

Synthesis of N-decy-1, 3-diaminopropanes and its flotation properties on aluminium silicate minerals^①

HU Yue-hua(胡岳华)¹, CAO Xue-feng(曹学锋)¹, LI Hai-pu(李海普)¹,
JIANG Yu-ren(蒋玉仁)¹, DU Ping(杜平)²

- (1. College of Resources Processing and Bio-Engineering, Central South University, Changsha 410083, China ;
2. College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China)

Abstract: N-decy-1, 3-diaminopropanes (DNs) were synthesized from alkyl amine acrylonitrile at ambient pressure. With the synthesized DNs as collectors, the flotation of kaolinite, pyrophyllite and illite was conducted and the results were interpreted in terms of the structure-activity relationship. The DNs are found to be more effective collectors than dodecyl amine, exhibiting the highest recovery over a pH range of 4-6. Among the DNs examined, DN₁₂ shows the highest flotation efficiency. The flotation mechanisms were explained in view of the structures of reagents and aluminium silicate minerals. It is demonstrated that DNs can become new selective collectors for reverse floatation to remove aluminium silicate minerals from bauxite.

Key words: N-decy-1, 3-diaminopropane; synthesis; aluminosilicate; reverse floatation; structure-reactivity relationship

CLC number: TD 923; TD 952

Document code: A

1 INTRODUCTION

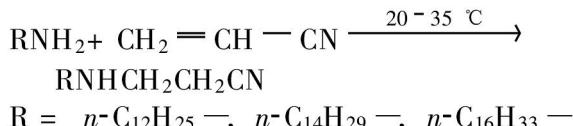
Bauxite is a major source for alumina production. Bayer process features short residence time, low energy consumption and high quality product. As a result, it is widely used to treat the bauxite of aluminum/silicate ratio (A/S) more than 8. Although there are abundant aluminium oxide mineral resources in China, most of them are diasporic bauxite with high aluminum content, but low A/S ratio. Among 40 bauxite diggings, the average Al₂O₃ and SiO₂ contents are 63.41% and 11.59%, respectively, while the average A/S ratio is 4-6^[1]. This bauxite is difficult to be treated directly by the Bayer process. It is therefore highly desirable to increase A/S ratio of bauxite by physical cleaning^[2].

For this reason, the flotation desilicate-Bayer process was developed. In desilication by direct flotation, large quantity of diaspores are floated with anionic collectors. The major drawback of this process is the large collector consumption and the difficult collector removal from the concentrate to avoid its unpredicted effect in the subsequent process. The concentrate recovery is above 80% of the total feed material, conflicting with the common principle of floating

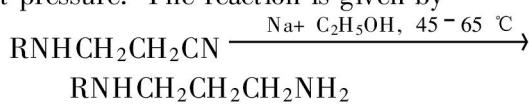
less rich component and depressing the major constituents. To overcome these shortcomings, the reverse floatation was proposed. The reverse floatation desilication involves two vital components: the selective depression of diaspore and the enhanced collection of associated gangue minerals, such as kaolinite^[3].

Amine, a cationic collector for oxidize ore floatation, has been used in reverse floatation of iron ores^[4] and in floatation of quartz^[5] and fluorite ores^[6]. However, it was found that the primary amine (such as dodecyl amine) exhibits a weak collecting power for kaolinite, leading to small differences in floatability between diaspore and aluminosilicates. Therefore, it is of great interests to develop new amine family collectors.

In the present study, novel amine-based collectors, N-decy-1, 3-diaminopropanes, are synthesized, and their effects on floatation of kaolinite, pyrophyllite and illite are investigated.


2 SYNTHESIS OF N-DECY-1, 3-DIAMINO-PROPANES

N-alkyl cyanogens were first synthesized from primary amine and acrylonitrile^[7], following the reaction below:


① **Foundation item:** Project (G1999064901) supported by the National Key Fundamental Research and Development Program of China; Project (59925412) supported by the National Science Fund for Distinguished Young Scholar of China

Received date: 2002-03-13; **Accepted date:** 2002-08-14

Correspondence: Dr. CAO Xue-feng, Tel: +86-731-8879815; E-mail: cxf64@mail.gqzxol.com

In general, *N*-decyl-1, 3-diaminopropanes are produced by reducing *N*-alkyl cyanogens with H_2 at high pressure in the presence of Reny Ni as catalysts^[8]. Although this method of synthesis results in a high yield, it requires high pressure equipment and sophisticated fabrication of the catalyst. Instead, we use elemental sodium and ethanol as reductants to reduce *N*-alkyl cyanogens in ethanol (as solvent) at ambient pressure. The reaction is given by

The *N*-decyl-1, 3-diaminopropanes produced as such were dissolved in acid. The acid-insoluble component was removed by filtration. The contained H_2O and ethanol in the filtrate were removed by evaporation at a reduced pressure. The liquid remained was treated with alkali aqueous solutions. High grade *N*-decyl-1, 3-diaminopropanes was recrystallized by evaporating the solvent and drying in a vacuum desiccator to obtain the final product in the form of white solids. The synthesized product was characterized by gas chromatography and FTIR and the results are summarized in Table 1.

Table 1 Content and state of synthesized products

Product	State	Content/ %
$\text{C}_{12}\text{H}_{25}\text{NH}(\text{CH}_2)_3\text{NH}_2$ (DN ₁₂)	Paste	90
$\text{C}_{14}\text{H}_{29}\text{NH}(\text{CH}_2)_3\text{NH}_2$ (DN ₁₄)	Solid	88
$\text{C}_{16}\text{H}_{33}\text{NH}(\text{CH}_2)_3\text{NH}_2$ (DN ₁₆)	Solid	85

3 EXPERIMENTAL

3.1 Mineral samples and reagents

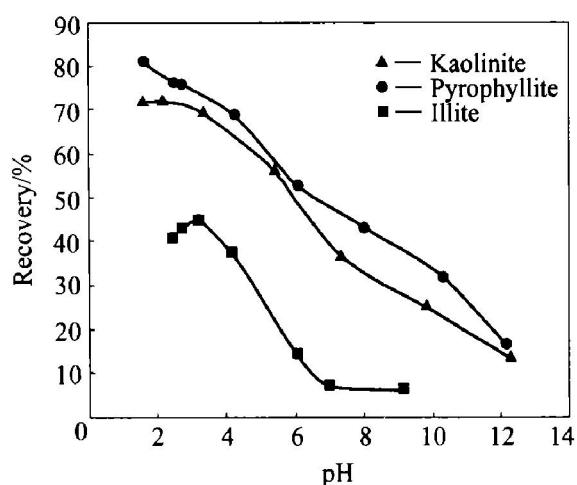
The source and the results of chemical analyses of the mineral samples used in this study are given in Table 2.

Stock solutions of chemical purity dodecyl amine and synthesized collectors were prepared by dissolving collectors in acetate aqueous solutions

at a collector to acetate molar ratio of 1: 1.

3.2 Flotation

Flotation tests were conducted in a 40 mL mechanical float cell. The impeller speed was fixed at 1 650 r/min. In each test, 3.0 g mineral sample was dispersed in 30 mL distilled water. After adjusting suspension pH to a desired value and adding collector, the resultant suspension was conditioned for 4 min. The flotation time was fixed at 4 min. The floated and unfloated fractions were collected and dried separately. The mass of solids in each fraction was determined accurately and used to calculate the recovery.


4 RESULTS AND DISCUSSION

The flotation recoveries of kaolinite, illite and pyrophyllite using dodecyl amine (DDA) as collectors are shown in Fig. 1. From Fig. 1, it can be seen that the recovery of three aluminosilicate minerals decreases with increasing pulp pH. Over a pH range of 2-4, the flotation recovery is in the order of pyrophyllite ≈ kaolinite ≫ illite. The observed flotation characteristics can be explained in view of crystal structure and solution chemistry^[9] of kaolinite, illite and pyrophyllite^[10].

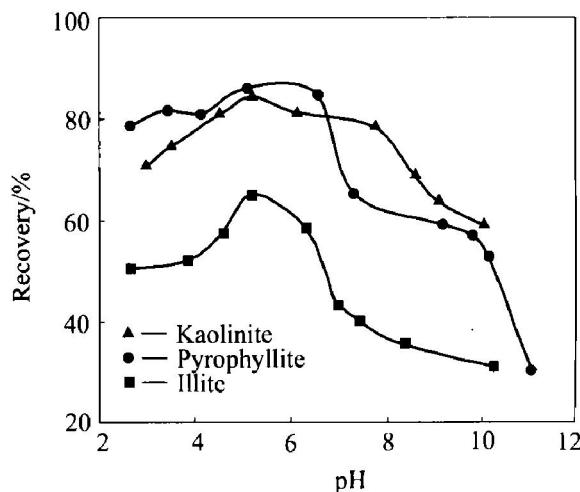
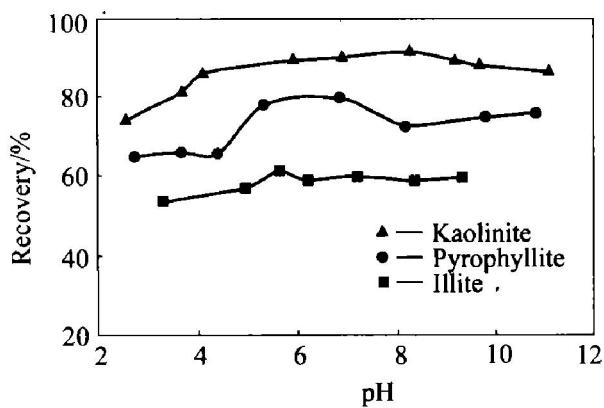

The flotation recoveries of aluminosilicate minerals using DN₁₂, DN₁₄ and DN₁₆ as collectors are shown in Figs. 2-4. In general, all the DN collectors show stronger collecting power than dodecyl amine, in particular when floating in a weak alkali or weak acid pulp. Among the three aluminosilicates, DNs exhibit stronger collecting power for kaolinite and pyrophyllite than for illite. At pH= 5, for example, the recoveries of kaolinite and pyrophyllite are greater than 80%, while for illite, it is less than 60%. Among three DNs synthesized, DN₁₂ shows the best recovery for all three aluminosilicate minerals. Therefore, DN₁₂ is a promising collector for reverse flotation of bauxite. To account for a significant reduction in flotation recovery at pH higher than 10, the molecular species distribution of the collectors needs to be considered. At high pH, DNs may be present as molecular precipitates so as to weaken their collecting ability. Just like alkyl amines, the more the carbon atoms, the lower the pH at which DNs start to precipitate. This trend can be seen in Figs. 2-4.

Table 2 Chemical analyses of mineral samples


Sample	Source	Grade (mass fraction) / %									Granularity / mm	
		SiO ₂	Al ₂ O ₃	MgO	CaO	Fe _T	TiO ₂	K ₂ O	Na ₂ O	H ₂ O		
Kaolinite	Jiaxian, Henan	44.22	37.66	0.093	0.074	0.54	0.22	0.064	0.049	1.19	14.79	< 0.098
Pyrophyllite	Qingtian, Zhejiang	61.57	31.10	0.013	0.081	0.18	0.19	0.049	0.12	0.63	6.53	< 0.098
Illite	Ouhai, Zhejiang	50.86	32.93	0.30	0.080	0.29	0.36	7.52	0.18	0.35	5.04	< 0.098

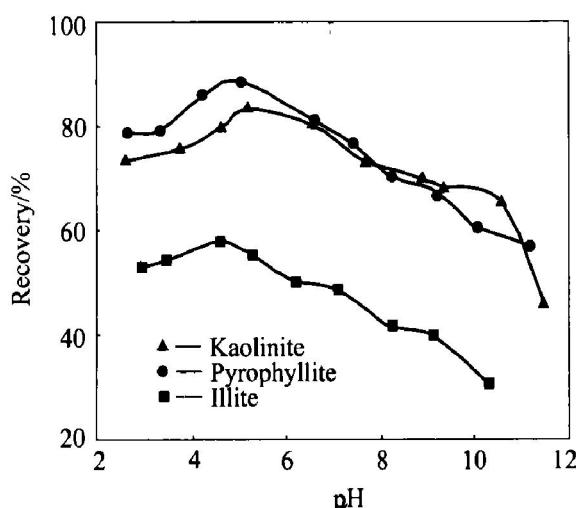

Fig. 1 Flotation recoveries of kaolinite, pyrophyllite and illite using DDA as collectors
(c (DDA) = 2×10^{-4} mol/L)

Fig. 4 Recoveries of three minerals at different pH using DN₁₆ as collector
(c (DN₁₆) = 2×10^{-4} mol/L)

Fig. 2 Flotation recoveries of kaolinite, pyrophyllite and illite using DN₁₂ as collectors
(c (DN₁₂) = 2×10^{-4} mol/L)

Fig. 3 Recoveries of three minerals at different pH using DN₁₄ as collector
(c (DN₁₄) = 2×10^{-4} mol/L)

5 ζ -POTENTIAL OF MINERALS

The ζ -potentials of aluminosilicate minerals

were measured by a laser electrophoresis instrument (Brookhaven Corporation, USA). The mineral sample was ground to $< 5 \mu\text{m}$ with an agate mortar. The mineral suspension was prepared in distilled water to 0.01% solid content. After adjusting suspension pH to a desired value, the suspension was stirred for 5 min prior to filling the capillary cell for zeta potential measurement.

The ζ -potentials of the minerals in the absence of collectors are shown in Fig. 5. An iso-electric point (IEP) was determined to be 4.3 and 3.6 for kaolinite and illite, while for pyrophyllite, it was less than 2.0. With the addition of 0.2 mol/L DN₁₂, the IEP for kaolinite, illite and pyrophyllite shifted to 5.8, 4.5 and 3.0, respectively, as shown in Fig. 6. The significant shift of IEP suggests a strong interaction of the aluminosilicate minerals with DN₁₂. Compared with DDA, DN series collectors become protonated over a wider pH range with $\text{RN}^+ \text{H}_2(\text{CH}_2)_3\text{NH}_2$ and $\text{RN}^+ \text{H}_2(\text{CH}_2)_3\text{N}^+ \text{H}_3$ being the predominate species, exhibiting a cationic characteristics. The adsorption of these species on the minerals is responsible for the shift of IEPs. Since DN collectors ionize more easily (K_a (DN₁₂) = 2.0×10^{-3} ^[11]) than DDA (K_a (DDA) = 4.3×10^{-4} ^[12]), a stronger adsorption and hence stronger collecting power are anticipated for DN₁₂ than for DDA. Considering the IEP of diaspore being at pH 6.2^[9], the optimum pH range for reverse floatation separation of diaspore and aluminum silicate minerals using DNs as collectors can be set between pH = 4 and 6.

6 EFFECT OF DN ALKYL STRUCTURE ON FLOTATION

Among the same type of collectors, the collecting ability of reagent becomes stronger with increasing the

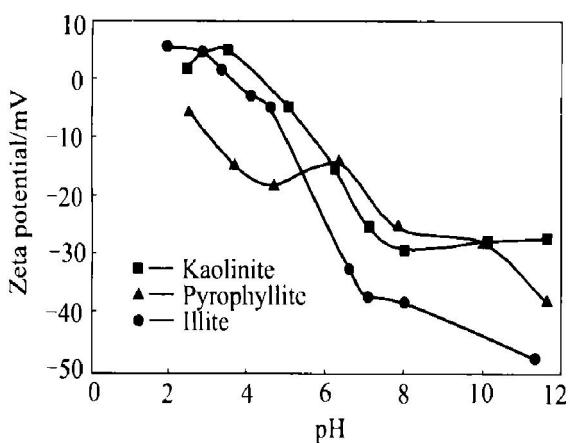


Fig. 5 Relation of ζ -potentials of minerals and pH (no collector)

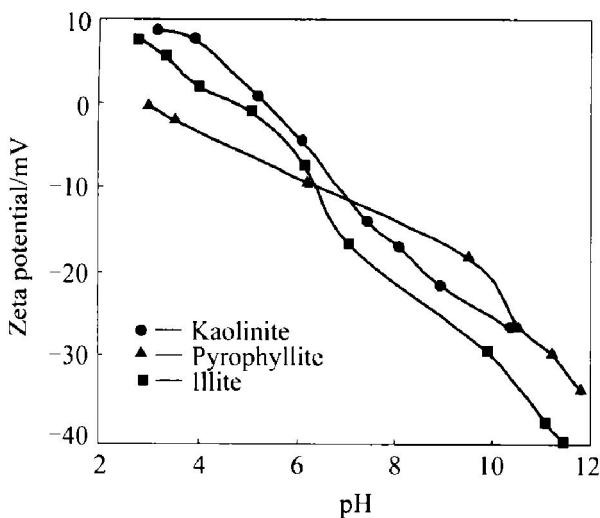


Fig. 6 Relation of ζ -potentials of minerals and pH (using DN₁₂ as collector)

number of carbon atoms in alkyl chains. Table 3 lists the partition coefficient ($\lg P$) and the equivalent number (N) of carbon atoms in alkyl chains of DNs calculated by using the fragmentography arithmetic^[13]. It is known that for a given collector, the larger the $\lg P$ and N , the stronger the collecting power. The data in Table 3 indicate that the collecting ability follow the order of $\text{DN}_{16} > \text{DN}_{14} > \text{DN}_{12}$. However the collectors should have not only the necessary but also the optimum length of hydrophobic chain. The DN_{12} , whose hydrophobic chain length is close to the optimum one for kaolinite, exhibits evident collecting effect, seen in Figs. 2–4.

Table 3 Partition coefficient and hydrophobic chains of DNs

Collector	$\lg P$	N
DN_{12}	7.06	12.19
DN_{14}	8.46	14.78
DN_{16}	9.86	17.37

REFERENCES

- [1] The National Nonferrous Metal Industry Office Programming Department. The Researching Report of Nonferrous Metal Industry Constitution Actuality —Aluminium in China [R]. 1998. 11. (in Chinese)
- [2] HUANG Guorzh, FANG Qixue, CHEI Rangjie. The casting silicate means and studying evolve of bauxite [J]. Light Metal, 1999(5): 16–20. (in Chinese)
- [3] HU Yuehua, JIANG Hao, QIU Guanzhou, et al. Solution chemistry of flotation separation of diaspore-type bauxite [J]. The Chinese Journal of Nonferrous Metals, 2001, 11(1): 125–130. (in Chinese)
- [4] Iwasaki I. Iron ore flotation, theory and practice [J]. Gaudin Award Lecture, Min Eng, 1983, 35: 622–632.
- [5] Ravishankar S A, Yoon R H. Long-range hydrophobic forces in the amine flotation of quartz [J]. Miner Metal Process, 1997(5): 10–17.
- [6] Bruque J M, Gonzalez F, Pardo G. Flotation of fluorite with N-alkylammonium Chlorides [J]. Inter Miner Process, 1982, 9: 75–86.
- [7] JIANG Yuren. Molecular Design and Structure Activity Relationships of Regents for Gold flotation [D]. Changsha: Central South University of Technology, 1994. 34–56. (in Chinese)
- [8] MEI Guangjun, XUE Yulan, YU Yongfu. Synthesis and application of new-type cationic collector, N-dodecyl-1,3-Diaminopropanes [J]. Mining and Metallurgical Engineering, 1999(4): 26–28. (in Chinese)
- [9] JIANG Hao, HU Yuehua, QIN Weiqing, et al. Mechanism of flotation for diaspore and aluminium silicate minerals with alkyl amine collectors [J]. The Chinese Journal of Nonferrous Metals, 2001, 11(4): 688–692. (in Chinese)
- [10] SUN Chuarrao, YING Wanzhong. Mechanism of Flotation for Silicate Minerals [M]. Beijin: Science Press, 2001. 14–24. (in Chinese)
- [11] WANG Dianzuo, HU Yuehua. Solution Chemistry of Flotation [M]. Changsha: Hunan Science Technology Press, 1988. 18–19. (in Chinese)
- [12] WANG Zhen. Studying of putting off silicate from hematite with primary amine, secondary amine and tertiary amine [J]. Metallic Ore Dressing Abroad, 1976 (8–9): 47–49. (in Chinese)
- [13] WANG Dianzuo, LIN Qiang, JIANG Yuren. Molecular Design of Reagents for Mineral and Metallurgical Processing [M]. Changsha: Central South University of Technology Press, 1996. 77–86. (in Chinese)

(Edited by YUAN Sai-qian)