2018年3月 March 2018

DOI: 10.19476/j.ysxb.1004.0609.2018.03.09



王彦欣,黄林军,唐建国,王 瑶,刘继宪

(青岛大学 杂化材料研究院 材料科学与工程学院, 青岛 266071)

**摘 要**:采用熔体快淬法制备 Mg<sub>65</sub>Ni<sub>27</sub>La<sub>8</sub> 非晶电极合金带,采用氧化还原法成功制备石墨烯/纳米银复合膜(G/A), 通过高能球磨将 G/A 膜成功引入电极合金进行表面包覆改性。通守 X 射线衍射仪、场发射扫描电镜、激光拉曼 光谱仪和高分辨电镜表征显示:还原后的石墨烯呈卷曲的大片层结构,尺寸在 2~5 μm 之间,银纳米颗粒均匀地 分散在石墨烯片层上,尺寸在 10~20 nm 之间。用恒流充放电的方法在三电极电池测试仪上测定其电化学循环性 能,实验结果表明改性后合金表面的氧含量由 21%降低为包覆后的 10%,G/A 膜有效阻止合金表面的腐蚀和粉化 开裂,包覆改性后电极合金的极限电流密度提高了 2.54 倍,电极的接触阻抗降低 87.2%,电极合金的最高放电容 量由 610.8 mA·h/g 上升为 814.8 mA·h/g,经过 20 个循环后的放电容量保持率由 79.86%提升为 85.76%,显著提高 其电化学性能。

关键词: Mg-Ni-La 系贮氢合金;石墨烯; 微观结构; 电化学性能; 表面改性 文章编号: 1004-0609(2018)-03-0509-09 中图分类号: TG139.7 文献标志码: A

氢能是 21 世纪最重要的绿色能源<sup>[1-2]</sup>,而镁基电 极合金是最具有发展潜力的轻量绿色能源材料之 一<sup>[3]</sup>。镁基电极合金的核心问题是如何提高其循环稳 定性。近 20 年来,尽管镁基贮氢合金作为电极材料得 到了广泛深入的研究和极其迅速的发展,但其苛刻的 吸放氢条件(吸放氢温度高、动力学性能差)和电极寿 命短(耐腐蚀性能低等)等缺点阻碍了它的实际应用<sup>[4]</sup>。 为此,人们通过各种方法对以上缺点进行克服,主要 包括:添加/取代合金元素<sup>[5-7]</sup>、控制粒径大小<sup>[8]</sup>、退火 处理<sup>[9–10]</sup>、表面处理<sup>[11]</sup>以及使用导电剂<sup>[12]</sup>等。这些方 法在不同程度上有效地提高了合金的耐腐蚀性能和释 放氢温度。

石墨烯是具有单层片状结构的二维碳材料,根据 文献[13-14]的报道:石墨烯具有高的热稳定性、化学 稳定性且环境友好,并且能在金属表面与活性介质之 间形成物理屏蔽层,阻隔水分子、氧气和离子等腐蚀 因素到达金属表面。文献[15]的最新研究结果表明, 尽管此前研究人员认为各种原子或者分子很难通过石 墨烯,但是质子却可以很好地穿过它,该发现有望为 燃料电池和氢相关技术领域带来革命性的变化。近年 来,石墨烯在金属防腐领域的研究成果也被相继报道 出来。台湾长庚大学的 SUN 教授课题组<sup>[16]</sup>、中北大 学的刘亚青教授课题组<sup>[17]</sup>以及大连理工大学刘贵昌 教授课题组<sup>[18-19]</sup>研究发现,石墨烯基防腐涂料在对金 属基底起良好保护作用的同时,还能提高材料的强度 和摩擦性能,是一种绿色环保、性质稳定、抗蚀性能 优异的新型防腐涂料,被认为是目前有着巨大的应用 潜力的、最理想的防腐蚀涂层。

纳米金属颗粒,特别是一些贵金属如 Au、Pd、 Pt、Ag 等和铁磁性纳米金属颗粒如 Ni、Co、Fe 等因 具有重要的潜在应用而得到广泛关注。已有文献报道 通过物理或化学的方法将石墨烯与金属纳米粒子组合 成复合材料<sup>[20-21]</sup>,作为分隔剂,这些纳米粒子不仅可 以有效阻止石墨烯片层间的团聚,而且可以维持其优 异的物理、化学性能;作为填料,这些金属纳米粒子 更可以改善甚至增强石墨烯一金属纳米粒子复合材料 的性能,达成纳米金属粒子和石墨烯协同增强的双赢 效果。

本文作者在镁基非晶电极合金方面经过多年的深入研究,成功阐明了充放电过程中组织机构的变化对合金放电容量的影响及非晶合金的贮氢失效机制<sup>[22-23]</sup>,本研究在此基础上,进一步引入石墨烯/Ag

基金项目: 国家自然科学基金资助项目(51641204, 51503112, 51373081, 51473082); 山东省自然科学基金资助项目(ZR2015EM008) 地境早期 2016 11 20. 修订早期 2017 02 27

收稿日期: 2016-11-29; 修订日期: 2017-03-27

通信作者: 黄林军, 副教授, 博士; 电话: 0532-85951961; E-mail: newboy66@126.com

纳米复合材料对合金进行修饰改性,在合金表面形成 一层保护膜,获得石墨烯和金属粒子对电极的协同改 进的优势互补作用,以提高合金的抗腐蚀性能及电化 学反应的电催化活性,从而提高其循环寿命和放电 容量。

## 1 实验

### 1.1 合金的制备

合金的设计成分为 Mg<sub>65</sub>Ni<sub>27</sub>La<sub>8</sub>,单元素纯度均高 于 99.8%。实验合金用 1 kg 真空高频感应电炉熔炼, 用氩气加正压(0.1 MPa)保护。熔炼后的合金经铜模浇 铸获得 Mg-Ni 母合金锭,用真空快淬炉将母合金和 La 重熔后,进行单辊快淬处理(淬速为 21.8m·s<sup>-1</sup>),获 得非晶电极合金。

#### 1.2 石墨烯/银(G/A)纳米复合膜的制备

将一定量的石墨粉(鳞片石墨, <45 µm, 青岛天和达石墨有限公司), NaNO<sub>3</sub>,浓 H<sub>2</sub>SO<sub>4</sub>,依次加入到 三口烧瓶中,在<5℃温度下磁力下搅拌至完全溶解。 保持温度,缓慢加入共10gKMnO<sub>4</sub>,混合均匀后,升 温至40℃,反应1h,加入适量去离子水,加热至 100℃,加入30%双氧水。产物经过去离子洗涤,冷 冻干燥得到氧化石墨(GO)。将100 mg 氧化石墨超声 溶解于100 mL 蒸馏水中,加入100 mg AgNO<sub>3</sub>和相 应质量的柠檬酸钠,将所得溶液全部加入到500 mL 三口烧瓶中,磁力搅拌条件下加热至80℃,加入1.0 g 的 NaBH<sub>4</sub>,在此温度下冷凝回流12h;产物经过去离 子洗涤并在60℃下真空干燥12h得到G/A纳米复合 材料。以同样的方法制备石墨烯(RGO)作为对比。

#### 1.3 显微结构分析

采用 Rjgaku D 型 X 射线衍射仪(Cu-K<sub>a</sub>辐射, λ= 0.15406 nm, 石墨单色器)对 Mg-Ni-La 快淬合金带和 G/A 进行物相分析, 扫描范围 20°~80°, 扫描速度 10 (°)/min。采用激光显微拉曼光谱仪(Raman, 雷尼绍贸 易有限公司)对 RGO、G/A 进行分子结构的分析; 采 用 Hitachi H-800 型透射电子显微镜、扫描电子显微电 镜(SEM JEOL 6460)观察熔体快淬合金带和 RGO/Ag 的显微组织形貌, 样品制备是在 Gatan691 型离子减薄 仪上进行。

### 1.4 实验电极制备及电化学性能测试

将 Mg<sub>65</sub>Ni<sub>27</sub>La<sub>8</sub>电极合金、镍粉和 G/A 复合膜按

照 1:4:0.2 的质量比进行混合后, 加入到高能球磨仪中 进行球磨 10 min, 黏合剂由 2.5%(质量分数)的 CMC 水溶液和 60%的聚四氟乙烯乳液按 1:2 的体积比调制 而成。然后,将粘合剂与粉末按照约 0.6 mL/g 的比例 进行混浆。将浆均匀的涂抹在泡沫镍圆面的两面上, 在 60 ℃下干燥 8 h 之后,将圆片在 20 MPa 的压力压 制成型。测试电池的循环放电性能采用 Arbin BTW-2000 电池测试仪。贮氢合金电极片作为试验电 池的负极,正极为 Ni(OH)<sub>2</sub>/NiOOH, 电解液采用的是 6 mol/L 的 KOH 水溶液和 17.5 g/L 的 LiOH 水溶液的 混合液。测试时的充放电制度为: 100 mA/g 恒电流密 度充电 6 h, 间隔 10 min 后, 以 100 mA/g 恒电流密度 放电至 0.800 V。测试环境温度保持在 25℃。电极的 线性极化测试(交换电流密度 J<sub>0</sub>)、阳极极化测试(极限 放电电流密度 J<sub>1</sub>)和电化学阻抗测试均使用 AMETEK VersaSTAT MC 型电化学工作站完成。

## 2 结果与讨论

图 1(a)所示为 Mg65Ni27La8 电极合金的 XRD 分析 结果。从图 1(a)中可以看出曲线中只有一个漫衍射峰, 这是非晶态合金的典型特征。在图 1(b)中,可以看到 还原后的石墨烯成卷曲的大片层结构,尺寸在 2~5 µm 之间,并且从图 1(c)中可以看到银纳米颗粒均匀地分 散在石墨烯层上, 银纳米颗粒的尺寸在 10~20 nm 之 间。而从图 1(d)中可以看到,石墨烯的拉曼强度最弱, 氧化石墨烯的强度比石墨烯强,石墨烯银纳米复合膜 的强度最高。由于在制备石墨烯的过程中,氧化石墨 烯的晶体结构遭到破坏,而加入银之后,不管是D峰 还是G峰,都有了很大的增强,这得益于银在石墨烯 表面附着增强其拉曼强度所致,从图中还以看出,复 合材料的ID/IG 大于石墨烯,氧化石墨烯的比值最小。 这是由于在制备石墨烯和复合材料的过程中,经过进 一步的反应,石墨烯表层的结构遭到更大程度的破 坏<sup>[24]</sup>。对于复合膜来说,由于银纳米颗粒的加入,对 石墨烯原有层状结构有了更进一步的破坏,故D 峰和 G 峰的强度比更大。由图 1(e)曲线 a 可以进一步确认, 氧化石墨烯经还原后,其 XRD 衍射峰变宽,且峰的 强度很弱,这可能是由于氧化石墨还原后,晶体结构 的完整性遭到破坏, 无序性增加,经过和纳米银复合以 后,图1(e)曲线b中明显有(111)、(200)、(220)、(311) 面是银纳米颗粒的特征峰,从这4个峰的2θ角大小可 以看出,所得石墨烯/Ag 复合材料中银的晶体结构是 面心立方晶体[25]。



**图 1** Mg<sub>65</sub>Ni<sub>27</sub>La<sub>8</sub>电极合金 XRD 谱(a)、石墨烯的 TEM 像(b)、RGO/Ag 复合膜的 TEM 像(c)、GO、RGO 和 RGO/Ag 的拉曼 光谱图(d)以及 RGO 和 RGO/Ag 的 XRD 谱(e)

Fig. 1 X-ray diffraction patterns of as-quenched  $Mg_{65}Ni_{27}La_8$  amorphous alloy (a), TEM image of graphene (b), TEM image of RGO/Ag (c), raman spectrum of graphene-oxide, graphene and graphene/Ag composites (d) and XRD patterns of graphene and graphene/Ag composites (e)

图 2 所示为非晶态 Mg<sub>65</sub>Ni<sub>27</sub>La<sub>8</sub> 合金经 G/A 复合 膜表面修饰前后的 SEM 像。可见当 G/A 复合膜用量 为 20%时,合金表面的 G/A 复合膜以球形颗粒和片状 的形式存在,并覆盖了整个合金表面,包覆较为致密, 表面修饰效果较好。

图 3 给出了 Mg<sub>65</sub>Ni<sub>27</sub>La<sub>8</sub>电极合金包覆前和包覆 后的循环性能曲线(见图 3(a)),第 20 次循环的放电电 压和放电容量关系(见图 3(d)),合金电极的阳极极化 曲线(见图 3(c))和合金电极的交流阻抗谱以及等效电 路图(见图 3(d))。由图 3(a)可以看出,电极合金的最高 放电容量由 610.8 mA·h/g 上升为 814.8 mA·h/g,经过 20 个循环后的放电容量保持率由 79.86%提升为 85.76%。由图 3(b)可以看出包覆前后电极的稳定放电 电位在-650 mV 至-850 mV 之间,数值上高于理论电 位-930 mV,且存在极化现象。合金表面附着的腐蚀 产物如 Mg(OH)<sub>2</sub> 可能是导致该现象的一个原因,其 次,从图中可知包覆后的电极的放电电位平台和放电 比能量都高于包覆前的,说明其具有较优的放电电压 特性和稳定性。阳极极化曲线测试可以得到电极的极 限放电电流密度 L,是表征电极放电动力学性能的参 数,它与合金在放电(释氢)过程中氢原子在合金内部 的扩散速率及合金表面的电荷传输反应速率有关,速 率越快则 L 值越大。图 3(c)所示为合金包覆前后电极 的阳极极化曲线。当扫描电位从左向右逐渐增大并接 近其反应电位时,相应的放电电流密度逐渐达到最大 值,随后开始下降。电流密度的下降称为钝化过程, 它是由于在高电位下合金表面会形成阻碍氢原子进一 步通过的氢氧化物层而引起的<sup>[26]</sup>。从图中可以看出,



**图 2** Mg<sub>65</sub>Ni<sub>27</sub>La<sub>8</sub>电极合金包覆 G/A 复合膜前和包覆后的 SEM 像

Fig. 2 SEM images of surface of  $Mg_{65}Ni_{27}La_8$  (a) and  $Mg_{65}Ni_{27}La_8$  with 20% G/A (b)

当扫描电位升高时,包覆后的电极先达到极限电流密 度,说明其抗极化性能较好,并且包覆后电极的最大 的电流密度达到 5672.3 mA/g, 是未经包覆修饰电极的 2.54 倍, 说明 G/A 对电极合金的表面包覆修饰明显改 善了合金的电化学反应动力学性能。图 3(d)所示为两 种电极的交流阻抗谱。利用如图所示的等效电路,使 用 ZsimpWin 软件拟合实验数据就可以得到等效电路 中各参数的值。阻抗谱的前半部分由两个半圆组成, 其中小半圆的半径大小与电极内部接触阻抗 Ren 有关, 大半圆的半径大小与电荷传输反应阻抗 R<sub>ct</sub>有关,均为 正比关系。 $R_s$ 、 $Z_w$ 和 $Q_{1(2)}$ 分别为电解液阻抗、Warburg 阻抗和漏电容。由表1的结果可见G/A对电极合金的 表面包覆修饰改善了电极内部颗粒之间的电接触,使 电极的接触阻抗降低了 87.2%。同时,修饰后电极的 电荷传输反应阻抗也得到大幅度降低。电极合金包覆 前后的最大放电容量 C<sub>max</sub>, 20 循环后的容量保持率  $C_{20}$ ,极限电流密度 $J_L$ ,接触阻抗 $R_{cp}$ 和反应阻抗 $R_{ct}$ 数 值见表1。

为了详细探讨 G/A 对电极合金的修饰改性机理, 对改性前后电极表面在充放电前后的变化情况进行了 检测。图 4 所示为包覆前的非晶态 Mg<sub>65</sub>Ni<sub>27</sub>La<sub>8</sub> 合金经



图 3 Mg<sub>65</sub>Ni<sub>27</sub>La<sub>8</sub>电极合金包覆前和包覆后的循环性能曲线(a)、第 20 次循环的放电电压和放电容量关系(b)、合金电极的阳极极化曲线(50% DOD, 27 ℃)(c)和合金电极的交流阻抗谱(50% DOD, 27 ℃)以及等效电路图(d)

**Fig. 3** Variation of discharge capacity versus cycle number (a), discharge potential curves of electrodes at 20th cycle (b), anode polarization curves of electrodes at 50% depth of discharge at 27  $^{\circ}$ C (c) and electrochemical impedance spectra of electrodes at 50% depth of discharge at 27  $^{\circ}$ C, inset is photograph of equivalent circuit (d)

**表 1** 电极合金包覆前后的最大放电容量  $C_{\text{max}}$ 、20 循环后的容量保持率  $C_{20}$ 、极限电流密度  $I_{\text{L}}$ 、接触阻抗  $R_{\text{cp}}$ 和反应阻抗  $R_{\text{ct}}$ 数值(27 ℃)

| Table 1             | Maximum discharge capacity ( $C_{max}$ ), capacity retention after 20 cycles ( $C_{20}$ ), limiting current density $I_{L}$ , contact resistance |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| $R_{\rm cp}$ and cl | arge-transfer resistance $R_{\rm ct}$ of Mg-Ni-La+xG/A electrodes at 27 °C                                                                       |

| Sample                                            | $C_{\text{max}}/(\text{mA}\cdot\text{h}\cdot\text{g}^{-1})$ | C <sub>20</sub> capacity retention/% | $I_{\rm L}/({\rm mA}\cdot{\rm g}^{-1})$ | $R_{ m cp}/{ m m}\Omega$ | $R_{ m ct}/\Omega$ |
|---------------------------------------------------|-------------------------------------------------------------|--------------------------------------|-----------------------------------------|--------------------------|--------------------|
| Mg <sub>65</sub> Ni <sub>27</sub> La <sub>8</sub> | 610.8                                                       | 79.86                                | 2233.4                                  | 917                      | 3.08               |
| $Mg_{65}Ni_{27}La_8$ with 20% G/A                 | 814.8                                                       | 85.76                                | 5672.3                                  | 117                      | 1.77               |



**图 4** 未包覆的 Mg<sub>65</sub>Ni<sub>27</sub>La<sub>8</sub> 电极合金充放电 50 循环后的 SEM 像和 EDS 谱

Fig. 4 SEM images ((a), (b)) of EDS pattern (c)  $Mg_{65}Ni_{27}La_8$  amorphous samples without G/A charged–discharged for 50 cycles

50 循环后的 SEM 像,对比图 2(a)原始合金表面可以 看出,经 50 循环后合金表面变得非常粗糙不平,出现 较多裂缝和较大颗粒状氧化物。图 4(c)所示为电极合 金经 50 循环后表面的 EDS 谱。经测定,合金表面的 氧含量为21%,表明合金被氧化的程度是比较严重的, 这也进一步加剧了合金的表面开裂和粉化腐蚀程度。 董小平等<sup>[27]</sup>在研究 La-Mg-Ni 系合金循环容量衰减的 机理过程中也得到了类似的结论。

图 5 所示为 Mg<sub>65</sub>Ni<sub>27</sub>La<sub>8</sub>+0.2G/A 电极 50 循环后的 SEM 像及 EDS 谱。可见,经 50 循环后,合金表面依然被 G/A 膜所覆盖,并没有出现粉化开裂和大的氧化颗粒的腐蚀产物,合金表面的氧含量减低为为 10%,



**图 5** 包覆 G/A 膜后的 Mg<sub>65</sub>Ni<sub>27</sub>La<sub>8</sub> 电极合金充放电 50 循环 后的 SEM 像和 EDS 谱

Fig. 5 SEM image ((a), (b)) of and EDS patterns (c)  $Mg_{65}Ni_{27}La_8$  amorphous samples with 0.2 G/A charged-discharged for 50 cycles

说明合金表面的G/A 膜可以有效阻止合金的腐蚀和粉 化开裂,防止 Mg(OH)<sub>2</sub>等腐蚀产物的生成,从而提高 合金的循环寿命。通过对比图 4 和图 5 可以得出,合 金在经过充放电循环后开裂粉化产生的大量空隙将增 加电极内部的接触阻抗,而通过 G/A 膜修饰以后,可 以很好地填充和覆盖这些空隙,有助于改善电极的接 触阻抗,从而有利于提高电极的放电容量和活化性能。 表 1 的各种电化学性能数据可以很好地验证这一 结果。

非晶态镁基电极合计容量衰减的重要原因之一是 其在循环过程中发生了严重的腐蚀。以 Mg(OH)<sub>2</sub> 为代 表的腐蚀产物的出现,不但损耗了有效贮氢物质,同 时也阻碍了氢原子在合金表面的扩散<sup>[28]</sup>。同时在循环 过程中合金颗粒因不断膨胀收缩会出现裂纹而粉化, 从而使得腐蚀情况更为严重。图 6 给出了镁基非晶电 极合金充放电过程中的降解机理和表面氧化示意图。

银是一种化学性质稳定,且导电性能良好的金属。 POZZO 等<sup>[29]</sup>计算表明合金表面的Ag有利于贮氢合金 吸氢,Ag与H几乎不会成键,氢原子在Ag表面扩散 十分方便。同时QIAN等<sup>[30]</sup>发现Ag能够提高合金的 吸释氢动力学性能。因此Ag是一种较为理想的表面 修饰材料。图7所示为采用G/A纳米膜对镁基电极合 金进行包覆改性的示意图。试验结果表明,成功地利 用石墨烯纳米层间的大量开放孔道和较大的表面积寄 宿了银纳米金属颗粒,制备了G/A纳米复合膜,并成 功将其引入合金电极表面进行包覆修饰,发挥了石墨 烯和金属银粒子对合金电极的协同改进的优势互补作 用,明显改善了合金的电化学性能。

# 3 结论

1) 采用氧化还原法成功制备了 G/A 纳米复合膜, 还原后的石墨烯成卷曲的大片层结构,尺寸在 2~5 μm 之间,石墨烯纳米层间的大量开放孔道和较大的表面 积很好地寄宿了银纳米金属颗粒,且银纳米颗粒均匀 地分散在石墨烯片层上,银纳米颗粒的尺寸在 10~20 nm 之间。

2) 采用高能球磨法成功将 G/A 纳米复合膜引入 至合金电极进行了包覆改性,实验结果表明改性后可 有效阻止合金表面出现粉化开裂和大的氧化颗粒的腐 蚀产物,并且合金表面的氧含量由包覆前的 21%减低 为包覆后的 10%,说明合金表面的 G/A 膜可以有效阻 止合金的腐蚀和粉化开裂,防止 Mg(OH)<sub>2</sub>等腐蚀产物 的生成,从而提高合金的循环寿命。

3) 实验结果表明, 包覆改性后电极合金的极限电



图 6 镁基非晶电极合金充放电过程中的降解机理和表面氧化示意图

Fig. 6 Schematic diagram of disintegration and surface oxidation for Mg-based electrode alloy during charge/discharge cycling





Fig. 7 Schematic diagrams of surface modification for Mg-based electrode

流密度提高了 2.54 倍,电极的接触阻抗降低了 87.2%, 电极合金的最高放电容量由 610.8 mA·h/g 上升为 814.8 mA·h/g,经过 20 个循环后的放电容量保持率由 79.86%提升为 85.76%,显著提高了其电化学性能。

#### REFERENCES

- SCHLAPBACH L, ZUTTEL A. Hydrogen-storage materials for mobile applications[J]. Nature, 2001, 414: 353–358.
- [2] TURNER J A. Sustainable hydrogen production[J]. Science, 2004, 305(5686): 972–974.
- [3] JAIN I P, LAL C, JAIN A. Hydrogen storage in Mg: A most promising material[J]. International Journal of Hydrogen Energy, 2010, 35: 5133–5144.
- [4] QU J, WANG Y, XIE L, ZHENG J, LIU Y, LI X. Superior hydrogen absorption and desorption behavior of Mg thin films[J]. Journal of Power Sources, 2009, 186: 515–520.
- [5] 徐国富,段雨露,钱健,唐 磊,邓 英,尹志民. Al-Mg-Mn-Sc-Zr 合金搅拌摩擦焊接头显微组织、力学性能及腐蚀性能[J]. 中国有色金属学报, 2017, 27(2): 226-232. XU Guo-fu, DUAN Yu-lu, QIAN Jian, TANG Lei, DENG Ying, YIN Zhi-min. Microstructure, mechanical properties and corrosion properties of friction stir welded Al-Zn-Mg-Sc-Zr alloy[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(2): 226-232.
- [6] 陶学伟, 王章忠, 章晓波, 巴志新, 董强胜. Gd 离子注入对 固溶态 Mg-Nd-Sr-Zr 合金生物腐蚀行为的影响[J]. 中国有色 金属学报, 2016, 26(11): 2319-2325.
  TAO Xue-wei, WANG Zhang-zhong, ZHANG Xiao-bo, BA Zhi-xin, DONG Qiang-sheng. Effect of Gd ion implantation on biocorrosion behavior of solution treated Mg-Nd-Sr-Zr alloy[J].
  The Chinese Journal of Nonferrous Metals, 2016, 26(11):
- 2319-2325.
  [7] 魏成宾,闫 宏,杜兴蒿,罗 骏,陈荣石. Ca 含量对 Mg-Zn-Gd-Ca 系合金轧制板材组织与性能的影响[J]. 中国有 色金属学报, 2016, 26(9): 1859-1868.
  WEI Cheng-bin, YAN Hong, DU Xing-hao, LUO Jun, CHEN Rong-shi. Effects of Ca concentration on microstructures and properties of rolled Mg-Zn-Gd-Ca alloys[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(9): 1859-1868.
- [8] VOJTĚCH D, NOVÁK P, ČÍŽKOVSKÝ J, KNOTEK V, PRUŠA F. Properties of Mg-based materials for hydrogen storage[J]. Journal of Physics and Chemistry of Solids, 2007, 68: 813–817.
- [9] 刘 莉,冯 艳,王日初,彭超群,李晓庚.均匀化退火及挤 压对 Mg-Hg-Ga 合金显微组织和耐腐蚀性能的影响[J].中国

有色金属学报, 2017, 27(1): 32-39.

LIU Li, FENG Yan, WANG Ri-chu, PENG Chao-qun, LI Xiao-geng. Effect of homogenizing and extrusion on microstructure and corrosion resistance of Mg-Hg-Ga alloy[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(1): 32–39.

- [10] 章晓波,殷 俏,马青龙,巴志新,王章忠,王 强.时效处 理对挤压态 Mg-Gd-Nd-Sr-Zn-Zr 合金力学与腐蚀性能的影 响[J]. 中国有色金属学报, 2016, 26(3): 526-534.
  ZHANG Xiao-bo, YIN Qiao, MA Qing-long, BA Zhi-xin, WANG Zhang-zhong, WANG Qiang. Effect of aging treatment on mechanical and corrosion properties of as-extruded Mg-Gd-Nd-Sr-Zn-Zr alloy[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(3): 526-534.
- [11] 王亚光,何则强,龙秋萍,熊利芝. MnO<sub>2</sub>@graphene 复合材料的制备及其对微生物燃料电池阴极氧还原反应的催化活性[J]. 中国有色金属学报, 2016, 26(12): 2596-2604.
  WANG Ya-guang, HE Ze-qiang, LONG Qiu-ping, XIONG Li-zhi. Preparation and catalytic activity for cathodic oxygen reduction reaction in microbial fuel cell of MnO<sub>2</sub>@graphene composites[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(12): 2596-2604.
- [12] 田 晓,段如霞,海 山,特古斯,张怀伟,李星国. 球磨 CNTs 导电剂对 AB5 型储氢合金电极电化学性能的影响[J]. 中国有色金属学报,2016,26(10):2160-2165.
  TIAN Xiao, DUAN Ru-xia, HAI Shan, TEGUS O, ZHANG Huai-wei, LI Xing-guo. Effects of ball-milled CNTs as conductive agent on electrochemical properties of AB5-type hydrogen storage alloy electrode[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(10): 2160-2165.
- [13] LI X, CAI W, AN J, KIM S, NAH J, YANG D, PINER R, VELAMAKANNI A, JUNG I, TUTUC E, BANERJEE S K, COLOMBO L, RUOFF R S. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312–1314.
- [14] ZHU Y, MURALI S, CAI W, LI X, SUK J W, POTTS J R, RUOFF R S. Graphene and graphene oxide: Synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35): 3906–3924.
- [15] HU S, LOZADA-HIDALGO M, WANG F C, MISHCHENKO A, SCHEDIN F, NAIR R R, HILL E W, BOUKHVALOV D W, KATSNELSON M I, DRYFE R A W, GRIGORIEVA I V, WU H A, GEIM A K. Proton transport through one-atom-thick crystals[J]. Nature, 2014, 516(7530): 227–230.
- [16] PU N W, SHI G N, LIU Y M, SUN X L, CHANG J K, SUN C L, GER M D, CHEN C Y, WANG P C, PENG Y Y, WU C H, LAWES S. Graphene grown on stainless steel as a high-performance and ecofriendly anti-corrosion coating for

- [17] ZHANG Zhi-yi, ZHANG Wen-hui, LI Dian-sen, SUN You-yi, WANG Zhuo, HOU Chun-ling, CHEN Lu, CAO Yang, LIU Ya-qing. Mechanical and anticorrosive properties of graphene/epoxy resin composites coating prepared by in-situ method[J]. Int J Mol Sci, 2015, 16: 2239–2251.
- [18] SUN Wen, WANG Li-da, WU Ting-ting, WANG Meng, ZHENG Qin-gang, PAN Yan-qiu, LIU Gui-chang. Inhibiting the corrosion-promotion activity of graphene[J]. Chem Mater, 2015, 27: 2367–2373.
- [19] SUN Wen, WANG Li-da, WU Ting-ting, PAN Yan-qiu, LIU Gui-chang. Inhibited corrosion-promotion activity of graphene encapsulated in nanosized silicon oxide[J]. J Mater Chem A, 2015, 3: 16843–16848.
- [20] WANG Guo-xiu, YANG Juan, PARK J, GOU Xing-long, WANG Bei, LIU Hao, YAO J. Facile synthesis and characterization of graphene nanosheets[J]. J Phys Chem C, 2008, 112: 8192–8197.
- [21] SI Y C, SAMULSKI E T. Synthesis of water soluble graphene[J]. Nano Lett, 2008, 8: 1679–1683.
- [22] 黄林军,王彦欣,唐建国,吴东昌,王 瑶,刘继宪,黄 震, 焦吉庆,刘敬权. 非晶态 Mg-Ni-La 贮氢合金电化学吸释氢过 程中的贮氢机制[J]. 中国有色金属学报, 2014, 24(12): 3059-3065.

HUANG Lin-jun, WANG Yan-xin, TANG Jian-guo, WU Dong-chang, WANG Yao, LIU Ji-xian, HUANG Zhen, JIAO Ji-qing, LIU Jing-quan. Hydrogen-storage mechanism of amorphous Mg-Ni-La hydrogen-storage alloys in electrochemical absorbtion/desorbtion process[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(12): 3059–3065.

[23] 黄林军,唐建国,周轶凡,王 瑶,刘继宪.快淬速率对 (Mg<sub>70.6</sub>Ni<sub>29.4</sub>)<sub>92</sub>La<sub>8</sub> 贮氢合金的微结构及电化学性能的影响[J]. 中国有色金属学报, 2010, 20(3): 516-521.

HUANG Lin-jun, TANG Jian-guo, ZHOU Yi-fan, WANG Yao, LIU Ji-xian. Effects of melt-spinning velocity on microstructure and electrochemical properties of Mg-Ni-La alloys[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(3): 516–521.

- [24] HUANG Q, WANG J, WEI W, YAN Q, WU C, ZHU X. A facile and green method for synthesis of reduced graphene oxide/Ag hybrids as efficient surface enhanced Raman scattering platforms[J]. Journal of Hazardous Materials, 2015, 283(10): 123–130.
- [25] SUN Y, XIA Y. Shape-controlled synthesis of gold and silver nanoparticles[J]. Science 2002, 298 (5601): 2176–2179.
- [26] NIU H, NORTHWOOD D O. Enhanced electrochemical properties of ball-milled Mg<sub>2</sub>Ni electrodes[J]. International Journal of Hydrogen Energy, 2002, 27(1): 69–77.
- [27] 董小平,杨丽颖,耿晓光,王少恺. La-Mg-N i系合金循环容量 衰减的机理[J]. 电池, 2011, 41(1): 11-14.
  DONG Xiao-ping, YANG Li-ying, GENG Xiao-guang, WANG Shao-kai. The cyclic capacity decay mechanism of La-Mg-Ni system alloy[J]. Battery Bimonthly, 2011, 41(1): 11-14.
- [29] POZZO M, ALFE D. Hydrogen dissociation and diffusion on transition metal (= Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg(0001) surfaces[J]. International Journal of Hydrogen Energy, 2009, 34(4): 1922–1930.
- [30] QIAN L, QIN L, LIJUN J. Properties of hydrogen storage alloy Mg<sub>2-x</sub>Ag<sub>x</sub>Ni (x=0.05, 0.1, 0.5) by hydriding combustion synthesis[J]. Journal of Alloys and Compounds, 2003, 359(1/2): 128–132.

# Surface modification and mechanism research of amorphous Mg-Ni-La hydrogen storage alloy with graphene/Ag nanocomposite

#### WANG Yan-xin, HUANG Lin-jun, TANG Jian-guo, WANG Yao, LIU Ji-xian

(Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China)

**Abstract:** A new graphene/Ag (G/A) nanocomposite additive was prepared successfully through oxidation/ reduction method.  $Mg_{65}Ni_{27}La_8$  amorphous alloy was prepared by melt spinning. The amorphous alloy was successful modified with G/A through high energy ball milling. The G/A was characterized by high-resolution transmission electron microscopy (HRTEM), X-ray diffractometry (XRD), Raman spectrometry and scanning electron microscopy (SEM), respectively. The results show that a coiled structure is present with the size between 2–5  $\mu$ m for graphene, the silver nanoparticles with the size of 10–20 nm evenly disperse on the graphene sheets. The electrochemical performance determination is executed on the three electrode cell tester. The experimental results show that the oxygen content on the surface of the modified alloy decreases from 21% to 10%, the G/A film can effectively prevent alloy from corrosion and cracking, the limiting current density of modified alloy increases by 2.54 times than that before surface modification, the contact electrode impedance is reduced by 87.2%, the highest discharge capacity of the modified alloy increases from 610.8 to 814.8 mA·h/g, the discharge capacity retention rate of 20 cycles increases from 79.86% to 85.76%, significantly improves its electrochemical performance.

Key words: Mg-Ni-La hydrogen-storage alloy; graphene; microstructure; electrochemical property; surface modification

Foundation item: Projects(51641204, 51503112, 51373081, 51473082) supported by the National Natural Science Foundation of China; Project(ZR2015EM008) supported by the National Natural Science Foundation of Shandong Province, China

Received date: 2016-11-29; Accepted date: 2017-03-27

Corresponding author: HUANG Lin-jun; Tel: +86-532-85951961; E-mail: newboy66@126.com

(编辑 王 超)