[**Article ID**] 1003 - 6326(2002) 06 - 1050 - 04

Corrosion resistance of Zn-Al co-cementation coatings on carbon steels in aqueous media

LI De zhi(李德志)¹, HE Ye dong(何业东)¹, WANG De ren(王德仁)¹, ZHANG Zhao en(张召恩)¹, QI Hui bin(齐慧滨)¹, GAO Wei(高唯)² (1. Beijing Key Laboratory for Corrosion, Erosion and Surface Technology, University of Science and Technology Beijing, Beijing 100083, China; 2. Engineering School, The University of Auckland, New Zealand)

[Abstract] A novel Zrr Al c σ cementation coating was obtained by a pack cementation method. This coating possesses a two layered structure. The outer layer is mainly composed of Fe₂Al₅ and FeAl intermetallics with a small amount of Zn, and the irr ner layer consists of Zn, Fe and a small amount of Al. The corrosion resistance of Zrr Al c σ cementation coatings on carbon steel was studied by a rotary corrosion method in various NaCl and H₂S containing solutions and relevant SiO₂ containing media. The experimental results are compared with those of carbon steels and the sherardizing and aluminizing coatings, showing that the Zrr Al c σ cementation coatings have excellent corrosion resistance in various aqueous media.

[Key words] Zrr Al co-cementation; corrosion resistance; aqueous media

[CLC number] TG 174. 445; TG156. 8

[Document code] A

1 INTRODUCTION

Sherardizing coating, a Zn coating produced by pack cementation, has good anti-corrosion property and has been widely used in petroleum industry and sea environments^[1], but its oxidation resistance isn't very good. Several worldwide publications have shown that Al- and Zm-based alloys provide greater durability in aggressive atmospheres than that used individually [2]. This is because that Al can act as a corrosion-resistant barrier that is in conjunction with the protective galvanic effect furnished by Zn. Zn-Al coatings produced by hot-dip, such as zinc 5% aluminum coating and zinc 55% aluminum coating, have been proved with good properties for both of anti-corrosion and anti-oxidation^[3]. This technique has also been greatly used in petroleum industry, the environments open in atmosphere and the environments near or on sea. But hot-dip consumes too many metals and often has a high expense, and is not appropriate when dealing with small, irregularly shaped pieces such as screws, bolts and nuts, because their dimensional tolerances need to be maintained^[4].

Recently, Rincón et al^[4] reported about diffusive ZrrAl coating on carbon steel prepared by a two step method. In this method, an Al coating was obtained by pack cementation firstly, then the aluminized samples were sherardized at the temperature between 335 °C and 350 °C about 2 to 4 h. It is shown that this ZrrAl coating

has good corrosion resistance property, better than those of sherardized coating and aluminized coating.

In this research, ZrrAl corcementation coatings were prepared by pack cementation at a relative low temperature and by a one step method. It has been proved that ZrrAl corcementation coatings possess both good corrosion erosion resistance in aqueous media and excellent high-temperature corrosion resistance that is reported elsewhere^[5]. In this paper, corrosion erosion resistance of ZrrAl coatings in various aqueous media is studied.

2 EXPERIMENTAL

The substrate material used in present experiments is a commercial carbon steel with $\sim 0.2\%$ C (similar to AISI 1020). Short tube specimens (d 25 mm \times 2.5 mm \times 30 mm) were used in erosion corrosion tests.

ZrrAl cor cementation, sherardizing and aluminizing were all carried out by pack cementation. In ZrrAl cor cementation, firstly the specimens were pretreated, including removing the grease and rust on the surface, and cor cementation reagent was prepared with certain powders of Zn, ZrrAl alloy, Al₂O₃ and NH₄Cl and whetted equably; then the specimens were put into a cementation pot with cor cementation reagent around; lastly the cor cementation pot was put into a muffle stove, and the temperature of it was raised to 550 °C for 10 h and after treatment the pot was taken out, so we got the ZrrAl cor cementation specimens^[5]. The surface and cross-

section morphologies of ZrrAl corcementation coatings were gained through SEM, and the contents of elements on the surface and along the cross-section were gained through EDS.

In order to evaluate the corrosion resistance of the ZrrAl cor-cementation coatings and simulate the corrosion conditions of heat exchangers^[6,7], a rotary corrosion device was used, as shown in Fig. 1. The short tube specimens were fastened on a rotating disc plate. The rotating rate of the specimens was 1 m/s. The tested solutions were water, 3. 5% NaCl solution, 10 mg/L H₂S solution and 3. 5% NaCl+ 10 mg/L H₂S solution at 40 °C. In order to examine the role of solid particles on corrosion, 20 g/L SiO₂ particles with a – 40 grit size were added into the above four kinds of solutions respectively. The corrosion erosion resistance was evaluated by the mass changes of the specimens in certain time intervals.

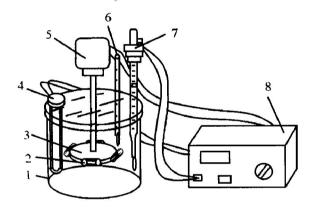
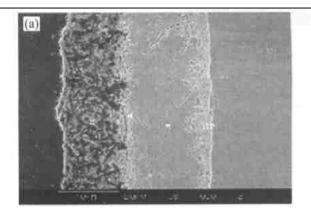


Fig. 1 Rotary corrosion device 1—Cistern; 2—Specimen; 3—Disc; 4—Heater; 5—Electrometor; 6—Thermometer; 7—Touch thermometer; 8—Multi-functional beater


3 RESULTS AND DISCUSSION

3.1 Structure and composition of Zn-Al cocementation coatings

Fig. 2 shows the cross-section morphology and composition of ZrrAl co-cementation coatings. It is shown that the ZrrAl co-cementation coating has a two-layered structure. The outer layer is aluminum-rich, loose, and porous, and the inner layer is zinc-rich and compactive. Fig. 3 shows the XRD analysis result of ZrrAl coating. Obviously, the surface of ZrrAl co-cementation coatings is mainly composed of Fe₂Al₅ and FeAl. This duplex structure in ZrrAl co-cementation coating could be considered a result by piling up an aluminized coating over a sherardized coating.

3. 2 Corrosion erosion resistance in aqueous media

Figs. 4(a) and (b) show the experimental re-

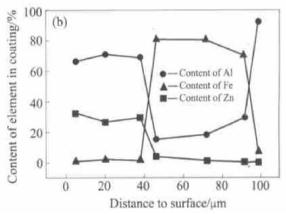


Fig. 2 Cross-section(a) and elemental distribution of Zn-Al co-cementation coating(b)

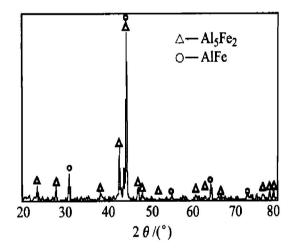


Fig. 3 Result of XRD of Zm Al coating

sults after erosion in water and water+ $20~g/L~SiO_2$ at $40~^{\circ}C$ for 100~h respectively. It can be seen from Fig. 4(a) that all specimens have mass gains after erosion in water, which can be attributed to the corrosive products formed on the surface of specimens. The mass gains of specimens increase in the order: sherardized coating< arbuminized coating< ZrrAl co-cementation coating< carbon steel. In Fig. 4(b), all specimens in water+ $20~g/L~SiO_2$ have a similar order for mass gains, but the values of mass gains are all lower than that in water. The reason for this is the wearing-away action of SiO_2 particles.

From Figs. 4(c) and (d), it is shown that all

specimens eroded in 3.5% NaCl solution and 3.5% NaCl+ 20 g/L SiO₂ solution have negative mass gains. Comparing them with the results in water and water+ 20g/L SiO₂, it can be concluded that erosion is accelerated by Cl⁻ ions. The mass losses increase in the order: ZrrAl co-cementation coating < sherardized coating <

carbon steel< aluminized coating. The mass loss of aluminized coating is even larger than that of carbon steel.

Figs. 4(e), (f), (g) and (h) show the experimental results for four kinds of specimens eroded in the above four kinds of media adding 10 mg/L H_2S respectively. Comparing Figs. 4(e), (f), (g)

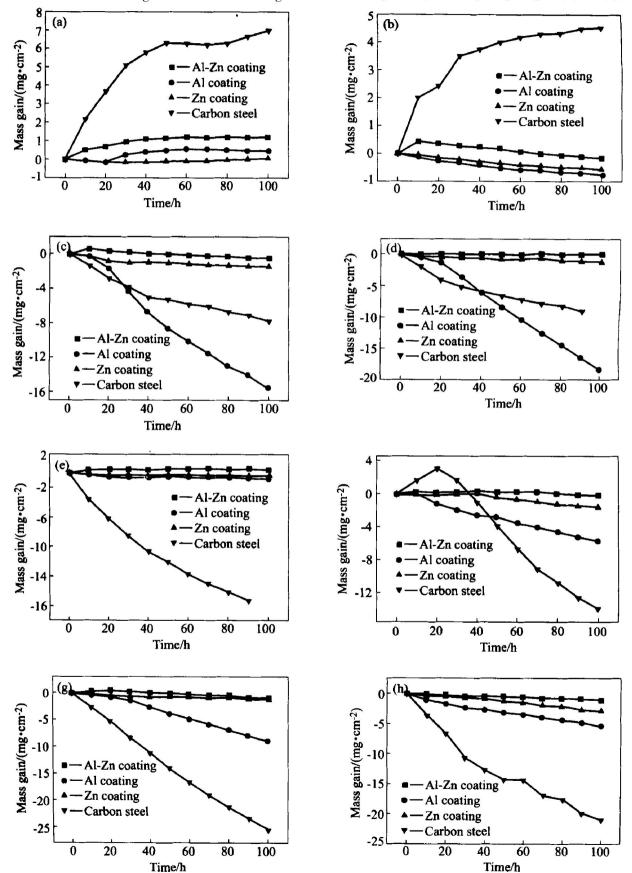


Fig. 4 Mass gains versus time plots of erosion in different media at 40 °C

and (h) with Figs. 4(a), (b), (c) and (d) respectively, it can be found that, by the addition of 10 mg/L H₂S, the erosion rate of carbon steel is accelerated greatly; the erosion rate of sherardizing coating and Zr-Al co-cementation coating only increases a little; but the erosion rate of aluminizing coating decreases remarkably although it is much higher than that of the sherardizing coating and Zr-Al co-cementation coating.

From all figures in Fig. 4, in a comprehensive view, it can be concluded that the Zn-Al co-cementation coating has the best erosion resistance among all specimens in eight different erosion media. It can also be seen that, for carbon steel, the sherardizing coating and the Zn-Al co-cementation coating, there is a synergistic effect of Cl⁻ ions, H₂S and SiO₂ particles on the increase of erosion rate. However, for the aluminizing coating, only Cl⁻ ions, and SiO₂ particles can accelerate the erosion rate synergistically, while H₂S can decrease the erosion rate reversibly. It is interesting to see that a lot of vellow rust formed on the surface of aluminized coatings in all eight different erosion media, but not on the surfaces of the sherardized and Zn Al co-cementation coatings. This implies that the corrosion mechanism of aluminized coatings is different from that of the sherardized and Zn-Al co-cementation coatings.

The poor corrosion resistance of aluminized coatings is believed to be related to its potential conversion in these environments. Aluminized coatings have the tendency to form a passive film, therefore are more prone to pitting corrosion than the Zn-rich coatings in aqueous solutions. These pits lead to the corrosion of substrate steel, resulting in the yellow rust on the surface of aluminized coatings. For the sherardized coatings, pitting tendency is not strong since the potential conversion does not occur in aqueous solutions at 40 $^{\circ}$ C^[8]. The Zrr Al cor cementation coating has an Al-rich outer layer; potential reversion phenomenon should also occur. However, the pitting corrosion and yellow rust did not take place on this type of coatings due to the inner Zrrrich layer, which can protect the steel substrate from corrosion erosion. Therefore, the Zn-Al coatings have the best corrosion erosion resistance among all the tested samples.

4 CONCLUSIONS

- 1) ZrrAl coatings were gained by pack co-cementation on the surface of carbon steels. It has a two-layered structure, an aluminum rich outer layer and a zinc rich inner layer.
- 2) It is proved that ZrrAl corecementation coating has the best corrosion erosion resistance among all specimens in eight different erosion media. The excellent corrosion erosion resistance of ZrrAl corementation coating can be attributed to its duplex structure, because the Alrich outer layer tends to be passive, which is beneficially to decrease the uniform corrosion, at the same time, pitting corrosion and yellow rust can not take place on this type of coatings due to the inner Zrrich layer, which can protect the steel substrate from corrosion.
- 3) There is a synergistic effect of Cl⁻ ions, H₂S and SiO₂ particles on the increase of erosion rate for Zn-Al co-cementation coating. It should be pointed out that aluminized coating has very poor corrosion erosion resistance, which is even poorer than that of carbon steel in 3.5% NaCl solution.

[REFERENCES]

- The Chinese Society for Corrosion and Protection. Handbook of Metal Protection [M], (in Chinese). Shanghai: Shanghai Science and Technology Press, 1989.
- [2] Townsend H E, Borzillo A R. Twenty year Atmospheric Corrosion Test of Hot dip Coated Sheet steel [A]. Corrosion/87[C]. Houston, TX: NACE, 1987.
- [3] Porter Frank. Zinc handbook: Properties, Processing and Use in Design [M]. New York: Marcel Dekker, Inc, 1991.
- [4] de Rincón O T, Ludovic J, Huerta E, et al. A study of diffusional zinc and aluminum and zinc based coatings on steel
 [J]. Materials Performance, 1997, 36(6): 28 37.
- [5] HE Ye dong, WANG De ren, LI De zhi. A method to produce Zrr Al concementation coating [P]. Chinese patent in application.
- [6] WENG Yong ji, LI Xiang yi. A study on synergism between erosion and corrosion of carbon steel in sandy oilfied brines [J]. Journal of Chinese Society for Corrosion and Protection, (in Chinese), 2000, 20(5): 281 – 286.
- [7] ZHENG Yur gui, YAO Zhir ming, KE Wei. The latest studies of erosion corrosion [J]. Material Science and Engineering, (in Chinese), 1992, 10(3): 21 26, 41.
- [8] Evans U R. The Corrosion and Oxidation of Metals[M]. London: Edward Arnold Ltd, 1960.

(Edited by PENG Chao qun)