

Exchange interactions and magnetic properties of intermetallic compounds^①

GUO Guang-hua(郭光华)

(School of Physics Science and Technology, Central South University, Changsha 410083, China)

Abstract: The temperature dependence of lattice parameters a and c of intermetallic compounds RMn_2Ge_2 ($R = La, Sm$ and Gd) were measured in the temperature range of $10 - 800$ K by using the X-ray diffractometer. It is found that the high temperature magnetic transitions of Mn subsystem in light rare earth compounds from paramagnetic to antiferromagnetic state accompany the negative magnetoelastic anomalies of lattice parameters c , where a does not change. This indicates that the antiferromagnetic component of intralayer $Mn-Mn$ exchange coupling is correlated with lattice constant c . The low temperature first order ferromagnetism \rightarrow antiferromagnetism transitions (or antiferromagnetism \rightarrow ferromagnetism transition) of Mn subsystem in $SmMn_2Ge_2$ and $GdMn_2Ge_2$ accompany the abruptly decrease (or increase) of lattice parameter a , and $\Delta a/a \approx 0.15\%$. This demonstrates that the interlayer $Mn-Mn$ exchange interaction is very sensitive to the intralayer $Mn-Mn$ distance. The critical value of lattice constant a_k , at which the interlayer $Mn-Mn$ coupling changes its sign, is 4.044×10^{-10} m. Based on the molecular field model of exchange interaction the magnetic curves of $GdMn_2Ge_2$ single crystal at different temperatures were calculated and a good agreement with experimental data had gotten. The $Gd-Gd$, $Gd-Mn$, intralayer $Mn-Mn$ and interlayer $Mn-Mn$ exchange coupling parameters were estimated.

Key words: intermetallic compound; magnetic phase transition; exchange interaction

CLC number: O 482.5

Document code: A

1 INTRODUCTION

The intermetallic compounds RMn_2Ge_2 crystallize in the body-centered-tetragonal $ThCr_2Si_2$ -type structure (space group is $I4/mmm$), which is consisted of R , Ge and Mn layers, stacked in the sequence $R-Ge-Mn-Ge-R$ along the c -axis^[1]. From the magnetic point of view, RMn_2Ge_2 compounds have two different magnetic subsystems: R - and Mn -subsystem. In RMn_2Ge_2 , there are different kinds of exchange interactions. A number of research works^[1] indicate that the intralayer $Mn-Mn$ exchange interaction is the strongest and gives rise to the magnetic order temperature of RMn_2Ge_2 as high as $350 - 450$ K, depending on R . The interlayer $Mn-Mn$ and $R-Mn$ exchange interactions have the same order but they are substantially less than the intralayer $Mn-Mn$ exchange interaction. However, their interplay is reflected in the magnetic properties of magnetically ordered state. The smallest one is the $R-R$ exchange interaction. Many studies^[2-3] have shown that the interlayer $Mn-Mn$ exchange interaction is very sensitive to the intralayer $Mn-Mn$ distance, and consequently the lattice parameter a . When a is larger than a critical value a_k , the interlayer $Mn-Mn$ exchange interaction is ferromagnetic, otherwise it is anti-

ferromagnetic. For this reason, the Mn -sublattice in most of light rare earth compounds has ferromagnetic structure, and the intrinsic magnetic structure of Mn -sublattice in the compounds with heavy rare earth is antiferromagnetic. Recently, Venturini et al have extensively performed neutron diffraction study on RMn_2Ge_2 ^[3-6]. Their studies indicate that in the light rare earth compounds the Mn magnetic structure of the same sublayer is not collinear ferromagnetic, and there is a large antiferromagnetic component perpendicular to the c -axis. Their investigations have also shown that the intralayer $Mn-Mn$ exchange interaction is ferromagnetic for the intralayer $Mn-Mn$ distance d_{Mn-Mn} lower than 2.84×10^{-10} m and antiferromagnetic for d_{Mn-Mn} greater than 2.89×10^{-10} m, whereas the mixed planes, where ferromagnetic and antiferromagnetic components coexist, are observed for intermediate distances. Just because of these peculiar properties of exchange interaction the RMn_2Ge_2 compounds display abundant magnetic properties.

In this paper we have studied the lattice constant dependence of exchange interactions in RMn_2Ge_2 ($R = La, Sm$ and Gd) compounds by using the X-ray diffractometry. Based on the molecular field model of exchange interaction, we calculate the magnetization curves of $GdMn_2Ge_2$ single crystal with the field along the different

① **Foundation item:** Project supported by SRF for ROCS, SEM.

Received date: 2002-01-17; **Accepted date:** 2002-03-13

Correspondence: GUO Guang-hua, Professor, Ph. D, + 86-731-8830928

2 EXPERIMENTAL AND RESULTS

多晶样品的 RMn_2Ge_2 ($R = La, Sm$ and Gd) 通过在氩气氛围下水冷坩埚感应熔化制备。熔化重复数次以确保均匀性。然后在石英管中在 $750^{\circ}C$ 下退火一周。样品质量通过X射线衍射验证，样品为单一相。

温度依赖的 RMn_2Ge_2 ($R = La, Sm$ and Gd) 晶格常数在 $10 - 800 K$ 温度范围内通过X射线衍射测量。X射线衍射在Geiger-Flex衍射计上进行，使用Fe $K\alpha$ 射线。

图1展示了 $LaMn_2Ge_2$ 晶格常数 a 和 c 的温度依赖性。根据磁性测量^[7]， $LaMn_2Ge_2$ 在 $T_c = 310 K$ 时铁磁性有序。最近，中子衍射研究^[3]显示了铁磁性温度 T_c 不是参数 a 的负磁致伸缩异常的反铁磁性铁磁性过渡温度。在 T_c 上方， $LaMn_2Ge_2$ 有某种反铁磁性结构；在更高的温度 $T_N \approx 413 K$ 上， $LaMn_2Ge_2$ 变为磁性无序。我们的测量证实了高温度反铁磁性结构的存在。从图1可以看出， T_N 附近的自发磁性过渡伴随着参数 c 的负磁致伸缩异常，而 T_c 附近的负磁致伸缩异常伴随着参数 a 。

图2展示了 $SmMn_2Ge_2$ 晶格常数 a 和 c 的温度依赖性。磁性测量显示^[1, 2]，当 $T_c = 341 K$ 时， $SmMn_2Ge_2$ 中的Mn子系统铁磁性有序。当温度降低到 $T_{t1} = 150 K$ 时，Mn子系统经历从铁磁性到反铁磁性的第一阶磁性过渡，由于热收缩，层间Mn-Mn交换作用的符号改变。随着温度继续降低，Mn子晶格重新进入铁磁性状态在 $T_{t2} = 100 K$ 。同时， Sm 子晶格成为铁磁性有序，并与Mn子晶格耦合。与 $LaMn_2Ge_2$ 类似， $SmMn_2Ge_2$ 在 T_c 上方也有某种反铁磁性结构，且在更高的温度 $T_N = 385 K$ ^[8] 时进入参数 a 的正磁致伸缩异常。图2显示了 a 和 c 与温度 T 的关系。

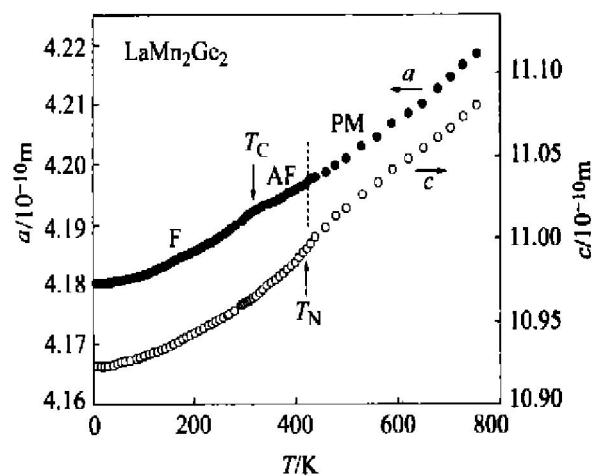


Fig. 1 Temperature dependence of lattice parameters a and c of intermetallic compound $LaMn_2Ge_2$

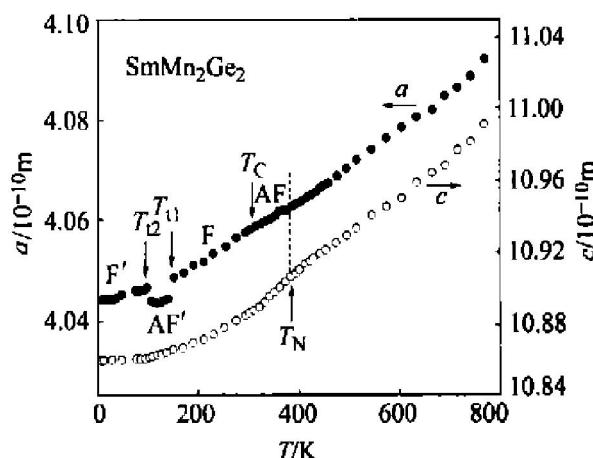


Fig. 2 Temperature dependence of lattice parameters a and c of intermetallic compound $SmMn_2Ge_2$

示了一系列的异常随温度降低而变化。高温度的参数 a 的负磁致伸缩异常伴随着反铁磁性铁磁性过渡在 T_N ，而参数 c 的负磁致伸缩异常伴随着Mn子晶格的反铁磁性铁磁性过渡在 T_c 。低温度的第一阶铁磁性反铁磁性过渡在 T_{t1} (150 K) 伴随着 a 的突然减小，而 T_{t2} (100 K) 伴随着 a 的突然增加。在这些第一阶过渡点，参数 c 不变。

图3展示了 $GdMn_2Ge_2$ 晶格常数 a 和 c 的温度依赖性。根据参考文献[9, 10]，Mn子晶格在 $T_N = 365 K$ 时反铁磁性有序。在 $T_{t1} = 97 K$ 时，Mn子晶格经历从反铁磁性到铁磁性的第一阶磁性过渡，同时 Gd 子晶格成为铁磁性有序且反铁磁性。图3展示了 a 和 c 与温度 T 的关系。

netically couples with Mn²⁺ sublattice. It can be seen from Fig. 3 that the transition from paramagnetic to antiferromagnetic phase at T_N accompanies the negative magnetoelastic anomaly of lattice constant a . The first order antiferromagnetic to ferromagnetic state of Mn²⁺ subsystem at T_1 accompanies the sudden increase of a , where c does not change.

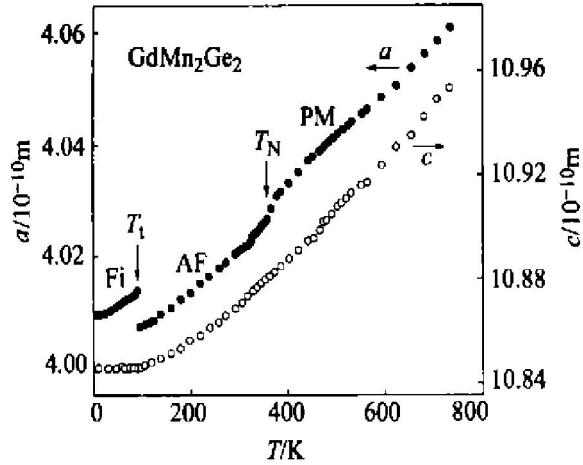


Fig. 3 Temperature dependence of lattice parameters a and c of intermetallic compound GdMn_2Ge_2

3 DISCUSSION

As stated in the introduction, the Mn magnetic structure of the same sublayer in the light rare earth compounds at $T > T_c$ is not collinear ferromagnetic, and there is a large antiferromagnetic component perpendicular to the c -axis. In the temperature range of $T_c < T < T_N$, the Mn magnetic structure of the same sublayer is antiferromagnetic and the magnetic moment is perpendicular to the c -axis^[3, 4]. It can be seen from temperature dependence of lattice parameters a and c of LaMn_2Ge_2 and SmMn_2Ge_2 (Fig. 1 and Fig. 2) that the paramagnetism \rightarrow antiferromagnetism transition at T_N accompanies the negative magnetoelastic anomaly of lattice constant c , where a almost does not change. This indicated that the antiferromagnetic component of intralayer Mn-Mn exchange interaction is correlated with lattice constant c . The low temperature first order magnetic transition of Mn subsystem in SmMn_2Ge_2 and GdMn_2Ge_2 from ferromagnetic to antiferromagnetic state (or from antiferromagnetic to ferromagnetic state) accompanies the abrupt reduction (or increment) of constant a , where c does not change (Fig. 2 and Fig. 3). These results are in agreement with Ref. [2], confirming that the interlayer Mn-Mn exchange interaction is very sensitive to the intralayer Mn-Mn distance, as this first order transition is related with the change of interlayer Mn-Mn coupling from ferromagnetic to antiferromagnetic. The critical lattice constant value a_k estimated from our experimental result is $4.0445 \times 10^{-10} \text{ m}$. The change of

lattice constant $\Delta a/a$ caused by the first order ferromagnetism \rightarrow antiferromagnetism in Mn²⁺ sublattice is about 0.15%.

In Ref. [11], we have demonstrated that the lattice constant dependence of interlayer Mn-Mn exchange interaction has strong influence on the magnetic properties of polycrystalline $\text{Gd}_x\text{La}_{1-x}\text{-Mn}_2\text{Ge}_2$ system. In the following we will see, in order to describe the magnetic properties of GdMn_2Ge_2 single crystal, it is also necessary to take into account of the lattice parameter dependence, and consequently, the temperature dependence of interlayer Mn-Mn exchange coupling.

According to the molecular field approximation of exchange interaction, the molecular fields, acting on the Gd and Mn ions, can be written as follows:

$$\begin{aligned} H_{\text{ex, Gd}} &= \lambda_{\text{GdGd}} M_{\text{Gd}} + \lambda_{\text{GdMn}} M_{\text{Mn}i} + \lambda_{\text{MnMn}} M_{\text{Mn}2} \\ H_{\text{ex, Mn}i} &= \lambda_{\text{GdMn}} M_{\text{Gd}} + \lambda_{\text{MnMn}} M_{\text{Mn}j} + \lambda_{\text{MnMn}} M_{\text{Mn}i} \quad (i = 1, 2; j = 2, 1) \end{aligned} \quad (1)$$

where λ_{GdGd} , λ_{GdMn} , λ_{MnMn} and λ_{MnMn} represent the coefficients of molecular field of Gd-Gd, Gd-Mn interlayer Mn-Mn and intralayer Mn-Mn exchange interactions. M_{Gd} and M_{Mn} are the thermal average of magnetization of Gd and Mn subsystem, respectively. $M_{\text{Mn}1} = M_{\text{Mn}2}$.

The Hamiltonians of Gd and Mn ions have the following form:

$$\begin{aligned} \hat{H}_{\text{Gd}} &= g_J \mu_B \hat{J} \cdot (H_{\text{ex, Gd}} + H) \\ \hat{H}_{\text{Mn}i} &= g_s \mu_B \hat{S}_i \cdot (H_{\text{ex, Mn}i} + H) \quad (i = 1, 2) \end{aligned} \quad (2)$$

where g_J , g_s represent the g -factor of Gd and Mn, \hat{J} and \hat{S} are the total angular momentum operator of Gd ion and the spin angular momentum operator of Mn ion. H is the magnetic field.

The free energy of system can be given as follows:

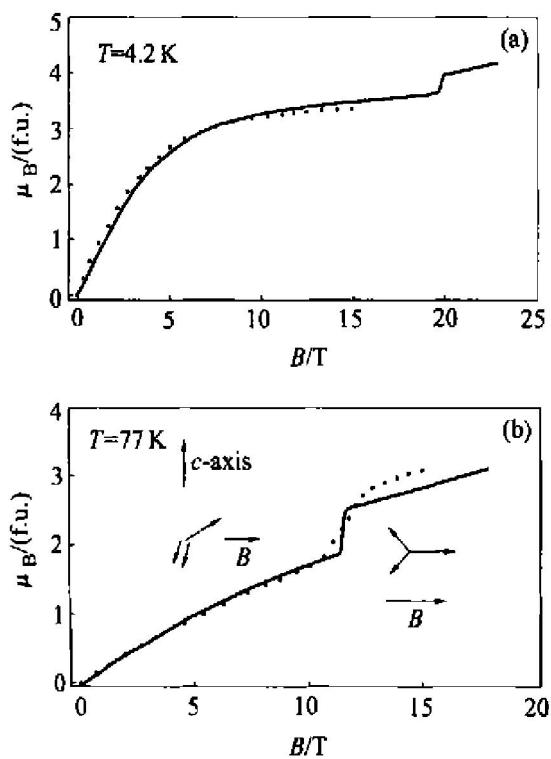
$$\begin{aligned} G = -k_B T \ln Z_{\text{Gd}} - k_B T \sum_i^{1, 2} \ln Z_{\text{Mn}i} + \\ \frac{1}{2} M_{\text{Gd}} \cdot H_{\text{ex, Gd}} + \frac{1}{2} \sum_i^{1, 2} M_{\text{Mn}i} \cdot \\ H_{\text{ex, Mn}i} + \sum_i^{1, 2} K \sin^2 \theta_i \end{aligned} \quad (3)$$

where k_B is Boltzman constant, K and θ_i are magnetic anisotropy constant of Mn ion and the angle between $M_{\text{Mn}i}$ and c -axis, respectively. Z_{Gd} , $Z_{\text{Mn}i}$ are partition functions of Gd and Mn ions:

$$\begin{aligned} Z_{\text{Gd}} &= \text{Tr}(-\hat{H}_{\text{Gd}}/k_B T), \\ Z_{\text{Mn}i} &= \text{Tr}(-\hat{H}_{\text{Mn}i}/k_B T) \quad (i = 1, 2) \end{aligned}$$

From the stable equilibrium condition, we can get the magnitude of thermal average M_{Gd} and $M_{\text{Mn}i}$ as well as their directions respect to the c -axis, consequently, decide the magnetic structure and the temperature and field dependence of magnetization.

As above mentioned the interlayer Mn-Mn exchange coupling is very sensitive to the intralayer Mn-Mn dis-


tance. Brabers et al^[12] studied the temperature dependence of interlayer Mn-Mn exchange interaction of compound YMn₂Ge₂ by using the high magnetic field measurement. Their studies indicate that the $\lambda_{\text{Mn-Mn}}$ can be expressed as

$$\lambda_{\text{Mn-Mn}} = \alpha - \beta \omega(T) \quad (4)$$

where α is the $\lambda_{\text{Mn-Mn}}$ value at $T = 0$ K and β is a parameter. $\omega(T)$ represents the departure with temperature of the unit-cell volume from the equilibrium value at $T = 0$ K. We suppose that the temperature and the lattice parameter dependence of $\lambda_{\text{Mn-Mn}}$ in GdMn₂Ge₂ are the same as that in YMn₂Ge₂.

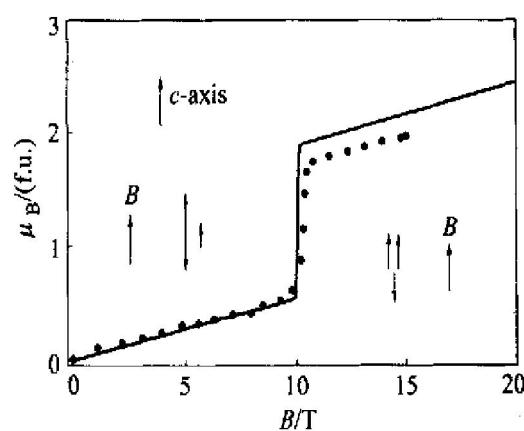

In our calculation, we use the values of Gd and Mn magnetic moment as equal to 7 μ_B and 1.8 μ_B at $T = 4.2$ K^[13]. The other parameters are evaluated by fitting a series of experimental data of GdMn₂Ge₂ single crystal(the experimental data include the magnetic transition temperatures, magnetization curves along the crystallographic axes at different temperatures and temperature dependences of magnetization). They are as follows $\chi_{\text{Mn-Mn}} = 245$ T/ μ_B f.u., $\lambda_{\text{Mn-Mn}} = 10.9$ T/ μ_B f.u., $\lambda_{\text{Gd-Mn}} = 8.4$ T/ μ_B f.u., $\lambda_{\text{Gd-Gd}} = 0.97$ T/ μ_B f.u. and $K = 6.4$ T μ_B /Mn.

Fig. 4 shows the calculated magnetization curves at $T = 77$ K and 4.2 K with the magnetic field perpendicular to the c -axis and the corresponding experimental data

Fig. 4 Magnetic curves of GdMn₂Ge₂ single crystal for magnetic field perpendicular to c -axis at 4.2 K (a) and 77 K (b). (Lines are calculated curves, points represent experimental data (taken from Ref. [10]))

(taken from Ref. [10]). It is obvious that a metamagnetic transition occurs in GdMn₂Ge₂ when field exceeds a critical value. In accordance with the magnetic studies^[9, 10], when $T < T_t = 97$ K, GdMn₂Ge₂ is ferromagnet (Fi). Gd and Mn subsystem have collinear ferromagnetic structure and antiferromagnetically couple to each other, and the magnetizations of two subsystems are all along the c -axis. When $T > T_t$, the Gd subsystem becomes magnetic disordered and the Mn subsystem transforms into collinear antiferromagnetic state (AF), and its magnetic moments is directed to the c -axis. Our theoretical analysis and numerous calculation have shown that, when $T = 77$ K and $H \perp c$, under the action of magnetic field, the ferromagnetic structure Fi first deforms, but the Mn subsystem keeps the ferromagnetic structure. As field increases up to a critical value, GdMn₂Ge₂ transforms from Fi into the non-collinear triangular magnetic structure T' with a first order magnetic transition; at the same time the magnetic moments of Gd abruptly turn to the magnetic field direction (as shown Fig. 4(b)). Theory predicts that this kind of field-induced first order transition also occurs at higher field when $T = 4.2$ K. The calculated field dependence of magnetization and the corresponding experimental curves (taken from Ref. [10]) of GdMn₂Ge₂ with field parallel to the c -axis at $T = 290$ K are presented in Fig. 5. When $T > T_t$, as above mentioned, the Mn subsystem has collinear antiferromagnetic structure. Numerous calculation show that the external field induces the spin flip transition in Mn subsystem from antiferromagnetic to ferromagnetic state (Fig. 5); at the same time, the Gd sublattice becomes ferromagnetic ordered due to the Gd-Mn exchange interaction. From Fig. 4 and Fig. 5, it can be seen that, by taking into account of lattice parameter

Fig. 5 Magnetic curves of GdMn₂Ge₂ single crystal for magnetic field parallel to c -axis at 290 K

(Lines are calculated curve, points represent experimental data (taken from Ref. [10]))

dependence and consequently the temperature dependence of interlayer $\text{Mn}-\text{Mn}$ coupling, theoretical calculations well describe the magnetic curves at different temperature and the field-induced first order magnetic transition of GdMn_2Ge_2 single crystal.

4 CONCLUSIONS

The temperature dependence of the lattice parameters a and c of intermetallic compounds RMn_2Ge_2 ($\text{R} = \text{La}$, Sm and Gd) are measured by using the X-ray diffractometer. The study first shows that the high temperature magnetic transitions from the paramagnetic to antiferromagnetic state in Mn -subsystem in RMn_2Ge_2 with light rare earth elements accompany the negative magnetoelastic anomaly of lattice parameter c , where a does not change. This indicates that the antiferromagnetic component of interlayer $\text{Mn}-\text{Mn}$ exchange coupling is correlated with c . The low temperature first order ferromagnetism \rightarrow antiferromagnetism transition in Mn -sublattice accompanies the abruptly decrease (or increase) of lattice parameter a , confirming that interlayer $\text{Mn}-\text{Mn}$ exchange interaction is very sensitive to a . The magnetization curves of GdMn_2Ge_2 single crystal in different temperatures with field parallel and perpendicular to the c -axis are calculated in the molecular field model of exchange interaction by taking into account of the temperature and lattice parameter dependence of interlayer $\text{Mn}-\text{Mn}$ exchange coupling. Theoretical analysis and calculation show that, when $T < T_t$, $H \perp c$, the field-induced first order magnetic transition is the transition from ferromagnetic to non-collinear triangular magnetic structure. When $T > T_t$ and $H \parallel c$, the external magnetic field makes the Mn subsystem transform from the antiferromagnetic to ferromagnetic state with a first order magnetic transition.

REFERENCES

- [1] Szytula A, Leciejewicz J. Magnetic properties of ternary intermetallic rare earth composites of RT_2X_2 type [A]. in Gschneidner K A, Jr, Eyring L. Handbook on the Physics and Chemistry of Rare Earths [C]. New York: Elsevier, 1989, 12: 133 – 253.
- [2] Fujii H, Okamoto T, Shigeoka T, et al. Reentrant ferromagnetism observed in SmMn_2Ge_2 [J]. Solid State Commun, 1985, 53: 715 – 717.
- [3] Venturini G, Malaman B, Ressouche E. The $x - T$ magnetic phase diagram of the $\text{La}_{1-x}\text{Y}_x\text{Mn}_2\text{Ge}_2$ system by neutron diffraction study [J]. J Alloys Comp, 1996, 241: 135 – 147.
- [4] Welter R, Venturini G, Ressouche E, et al. Neutron diffraction study of CeMn_2Ge_2 , PrMn_2Ge_2 and NdMn_2Si_2 : evidence of dominant antiferromagnetic components within the (001) Mn planes in ferromagnetic ThCr_2Si_2 -type manganese ternary compounds [J]. J Alloys Comp, 1995, 218: 204 – 215.
- [5] Venturini G, Welter R, Ressouche E, et al. Neutron diffraction study of the ferromagnetic to antiferromagnetic transition in $\text{La}_{0.3}\text{Y}_{0.7}\text{Mn}_2\text{Ge}_2$: phenomenological description of the magnetic behaviour of Mn in ThCr_2Si_2 silicides and germanides [J]. J Alloys Comp, 1995, 223: 101 – 110.
- [6] Welter R, Malaman B, Venturini G. MgTGe ($\text{T} = \text{Mn}$, Fe) compounds of the CeFeSi type magnetic structure of MgMnGe from neutron diffraction study [J]. Solid State Commun, 1998, 108: 933 – 938.
- [7] Shigeoka T, Iwata N, Fujii H, et al. Magnetic properties of LaMn_2Ge_2 single crystal [J]. J Magn Magn Mater, 1985, 53: 83 – 96.
- [8] Nowik N J, Levi Y, Felner I, et al. New multiple magnetic phase transitions and structures in RMn_2X_2 , $\text{X} = \text{Si}$ or Ge , $\text{R} = \text{rare earth}$ [J]. J Magn Magn Mater, 1995, 147: 373.
- [9] Shigeoka T, Fujii H, Fujiwara H, et al. Magnetic properties of RMn_2Ge_2 single crystal compounds ($\text{R} = \text{heavy rare earth}$) [J]. J Magn Magn Mater, 1983, 31 – 34: 209 – 210.
- [10] Kobayashi H, Onodera H, Yamamoto H. Magnetic properties of single crystal GdMn_2Ge_2 in high magnetic field [J]. J Magn Magn Mater, 1989, 79: 76 – 80.
- [11] GUO Guang-hua, Levitin R Z, Sokolov A Yu, et al. Study of ferromagnets with negative interaction within one of the sublattices: magnetic phase diagram of $\text{Gd}_{1-x}\text{La}_x\text{Mn}_2\text{Ge}_2$ intermetallic compounds [J]. J Magn Magn Mater, 2000, 214: 301 – 308.
- [12] Brabers J H V J, Nolten A J, Kayzel F, et al. $\text{Mn}-\text{Mn}$ distance dependence of the Mn interlayer coupling in SmMn_2Ge_2 -related compounds and its role in magnetic phase transitions [J]. Phys Rev B, 1994, 50: 16410 – 16417.
- [13] Iwata N, Hattori K, Shigeoka T. Exchange interaction and magnetocrystalline anisotropy in GdMn_2Ge_2 [J]. J Magn Magn Mater, 1986, 53: 318 – 322.

(Edited by HUANG Jin-song)