[**Article ID**] 1003 - 6326(2002) 06 - 1135 - 03

Preparation for femur prosthesis of ceramic metal combination artificial hip joint [®]

WANG Xin yu(王欣宇), LI Shi pu(李世普), CHENG Xiao ming(陈晓明), HE Jiam hua(贺建华) (Biomedical Materials and Engineering Research Centre, Wuhan University of Technology, Wuhan 430070, China)

[Abstract] Al₂O₃ material was synthesized by using high purity alumina micro powder and Mg Zr Y composite additives at temperature of 1 600 °C, which had good mechanics property of 416 MPa bending strength and 5. 46 MPa•m^{1/2} fracture toughness. Femur head prosthesis of hip joint was prepared by using this material; Ti alloy femur handle was sprayed bioactive hydroxyapatite (HA) by plasma on surface, which improves the chemistry stability and biocompatibility of Ti alloy; ceramic metal combination artificial hip joint femur prosthesis was made by combining Al₂O₃ femur head with Ti alloy femur handle, so the manufacturing process is improved and the property and application flexibility are advanced.

[Key words] Al₂O₃; mechanics property; femur prosthesis; spraying; combination

[CLC number] R 318.08

[Document code] A

1 INTRODUCTION

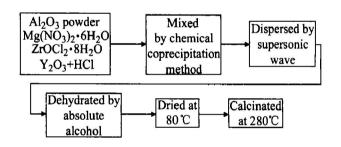
The artificial hip joint femurs used in clinical at present are made of metal and alloy, which mainly include stainless steel, Ti alloy and Co alloy etc. [1] These materials have super mechanical process property and high strength, but their chemistry stability and biocompatibility are not good, they are easy to abrade and dissolve out toxic ions^[2]. As biomedical material, Al₂O₃ has excellent biocompatibility, physiologic inertia, physics and chemistry stability, high hardness and wearability, but it is crisp and difficult to prepare. Based on the invention of "inner casting metal Al₂O₃ ceramic combination artificial hip joint", which gained China National Invention 3rd Prize in 1995, this study aims at preparing a kind of ceramic-metal combination artificial hip joint femur prosthesis so as to amplify the advantages of the two kinds of materials and improve the technics and performances.

2 PREPARATION METHODS

2. 1 Al₂O₃ material synthesizing

2. 1. 1 Raw material and additives

High purity alumina micro-powder was used as raw material. The components are shown in Table 1. The average grain size is 0.35 \(\mu_m\).


MgO, ZrO_2 and $Y_2O_3(AR)$ were used as additives, which can promote sintering and improve mechanical and biological properties of material^[3].

2. 1. 2 Synthesizing technics

Technics process is shown in Fig. 1.

Table 1 Components of Al₂O₃ powder

			((w, %)		
Al_2O_3	K_2O	CaO	Na ₂ O	MgO		
99, 948 4	0. 021 0	0. 015 0	0.009 2	0.0064		

Fig. 1 Al₂O₃ material synthesizing process

2. 2 Preparation of Al₂O₃ femur head

Technical process is shown in Fig. 2. Femur head fabrication is shown in Fig. 3. Finish machining and polishing were achieved through correcting precision with diamond abrasive tools and graded polishing with SiC micro powder and diamond paste.

2. 3 Surface spraying of Ti alloy femur handle

Surface of Ti alloy femur handle was sprayed bioactive HA by plasma^[4~6], coating thickness is 60 µm.

3 TEST AND DISCUSSION

3. 1 Performance test of Al₂O₃ material

① [Foundation item] Project (20016001009) supported by the National Medium and Small Enterprises Innovation Foundation of China [Received date] 2001 - 12 - 03; [Accepted date] 2002 - 01 - 28

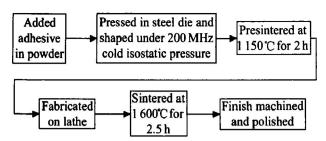
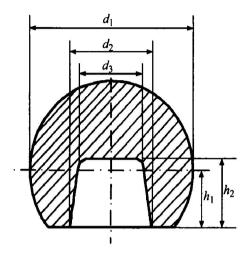
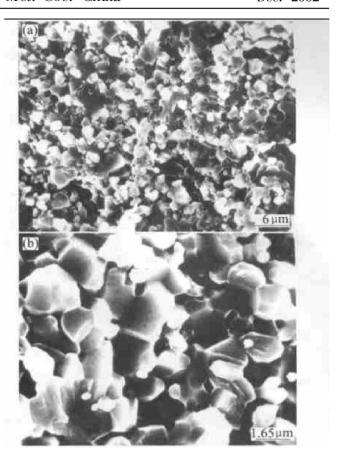



Fig. 2 Al₂O₃ femur head preparation process

Fig. 3 Schematic diagram of Al₂O₃ femur head fabrication

Three point bending strength, fracture toughness, volume density, hardness and average grain size of Al_2O_3 material sintered at 1 600 °C were tested, the results are shown in Table 2 and Fig. 4.


Table 2 Performance of Al₂O₃ material

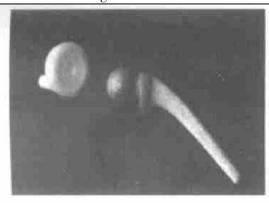
Items	Bending strength /MPa	Fracture toughness / (MPa•m ^{1/2})	Volume density /(g• cm ⁻³)	Rockwell hardness
Average value	416	5.46	3. 90	90. 2

The average grain size of the material was counted as 2.583 \(\mu\)m based on the statistic results of grain diameter on SEM photos.

3. 2 Discussion

By analysis of the test results, we know that the material prepared by adding Mg-Zr-Y composite additives into high purity alumina micro-powder and sintering has perfect multiple property. Pure Al_2O_3 is difficult to sinter because of high temperature (generally at 1 700 °C~ 2 000 °C). According to the property demands of products, we should add certain additives to promote sintering. MgO and ZrO_2 create limited solid solution with Al_2O_3 . Mg^{2+} and Zr^{4+} whose ion radius are greatly different from Al^{3+} cause the crystal lattice transforming and activating when they enter in Al_2O_3 crystal lattice,

Fig. 4 SEM photos of micro-topography of Al₂O₃ material (a) -2.50 K; (b) -7.00 K


so to further the diffusion mass transfer in sintering process^[7]. At the same time, MgO solid phase reacts with Al₂O₃ at high temperature and creates MgAl₂O₄, which exists on crystal boundary and limits the crystal boundary transference so restrains Al₂O₃ crystal grains from unusual growth^[8,9]. SEM photos indicate that the grain sizes of the material are uniform and there are no obvious crystal grains grown up unusually. Additionally, MgO-ZrO₂(Y₂O₃) may create eutectic mixture. Because of liquid phase appearance, solid phase grains keep close and fill in the pores. In the sintering process, small defective crystals have high surface activity and solubility in liquid phase, so they grow continuously and the pores decrease. The small average grain size is beneficial to material strength^[10]. Meantime, the tetra ZrO₂(Y₂O₃) has good malleableizing effect on Al₂O₃ due to phase change ^[7]By adding Mg-Zr-Y composite additives, the Al_2O_3 material sintered at lower temperature (1 600 °C) has perfect mechanical property, which prove Mg-Zr-Y composite additives can promote sintering and improve the property of material efficiently.

Being pressed under cold isostatic pressure and presintered at 1150 °C, the blank strength satisfies the demands of fabrication. Being sintered at 1 600 °C, machined and polished, we can prepare the Al₂O₃ femur

head that fit the femur handle fine.

Ti alloy femur handle sprayed HA by plasma can lead bone tissue to grow into its surface micro pores and form bone bonding, which has double fixing roles of biological self-lock and mechanical occluding $^{[4\sim\ 6]}$.

The Al₂O₃ femur head combined with Ti alloy femur handle is shown in Fig. 5.

Fig. 5 Photo of combination artificial hip joint femur prosthesis

4 CONCLUSION

 Al_2O_3 material which has perfect multiple property can be prepared using high purity alumina micro-powder by adding Mg-Zr-Y composite additives and sintering at temperature of 1 600 °C. The mechanism of promoting sintering by Mg-Zr-Y composite additives may be to create limited solid solution, activate crystal lattice and liquid phase sinter.

Combinating the Al₂O₃ femur head with the Ti alloy femur handle that be sprayed HA on its surface, one can get the artificial hip joint femur satisfied the design demands, which simplify the preparation technics and improve the performance. The combination femur head can be replaced so the clinical use is more flexible.

[REFERENCES]

- [1] QUE Sharr zhang. Orthopaedics alloy and artificial joint [J].
 Materials Society, (in Chinese), 1994, 78(6): 53 56.
- [2] Lerouge S. Ceramic ceramic and metal-polyethylene total hip replacement [J]. J Bone Joint Surg, 1997, 79B: 138 – 139.
- [3] Burger W, Richter H G, Piconi C, et al. New Y-TZP powders for medical grade zirconia [J]. Journal of Materials Science: Materials in Medicine, 1997, 80(8): 116 118.
- [4] CAO Yong ping, YAN Shang cheng. Experiment study of hydroxyapatite coating artificial femur handle[J]. Journal of Zhonghua Bone Science, (in Chinese), 1997, 17 (3): 155 – 159, 194 – 197.
- [5] YAN Shang cheng, YUAN Yu, XU Beng ming. Clinic application of hydroxyapatite coating artificial femur handle [J]. Journal of Zhonghua Bone Science, (in Chinese), 1997, 17 (3): 167 170.
- [6] DAI Ke rong, HONG Harr zhou, ZHENG Ze kun. Experiment study of porous surface artificial joint[J]. Journal of Zhonghua Bone Science, (in Chinese), 1990, 10 (5): 358 360.
- [7] LI Shr pu. Special Ceramic Technology, (in Chinese) [M].
 Wuhan: Wuhan University of Technology Press, 1990. 85, 86, 105.
- [8] Cynthia A, Powell D, Arthur H H. Microstructure of 96% alumina ceramics[J]. J Am Ceram Soc, 1990, 73 (12): 3679 – 81.
- [9] BO Zharrman, HE Sheng-hong. Study on fine-grained alumina of low temperature sintering [J]. Journal of Silicate, (in Chinese), 1995, 23 (3): 272.
- [10] Boutz M M R, Janssen R, Claussen N. Deformation process of reaction bonded alumina ceramics [J]. Mater Sci and Eng, 1997, A233: 165 166.

(Edited by LONG Huai-zhong)