 X-ray diffraction patterns from as
quenched Alg7Ni;CuzNds3 ribbon and specimens
heated continuously up to different low

temperatures and their respectively
calculated patterns

mean size d oy of the pure nanocrystal selected during
calculation is very close to that of the Al crystal parti
cles in the annealed sample, respectively.

The calculated F.y and the selected d .y are
summarized in Fig. 6, which shows the change of
mean diameter and volume fraction of Al crystal in
the amorphous matrix of the annealed ribbons with
heating temperature when continuously heated at 40
‘C/ min. Generally, both the volume fraction and the
mean diameter of Al crystalline particles embedded
in the amorphous matrix increase with temperature,
as seen in Figs. 6(a) and 6(b), respectively. At low-
er temperature the oAl crystal particles grow at a
larger rate, and the relative amount of phase transfor
mation also increases more rapidly, and when heated
up to higher temperature both the mean diameter and
the volume fraction change at a lower rate due to be-
ing limited by build-up and overlapped diffusion field
of Ni and Nd solute atoms with low diffusion rate,
and gradually get close to some stable values, 13~ 15
nm and 30% ~ 40% , respectively.

Obviously, the oAl crystal particles become
very large within short time due to rapid devitrifica-
tion at high temperature, and even accompanied by a
very small amount of orthorhombic AI3Ni intermetal-
lic compounds at 310 C, which has been verified by
HRTEM. Hence, it is difficult to control structural
evolution by using high temperature annealing and to
yield novel nanophase composites with ideal nanos-
tructure. Therefore, low temperature annealing
treatment below 160 C is more beneficial to obtain-
ing the nanophase composites with excellent combina-
tion of mechanical properties.
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Fig. 6 Mean diameter (a) and volume
fraction(b) of Al crystal in amorphous matrix
of Alg7Ni;CuzNds metallic glass

versus heating temperature at 40 C/ min

4 CONCLUSIONS

1) The asspun Alg;Ni;CusNd;3 ribbon consists of
a homogeneous and fully amorphous structure on the
micron scale, but with high density of nanoscale
quenchedrin clusters or crystallite embryos. Primary
crystallization mainly leads to formation of two-phase

of oAl

nanocrystal particles dispersed uniformly in the resid-

mixture, consisting of large amount
ual amorphous matrix.

2) To fit the XRD spectra of the two-phase mix-
ture by using the Debye equation, the calculated spec
tra have good agreement with the experimental spec
tra, and the calculated values of a Al nanocrystal vol-
ume fraction and mean diameter can characterize the
primary crystallization process of the fully amorphous
phase very well.

3) Both the volume fraction and mean diameter
of aAl crystalline particles increase more rapidly at
the earlier stage ( lower temperature) than at the later
stage (‘higher temperature) of primary crystallization
due to being limited by build-up and overlapped diffu-

sion field of Ni and Nd solute atoms with low diffu-
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sion rate. With increasing transformation tempera
ture, they will gradually get close to some saturated
value, 13~ 15 nm and 30% ~40%, respectively.
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