[**Article ID**] 1003 - 6326(2002) 06 - 1117 - 04

Effects of TM on stability of structure corresponding to prepeak of amorphous Al₉₀TM₅Ce₅ Alloys[©]

ZHAO Fang(赵 芳), WU Your shi(吴佑实) (College of Materials Science and Engineering, Shandong University(South Campus), Ji nan 250061, China)

[Abstract] X-ray diffraction and DSC were used to investigate the crystallization process of amorphous Al₉₀Fe₅Ce₅ and Al₉₀ Ni₅Ce₅ alloys, and the stability of the structure corresponding to the prepeak. Both these amorphous alloys are crystallized by two stages. The stability of the structure corresponding to the prepeak has a large difference. The structure corresponding to the prepeak for amorphous Al₉₀Fe₅Ce₅ alloy is more stable than the amorphous matrix. However, it is not stable for amorphous Al₉₀Ni₅Ce₅ alloys during the first crystallization stage. The prepeak position of amorphous Al₉₀Ni₅Ce₅ alloys is very close to that of amorphous Al₉₀Fe₅Ce₅ alloys. It is estimated that the prepeak is also due to diffraction peak broadening caused by very fine quasi crystalline structure and the structural unit is an icosahedral quasi crystalline structure with Ni as the central atom. The large difference of the stability of the structure corresponding to the prepeak is likely caused by different stability of the quasi crystalline structure.

[Key words] amorphous Al₉₀TM₅Ce₅ alloy; prepeak; stability; crystallization

[**CLC number**] 0 795

[Document code] A

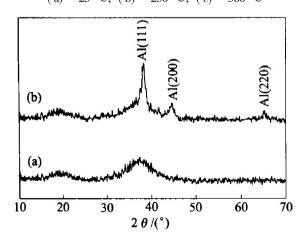
1 INTRODUCTION

The amorphous alloys in Al-TM-RE systems with aluminum content up to 90% have been found to have extraordinary high strength combined with good ductility^[1,2]. Furthermore, it has been found that a homogeneous dispersion of fcc Al particles within the amorphous matrix after heat treatment can significantly increase the tensile strength combining with good bending ductility as compared with those for the amorphous single phase alloys with the same composition^[3,4]. The DSC results of the amorphous Al alloys usually exhibit two or three crystallization peaks. The first peak, the primary crystallization peak, is caused by the precipitation of Al nano-particles in the residual amorphous matrix. Usually, the formation of nanocrystals with excellent mechanical properties in Al-based alloys is not made directly by quenching but rather by overquenching to generate a fully amorphous state and thus the glass phase is then partially devitrified to produce a nanometer-scale dispersion of Al crystallites in a glassy matrix because the annealing process is easily controllable^[5]. In order to tailor the microstructures and the related properties, a clear understanding of the devitrification behavior of Al-based glasses is needed. The replacement of Ni by Fe increases the thermal stability of the amorphous Al-based alloys, which is ultimately interpreted by the fact that Fe has stronger interaction with Al than Ni, however, the mechanism of the enhancement of the thermal stability of the amorphous alloys is still not clear [6]. Studying crystallization process has provided substantial knowledge about crystal nucleation and growth, and the thermal stability of an amorphous phase. However, the crystallization behavior of the present amorphous alloy system is not completely understood yet. In our work, prepeaks are found in the amorphous Al₉₀Fe₅Ce₅ and Al₉₀Ni₅Ce₅ alloys, the small angle information of the X-ray diffraction pattern during crystallization process and the effects of the TM elements on the stability of the structure corresponding to the prepeak are investigated.

2 EXPERIMENTS

Ingots of Al-Ni-Ce and Al-Fe-Ce alloys with nominal composition were prepared by arc melting the mixture of high purity (99. 99%) Al, Ni(or Fe) and (99. 9%) Ce in an argon atmosphere. Amorphous ribbons were prepared by a single roller melt-spinning technique under a partial argon atmosphere. The diameter of the copper roller is 35 cm, with a typical circumferential velocity of 40 m/s. The ribbons are about 2 mm in width and 25 l/m in thickness.

The structure of the ribbon samples was examined by X-ray wide angle diffraction (XRD) with Cu K $_{\alpha}$ radiation (λ = 0. 154 2 nm) coupled with a graphite monochromator in the diffraction beam. The scattering


intensity measured in arbitrary unit could be converted into the coherent scattering intensity per atom in electron units, using the generalized Krogh-Moe-Norman method^[7] with the atomic scattering factor including the anomalous dispersion factor^[8]. Compton scattering was also corrected using the values given by Cromer and Mann^[9]. Then, the total structure factor S(Q) was obtained from the scattering intensity, where $Q = 4\pi\sin\theta/\lambda$ is the magnitude of the scattering vector and λ is the wavelength^[7]. A parabolic-like function $f(x) = ax^2 + bx^3$, in which b is often much smaller than a, was used to fit the small-angle part of $S(Q)^{[10]}$. Thermal analysis was performed using a Netzsch DSC-404 system under a pure argon atmosphere at heating rate of 10 °C/min.

3 RESULTS

Fig. 1 (a) and Fig. 2 (a) show the XRD patterns of the as-quenched $Al_{90}Ni_{5}Ce_{5}$ and Al_{90} Fe₅Ce₅ ribbons, respectively. The broad diffuse peaks indicate that both the as-quenched

Fig. 1 X-ray diffraction patterns of amorphous Al₉₀Ni₅Ce₅ alloys at different temperatures
(a) −25 °C; (b) −230 °C; (c) −360 °C

Fig. 2 X-ray diffraction patterns of amorphous $Al_{90}Fe_5Ce_5$ alloys at different temperatures (a) -25 °C; (b) -260 °C

Al₉₀Ni₅Ce₅ and Al₉₀Fe₅Ce₅ ribbons are amorphous. The most intriguing feature is the existence of the prepeak, which is located at nearly $2\theta = 20^{\circ}$ for Al₉₀Ni₅Ce₅ amorphous alloys and at around 2θ= 19.5° for Al₉₀Fe₅Ce₅ amorphous alloys. The total structure factors of amorphous Al₉₀Ni₅Ce₅ alloys are shown in Fig. 3. The main peak is located at around 27 nm⁻¹. It can also be seen that a prepeak exists in the structure factors of amorphous alloys. The statistic error in the position of the peak has been evaluated by the method developed by Egami^[11] and the error in the position of the prepeak is relatively large due to its broad shape. The prepeak position is 14.0 nm⁻¹, with the statistic error about ± 0.5 nm⁻¹. In the previous work^[12~14], the prepeak has been found existing in the total structure factors of Al₉₀ Fe₅Ce₅ amorphous alloys and locates at around 13. 8 nm⁻¹. The prepeak position of Al₉₀Ni₅Ce₅ amorphous alloys is very close to that of Al₉₀Fe₅Ce₅ amorphous alloys.

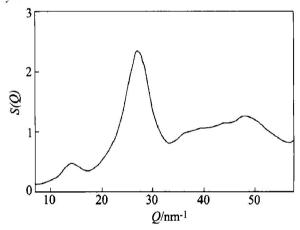
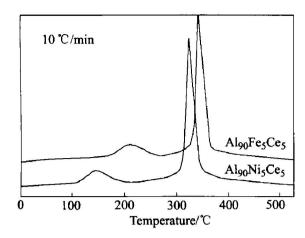



Fig. 3 Total structure factors of amorphous Al₉₀Ni₅Ce₅ allovs

Fig. 4 shows the DSC curves of amorphous Al_{90} Ni_5Ce_5 and Al_{90} Fe_5Ce_5 alloys, respectively. Two exothermic peaks are observed in each DSC curve. The first exothermic peak is very weak at low temperature and no glass transition is found. The second peak is at high temperature with strong exothermic peak. The crystallization onset temperature is about 110 °C for the amorphous $Al_{90}Ni_5Ce_5$ alloys and about 165 °C for amorphous $Al_{90}Fe_5Ce_5$ alloys. The crystallization onset temperature of the amorphous $Al_{90}Fe_5Ce_5$ alloys is much higher than that of the amorphous $Al_{90}Ni_5Ce_5$ alloys.

X-ray diffraction patterns at different temperatures of the amorphous $Al_{90}Ni_5Ce_5$ alloys are shown in Fig. 1 (b) and(c). At 230 °C, after the first crystallization peak temperature, the prepeak disappears and fcc Al phase appears, at 360 °C, several intermetallic compounds indicated as Al_3Ni and Al_{11} Ce₃ phases are

Fig. 4 DSC curves of amorphous Al₉₀Ni₅Ce₅ and Al₉₀Fe₅Ce₅ alloys

formed. Fig. 2(b) shows the XRD patterns of amorphous alloys at 260 $^{\circ}$ C after the first crystallization peak temperature for amorphous Al₉₀Fe₅Ce₅ alloys, it can be seen the fcc Al phase appears; however, the prepeak still exists in the XRD pattern, which is different with the amorphous Al₉₀Ni₅Ce₅ alloys.

4 DISCUSSION

From Fig. 4 and Fig. 2(b), during the first crystallization stage for the amorphous Al₉₀Fe₅Ce₅ alloys, fcc Al phase appears, the prepeak still exists in the XRD pattern. It indicates that the structure corresponding to the prepeak is more stable than the amorphous matrix. From Fig. 4 and Fig. 1(b), during the first crystallization stage for the amorphous Al₉₀Ni₅Ce₅ alloys, fcc Al phase appears; however, the prepeak also disappears. It indicates that the structure corresponding to the prepeak is not stable during the first crystallization process for amorphous Al₉₀-Ni₅Ce₅ alloys. Accordingly, the stability of the structure corresponding to the prepeak is strongly related to the TM elements in the amorphous Al₉₀TM₅Ce₅ alloys. The structure corresponding to the prepeak of amorphous Al₉₀-Fe₅Ce₅ alloys is more stable than that of amorphous Al₉₀Ni₅Ce₅ alloys during the first crystallization process.

The prepeak shows that the chemical short-range order (or the structural unit) and the medium-range order (or the cluster) caused by strong chemical bonds exist in the amorphous alloys $^{[13,14]}$. In the amorphous Al-Fe-Ce and Al-Ni-Ce alloys, both Al-Fe and Al-Ni have a strong chemical bonding due to s, p, d hybridization of Al and $TM^{[15,16]}$. However, the stability of the structure corresponding to the prepeak has a large difference in amorphous $Al_{90}Fe_5Ce_5$ and $Al_{90}Ni_5Ce_5$ alloys. In amorphous $Al_{90}Fe_5Ce_5$ alloys, it is considered that the pre-

peak is due to diffraction peak broadening caused by very fine quasi-crystalline structure (0.5 \sim 2 nm), the structural unit size can be estimated according to a formula, $R = 2\pi / Q_p$, where Q_p is the prepeak position, and the structural unit is an icosahedral quasi-crystalline structure with Fe as the central atom^[13, 14]. The prepeak position of amorphous Al₉₀Ni₅Ce₅ alloys is very close to that of Al₉₀Fe₅Ce₅ amorphous alloys. Icosahedral quasir crystal Al₈₆Ni₁₄ had been prepared by rapid quenching from the melt^[17]. Decagonal quasi-crystal was also reported in the Al₆Ni allov^[18]. The decagonal quasi-crystal is believed to develop at slower solidification velocities than those required for the icosahedral phase and the decagonal quasi-crystal phase nucleates frequently on surfaces of growing dendrites of the icosahedral phase. Al-Ni icosahedral quasi-crystal and Al-Fe icosahedral quasi-crystal have the similar diffraction pattern and very close lattice parameter^[17]. Ce can increase quenching effect in Al based alloys and can form large volume fraction of icosahedral phases^[19]. Furthermore, Al-Fe and Al-Ni have almost the same bonding length. Therefore, it is estimated that the prepeak is also due to diffraction peak broadening caused by very fine quasi-crystalline structure and the structural unit is an icosahedral quasir crystalline structure with Ni as the central atom for amorphous Al₉₀Ni₅Ce₅ alloys. The stability of the icosahedral quasi-crystalline phase decreases with increasing concentration of 3d electron and the stability of Al-Ni icosahedral quasi-crystalline phase is much lower than that of the Al-Fe icosahedral quasi-crystalline phase^[17]. Al-Ni and Al-Fe icosahedral quasi-crystalline phase decompose at about 150 °C and 380 °C, respectively, with heating rate 20 °C/min^[17]. The crystallization temperature will shift to a little slower value at slower heating rate. This value is close in the range of the first exothermic peak in DSC curves for amorphous Al₉₀Ni₅Ce₅ alloys. In addition to the stronger Al-Fe interaction than that of Al-Ni^[9] and the same Al-Ce pairs, the Fe-Ce interaction were deduced to be stronger than that of Nir Ce pairs from the stability analysis of amorphous alloys^[20]. Therefore, the large difference of the stability of the structure corresponding to the prepeak is likely caused by the different stability of quasi-crystalline structure.

As shown in Fig. 4, the crystallization onset temperature of amorphous $Al_{90}Fe_5Ce_5$ alloy is much higher than that of amorphous $Al_{90}Ni_5Ce_5$ alloy. Although they both have strong chemical bonding since they have the similar chemical bonding length which is much shorter than the sum of atomic metallic radius, their crystallization onset temperature has a large difference, about 55 °C. The enhanced chemical short-range order can in-

crease the stability of the amorphous matrix by inhibiting Al diffusion^[5]. As discussed above, the stability of the structure corresponding to the prepeak is strongly different during crystallization process. Since the structure corresponding to the prepeak of amorphous Al₉₀Fe₅Ce₅ alloys is stable, it can inhibit Al diffusion during crystallization. Therefore, the large difference of the crystallization onset temperature is likely caused by the different stability of the structure corresponding to the prepeak during crystallization process.

5 CONCLUSIONS

- 1) The crystallization onset temperature of amorphous Al₉₀ Fe₅Ce₅ alloys is much higher than that of amorphous Al₉₀Ni₅Ce₅ alloys.
- 2) The structure corresponding to the prepeak for amorphous $Al_{90} Fe_5 Ce_5$ alloys is stable during the first crystallization stage. However, it is not stable for amorphous $Al_{90}Ni_5Ce_5$ alloys.
- 3) The prepeak position of amorphous Al₉₀-Ni₅Ce₅ alloys is very close to that of amorphous Al₉₀Fe₅Ce₅ alloys. It is estimated that the prepeak for amorphous Al₉₀ Ni₅Ce₅ alloys is due to diffraction peak broadening caused by very fine quasi-crystalline structure and the structural unit is an icosahedral quasi-crystalline structure with Ni as the central atom.
- 4) The large difference of the stability of the structure corresponding to the prepeak of amorphous Al₉₀ Ni₅Ce₅ and Al₉₀Fe₅Ce₅ alloys is likely caused by different stability of the corresponding quasi-crystalline structure. The higher crystallization onset temperature for amorphous Al₉₀Fe₅Ce₅ alloys is likely due to the more stable structure corresponding to the prepeak.

[REFERENCES]

- [1] He Y, Poon S J, Shiflet G J. Synthesis and properties of metallic glasses that contain aluminum [J]. Science, 1988, 241: 1640 - 1642.
- [2] Inoue A, Ohtera K, Tsai A P, et al. New amorphous alloys with good ductility in AFY-M and AFLarM(M = Fe, Co, Ni or Cu) systems[J]. Jpn J Appl Phys, 1988, 27(3): L280 - 282.
- [3] Kim Y H, Inoue A, Masumoto T. Increase in mechanical strength of Al-Y-Ni amorphous alloy by dispersion of nanoscale fcc Al particles [J]. Mater Trans JIM, 1991, 32 (4): 331 338.
- [4] Kim Y H, Inoue A, Masumoto T. Ultrahigh tensile strength of Al₈₈Y₂Ni₉M₁(M= Mn or Fe) amorphous alloys containing

- finely dispersed fcc Al particles [J]. Mater Trans JIM, 1990. 31(8): 747 749.
- [5] Kim Y K, Soh J R, Kim D K, et al. Glasses formation in metallic Al-Nir Y. J Norr cryst. Solids 1998, 242 (2/3): 122 - 130.
- [6] Jin H W, Kim Y J, Park C G. The effect of Fe on the crystallization behavior of Al-Mnr Nr Fe amorphous alloys [J]. J Mater Sci. 2001, 36(8): 2089 - 2094.
- [7] Wasada Y. The Structure of Non-crystalline Materials[M]. New York: MCGraw-Hill, 1980.
- [8] Anon. International Tables for X-ray Crystallography [M]. Birmingham: Kynoch, 1974, 4: 74 - 78.
- [9] Cromer D T, Mann J B. Compton scattering factors for spherically symmetric free atoms[J]. J Chem Phys, 1967, 47(6): 1892 – 1893.
- [10] QIN Jing yu, BIAN Xiur fang, Sliuarenko S I, et al. Prepeak in the structure factor of liquid Al-Fe alloy [J]. J. Phys: condensed matter, 1998, 10: 1211 1218.
- [11] Egami T. Structure studies by X-ray and neutron diffraction: how accurate are they[J]. Mater Sci Eng A, 1994, 179/180(1): 17 19.
- [12] ZHANG Lin, BIAN Xiurfang, WU Yourshi, et al. Effect of quenching condition on micro inhomogeneous structure of Al-Fe Ce amorphous alloy [J]. Trans Nonferrous Soc China, 2000, 10(3): 414 - 417.
- [13] ZHANG Lin, WU Your shi, BIAN Xiur fang, et al. Origin of the prepeak in the structure factors of liquid and amorphous AFFe Ce alloys [J]. J Phys: Condens Matter, 1999, 4(11): 7959 7969.
- [14] ZHANG Lin, WU Your shi, BIAN Xiur fang, et al. Short-range and medium range order in liquid and amorphous Al₉₀Fe₅Ce₅ alloys[J]. J Norr cyst solids, 2000, 262(1): 169 176.
- [15] Hsieh H Y, Toby B H, He Y S, et al, Atomic structure of amorphous Al_{90} Fe_x Ce_{10-x} [J]. J Mater Res, 1990, 5: 2087 2812.
- [16] Itsuro Yamamoto, John Van Zytveld, Hirohisa Endo. Local structure of AFLa Ni amorphous alloys [J]. J Norr crys Solids, 1996, 205 207(2): 728 732.
- [17] Dunlap R A, Dini K. Structure and stability of quasi crystalline aluminum transition metal alloys [J]. J Phys F1986, 16(1): 11 16.
- [18] LI X Z, KUO K H. Decagonal quasicrystals with different periodicities along the ten fold axis in rapidly solidified Al-Ni alloys[J] . Philops mag Lett, 1988, 58(3): 167 - 171.
- [19] Inoue A, Kimura H M, Sasamori K, et al, Ultrahigh strength of rapidly solidified Al_{96-x}Cr₃Ce₁Co_x(x = 1, 1.5 and 2) alloys containing an icosahedral phase as a main component [J]. Mater Trans JIM, 1994, 35(2): 85 94.
- [20] Inoue A, Ohtera K, Kita K, et al, New amorphous alloys with good ductility in AFCeM(M= Nb, Fe, Co, Ni or Cu alloy) systems [J]. Jpn J Appl Phys, 1988, 27 (10): L1796 – L1799.

(Edited by LONG Huai-zhong)