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Fig. 1 Size and configuration of specimen
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Fig. 4 Typical failure modes of specimen at different time: (a) Corresponding to point 4; (b) Corresponding to point B; (c)

Corresponding to point C; (d) Corresponding to point D; (e) Corresponding to point E; (f) Corresponding to point <
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Table 1 Comparison of different results

Result Failure load/kN Deviation/%
Experiment 3.655 -

Theory 3.896 6.6
Simulation 3.783 3.4
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Table 2 Strength results in different widths

Column Maximum load/kN  Core shear strength/MPa
5 1.85 4.12
10 3.78 4.21
15 5.72 4.25
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Bending behavior of titanium truss core sandwich structure

ZHANG Mi', WANG Xiao-dong', SU Ya-dong®, GUAN Zhi-dong'

(1. School of Aeronautic Sciences and Engineering, Beihang University, Beijing 100191, China;

2.Shenyang Institute of Aircraft Design, Shenyang 110035, China)

Abstract: Response of 3D printing pyramid lattice structure under three-point bending were studied. Progressive damage

during the loading process was detected with crack observation instrument. The results reflect that the main damage zone

is in the middle of the specimen, where the maximum bending moment is located. The sudden drop of the load occurs

with the buckling of the truss. The scanning electron microscope(SEM) is used to observe the fracture morphology which

proves that the panels and trusses failed by bending. Finite element model with rigid nodes were established using

ABAQUS. Damage location, damage propagation, peak load and failure modes are obtained, which corresponds with the

test results. The effects of different unit numbers in width were investigated. It indicates that with more unit cells in width,

the effects of the boundary are weakened, resulting in improvement of the load bearing capacity.

Key words: truss core sandwich structure; bending property; progressive damage; finite element simulation
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