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Fig. 1

Schematic diagram of smelting furnace in oxygen
bottom blowingm] (1—Main burner; 2—Pilot burner; 3—Feed
opening; 4—Oxygen lance; 5—Copper matte; 6—Slag ladle;
7—Copper export; 8—Gas vent): (a) Longitudinal section;

(b) Cross section
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Fig. 2 Physical model of lateral section of bottom blowing

furnace
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Table 2 Property parameters of melt and gas in smelting furnace
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Fig.3 Bubble rupture behavior in water (phase distribution): (a) /=0; (b) =0.90 s; (c) =1.10's; (d) =1.30 s; (e) =1.40 s; (f) =1.50s;

() =1.65s; (h) =1.79 s
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Fig. 4 Pressure change during bubble rupture in water: (a) =0.02 s; (b) =0.50 s; (¢) =0.90 s; (d) =1.10 s; (e) =1.30 s; (f) =1.40s;

(g) =1.70s; (h) =1.79 s
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Fig. 5 Velocity variation during bubble rupture in water: (a) =0.21 s; (b) =0.35 s; (¢) 7=0.58 s; (d) =0.80 s; (¢) =1.0 s; (f) =1.30's;
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Table 3 Constant value of fitting curve function and standard

deviation
Contant Value Standard error
Ay 42.67689 0.96925
A, 1.89005 0.34139
X0 99.36203 2.26815
dx 14.54753 1.20627
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Simulation research of bubble growth behavior in
oxygen bottom blowing smelting process

GUO Xue-yi"2, WANG Shuang', WANG Qin-meng', YAN shu-yang', TIAN Qing-hua'?

(1. School of Metallurgy and Environment, Central South University, Changsha 410083, China;
2. Clean Metallurgical Research Center of China Nonferrous Metals Industry Association,

Central South University, Changsha 410083, China)

Abstract: Based on the commercial CFD software ANSYS Fluent, the VOF model was adopted to study the bubble
growth behavior in the process of bottom blowing oxygen. A single bubble was simulated to study the growth and
fracture behavior of in the water, and it is found that the resident time of bubble is longer with smaller diameter and
deeper position. It provides theoretical guidance for the rising and deformation of bubbles in melt. Again to respectively
study the cross section of single lance with the methods of two-dimensional numerical simulation. Also, the phase
fraction, the bubble shape, growth frequency and diameter, including the bubble deformation, integration, and rupture
process were analyzed. By the researches, the diameter of the initial bubble oxygen gun is about 400 mm in the outlet of
oxygen lances, and frequency of the bubble generated is about 4 Hz. The distribution of bubble diameter conforms to the
Boltzmann distribution function inside the molten bath under the steady state, bubble ranging from 0 to 100 mm accounts
for about 80%. The time of bubble breakdown is shorter than that of bubble fusion, so bubble breakdown fusion is easier.
Bubble breakdown can strengthen the melt mixing and enhance effect of mass transfer and heat transfer.

Key words: oxygen bottom blowing; bath smelting; bubble growth; oxygen lance; VOF model; numerical simulation;
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