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2 RSF A d16 mm X 140 mm [958 ] Bk [ 45 5L 4 41K
B, RIS G RO L 1 . AR
W IR AT DU T2 AR B, 3 T AR Ak B
(1180 C, 2 h)+(1230 C, 4 h, AC)+(1100 ‘C, 4 h,
AC)+(870 'C, 20 h, AC).

F1 AR
Table 1 Chemical compositions of superalloy (mass

fraction, %)

Ctr Co W Mo Al Ti Ta Hf B C Ni

8.68 9.80 7.08 2.12 524 0.94 3.68 1.52 0.012 0.09 Bal.
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Fig. 1 Schematic diagram of creep specimen (Unit: mm): (a)

Plate specimens; (b) Cylinder specimen
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Fig. 2 Creep curve of alloy at 980 ‘C and 90 MPa
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Fig. 3 Morphologies of alloy crept for different time at 980 ‘C and 90 MPa: (a) Crept for 500 h, B=[100]; (b) Crept for 1000 h,

B=[100]; (c) Crept for 2000 h, B=[100]
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Fig. 4 Microstructures of alloy crept for 3000 h and 9714 h up to fracture at 980 ‘C and 90 MPa: (a) Crept for 3000 h, B=[100]; (b)
After crept up to fracture, region far from fracture, B=[100]; (c) Region near fracture, B=[100]

B 5 GefebilEmagUEs
Fig. 5 Microstructures of alloy after fully heat treatment: (a) Dendrite morphology on (001) plane; (b) Morphology of y, y' phase

and carbides
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Fig. 6 Microstructure on (100) plane different regions of specimen after crept for 500 h at 980 ‘C/90 MPa: (a) Schematic diagram

of marking observed locations in specimen; (b), (c), (d) SEM morphologies corresponding to 4,—C regions, respectively

B7 28980 C. 90 MPa I 2000 h Jri Ff: iy /£ AN A X I (100) T R AL B3
Fig. 7 Microstructures on (100) plane different regions of specimen after crept for 2000 h at 980 ‘C and 90 MPa: (a) Schematic

diagram of marking observed locations in specimen; (b), (c), (d) SEM morphologies corresponding to A4,, B, and C, regions,

respectively
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B8 £ 980 C. 90 MPa i F 9714 h Wi A i AN [l X 3k 11y 4 U5
Fig. 8 Microstructures in different regions of sample after crept for 9714 h up to fractured at 980 ‘C and 90 MPa: (a) Schematic

diagram of marking observed locations in specimen; (b)—(e) SEM morphologies corresponding to B;—Ej; regions, respectively

B9 #4980 'C. 90 MPa i AL AN [F]IN 6] 5 (100) [T (R 2B S
Fig. 9 Microstructures on (100) plane of samples crept for different times up to fracture at 980 ‘C and 90 MPa: (a) Fully heat
treatment; (b) Crept for 500 h; (c) Crept for 1000 h; (d) Crept for 2000 h; (e) Crept for 3000 h; (f) Crept for 9714 h up to fracture
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Fig. 10 Relationship between size of rafted )’ phase in

thickness and stress aged time
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Fig. 11 XRD patterns and convolution curves of alloy at
room temperature after stress aged for different times: (a)
Heat-treated state; (b) Crept for 500 h; (c) Crept for 1000 h; (d)
Crept for 2000 h; (e) Crept for 3000 h; (f) Crept for 9714 h to

fracture



528 & 3 00 M7, A BOJINRON DZ125 8k S A SN S AL BT R 543
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AT sy PIAHTI AR 205300 0.36037 nm A
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(001177 i, 3800 o'y PRARTR s 3 2
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y AR R ks B A I

Table 2 Parameters and misfit of y’ and y phases in alloy with

various states at room temperature

Parameter/nm
Aging time/h ' Misfit/%

v V
Fully heat treated 0.36113 0.35954 —0.443
500 0.36151 0.3597 —0.502
1000 0.36179 0.35994 —0.525
2000 0.36207  0.360037 —0.590
3000 0.36241 0.36018 —0.616
9714 0.36265 0.36037 —0.630
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Effect of stress aging on microstructure evolution and
creep resistance of DZ125 nickel-based superalloy

TIAN Ning', TIAN Su-gui"?, ZHANG Bao-shuai®, YU Hui-chen®, LI Qiu-yang’

(1. School of Mechanical Engineering, Guizhou University of Engineering Science, Bijie 551700, China;
2. School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China;
3. Aviation Key Laboratory of Science and Technology on Materials Testing and Evaluation,
Science and Technology on Advanced High Temperature Structural Materials Laboratory,
Beijing Key Laboratory of Aeronautical Materials Testing and Evaluation,
AVIC Beijing Institute of Aeronautical Materials, Beijing 100095, China)

Abstract: By means of creep properties measurement, microstructure observation and parameters measurement, the
effects of the stress aging on microstructure evolution and creep resistance of DZ125 nickel-based superalloy were
investigated. The results show that the creep life of the alloy at 980 ‘C and 90 MPa near service condition is 9714 h.
During creep, the various morphologies of y’ and y phases display in different regions of sample. Wherein, the y’ phase in
the middle region of sample firstly transforms into rafted structure, while the " phase in the stress-free region exhibits
bunch-like structure. As the time of the stress aging prolongs to 9714 h, the size of the rafted y' phase in thickness
increases from 0.4 pm to 1.8 pum, which increases the parameters and misfits of y’ and y phases in the alloy. The
deformation mechanisms of alloy during steady state creep are dislocations slipping in the matrix channels and climbing
over the rafted y’ phase. In the later stage of creep, the deformation mechanisms of alloy are dislocations shearing into the
rafted y’ phase. Wherein, the fact that the stress aging results in the coarsening of y'/y’ phases to increase the misfits may
improve the creep resistance of the alloy, which is thought to be one of the reasons of the alloy with a longer creep
lifetime.

Key words: DZ125 nickel-based superalloy; stress aging; creep; y' phase coarsening; misfit; deformation feature
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