

[Article ID] 1003- 6326(2002) 05- 0850- 04

Phase diagram of R-Fe-Co pseudoternary system with $R \leq 33.3\%$ (mole fraction, $R = Sm_{0.5}Dy_{0.5}$)^①

WANG Bo-wen(王博文)^{1, 2, 3}, LIU Wei-li(刘炜丽)², FENG Wen-jiang(封文江)²,JIN Guang(金光)², HAO Yan-ming(郝延明)¹, LI Yang-xian(李养贤)¹

(1. School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, China;

2. Department of Materials Science and Engineering,

Shenyang Institute of Technology, Shenyang 110015, China;

3. International Center for Materials Physics, the Chinese Academy of Sciences, Shenyang 110015, China)

[Abstract] Phase equilibria of the R-Fe-Co pseudoternary system with $R \leq 33.3\%$ (mole fraction, $R = Sm_{0.5}Dy_{0.5}$) were determined in an isothermal section at 1 073 K and a vertical section of RFe_2-RCO_2 by using OM, X-ray diffractometer, EPMA DTA techniques. There are seven intermetallic phases: $(Sm, Dy)(Fe, Co)_2$, $(Sm, Dy)(Fe, Co)_3$, $(Sm, Dy)_6(Fe, Co)_{23}$, $(Sm, Dy)_2(Fe, Co)_7$, $(Sm, Dy)(Fe, Co)_5$, Th_2Ni_{17} type and Th_2Zn_{17} type $(Sm, Dy)_2(Fe, Co)_{17}$. The $(Sm, Dy)_6(Fe, Co)_{23}$ phase dissolves 36% Co (mole fraction) at 1 073 K. However, the $(Sm, Dy)_2(Fe, Co)_7$ phase in $R_2(Fe_{1-x}Co_x)_7$ alloys dissolves about 19% Fe (mole fraction) at 1 073 K.

[Key words] rare earth-iron-cobalt; phase diagram; structure; compounds

[CLC number] TQ 343

[Document code] A

1 INTRODUCTION

The two successful families of rare earth cobalt permanent magnets produced commercially are $SmCo_5$ and Sm_2Co_{17} . The $SmCo_5$ magnets have been produced with very high intrinsic coercivity and the Sm_2Co_{17} magnets have the low temperature coefficient of remanence ($-0.12\% \cdot ^\circ C$)^[1]. In recent years, the calculation of magnetic properties of $SmCo_5/Co_{1-x}Fe_x$ composite multilayer has found that its energy product is about 520 kJ/m³ (65 MGOe), which is almost twice the value for the hard phase^[2]. The investigation of the structure and magnetostriction for $(Sm, Pr)(Fe, Co)_2$ ^[3], $(Sm, Dy)(Fe, Co)_2$ ^[4] and $(Dy, Pr)(Fe, Co)_2$ ^[5] alloys has found that substitution of Co for Fe can increase the Curie temperature and saturated magnetostriction, λ_{111} ^[3] and λ_{400} ^[4]. At the same time, addition of Dy to $SmCo_5$ compound causes the temperature coefficient of remanence to be decreased^[6]. In order to develop permanent magnetic rare earth-iron alloys and magnetostrictive materials, an investigation of the effect of partial substitution of Dy for Sm in the Sm-Co-Fe ternary system on the phase stability and phase relations is interesting, particularly in the Sm-impovertished portion.

The Sm-Co binary system contains $SmCo_2$, $SmCo_3$, Sm_2Co_7 , Sm_5Co_{19} , $SmCo_5$ and Sm_2Co_{17} phases with Sm $\leq 33.3\%$ (mole fraction)^[7, 8]. However, there is no Dy_5Co_{19} phase in the Dy-Co system^[9]. The Sm-Fe system possesses $SmFe_2$, $SmFe_3$ and Sm_2Fe_{17}

phases. Four phases, $DyFe_2$, $DyFe_3$, Dy_6Fe_{23} , Dy_2Fe_{17} , exist in the Dy-Fe system^[10]. Schneider et al^[11] and Hening et al^[12] reported the phase diagram of the Sm-Fe-Co ternary system and found five intermetallic phases, $Sm(Fe, Co)_2$, $Sm(Fe, Co)_3$, $Sm_2(Fe, Co)_7$, $Sm(Fe, Co)_5$ and $Sm_2(Fe, Co)_{17}$ in the isothermal section at 1 073 K. The complete miscibility of Fe and Co for $Sm(Fe, Co)_2$, $Sm(Fe, Co)_3$, $Sm_2(Fe, Co)_{17}$ phases is confirmed, but no $Sm_5(Fe, Co)_{19}$ phase exists in the system^[11, 12]. The phase diagram of the Dy-Co-Fe ternary system has not been published. In this paper, the phase diagram of R-Fe-Co pseudoternary system with $R \leq 33.3\%$ (mole fraction, $R = Sm_{0.5}Dy_{0.5}$) is investigated.

2 EXPERIMENTAL

The purity of the raw material was 99.9% for Sm, Dy, Co and 99.8% for Fe. Alloy specimens were prepared in a magnetically-controlled arc furnace under high purity argon. To compensate for evaporation losses of Sm during melting, 10% more of Sm was added in excess of the stoichiometric amount. The mass loss of each sample was controlled below 1%. 45 alloy buttons were prepared. The as-cast samples wrapped in Mo foil were sealed in silica tube filled with high purity argon. Specimens with $R \geq 25\%$ (mole fraction) were homogenized at 1 073 K for 20 d and then quenched in water. Specimens with $R \leq 22.2\%$ (mole fraction) were first homogenized at 1 273 K for 5 d and then at 1 073 K for 15 d. After

① [Foundation item] Project(59871030) supported by the National Natural Science Foundation of China, project(501027) supported by the Natural Science Foundation of Hebei Province, China and project supported by Education Commission of Hebei Province

[Received date] 2001-10-09; [Accepted date] 2002-01-23;

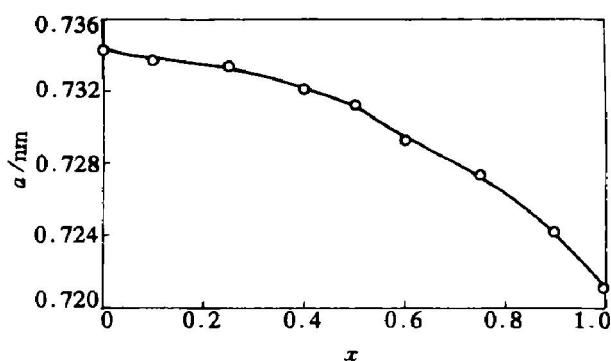
homogenizing, they were quenched in water.

Characterization of the specimens was performed using optical microscopy. The etchant used was 2% nital. Differential thermal analysis was done in an LCP-1-type high temperature differential thermal dilatometer under purified argon using alumina crucibles. X-ray diffraction analysis was carried out in a D/max-rA diffractometer equipped with a pyrolytic graphite monochromator. CuK α radiation was used and the specimens were ground to powders under ethanole. Electron probe microanalysis (EPMA) was performed in a Camebax-micro analyser.

3 RESULTS AND DISCUSSION

3.1 Intermetallic phases

Based on the results of metallographic examination, X-ray diffraction analysis and EPMA, seven intermetallic phases were found: (Sm, Dy)(Fe, Co)₂, (Sm, Dy)(Fe, Co)₃, (Sm, Dy)₆(Fe, Co)₂₃, (Sm, Dy)₂(Fe, Co)₇, (Sm, Dy)(Fe, Co)₅, Th₂Ni₁₇-type and Th₂Zn₁₇-type (Sm, Dy)₂(Fe, Co)₁₇.


1) (Sm, Dy)(Fe, Co)₂

According to Sm-Fe and Dy-Fe systems, SmFe₂ and DyFe₂ phases are stable. X-ray diffraction analysis confirms that the (Sm, Dy)Fe₂ phase with MgCu₂-type cubic structure exists in RFe₂ alloy. However, metallographic examination found that there is a small amount of second phase, which is confirmed as (Sm, Dy)Fe₃ by EPMA. This result implies that the homogeneity range of (Sm, Dy)Fe₂ phase is probably shifted slightly to the rare earth-rich side of the ideal stoichiometric ratio. Mei et al^[13] investigated the (Tb_{0.3}Dy_{0.7})-Fe vertical section and found that the (Tb, Dy)Fe₂ phase region obviously deviates from the stoichiometric Laves phase composition. Similar situation has been found in (Dy, Tb, Pr)Fe₂ compound^[14]. When Co is substituted for Fe, the second phase (Sm, Dy)Fe₃ clearly decreases and R(Fe_{1-x}Co_x)₂ alloys are nearly a single (Sm, Dy)(Fe, Co)₂ phase in the range of 0.1 $\leq x \leq 1$.

The composition dependence of the lattice parameter of the (Sm, Dy)(Fe, Co)₂ phase for R(Fe_{1-x}Co_x)₂ alloys is shown in Fig. 1. It decreases with increasing Co content in the range of 0 $\leq x \leq 1$. The decrease in the lattice parameter is attributed to the small size of Co atom. This result is similar to that previously reported in Ref. [3] or Ref. [4].

2) (Sm, Dy)(Fe, Co)₃

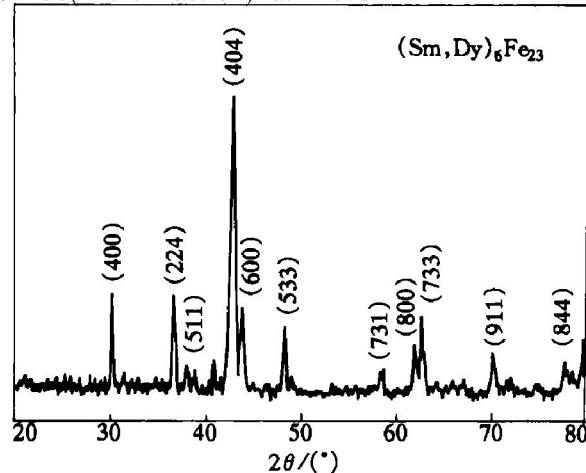

From Sm-Fe, Sm-Co, Dy-Fe and Dy-Co systems, SmFe₃, SmCo₃, DyFe₃ and DyCo₃ phases are stable. X-ray diffraction analysis confirms that the (Sm, Dy)-Fe₃ phase exists in RFe₃ alloy. When Co is substituted for Fe, R(Fe_{1-x}Co_x)₃ alloys are a single (Sm, Dy)-(Fe, Co)₃ phase with PuNi₃-type structure up to $x = 1$.

Fig. 1 Composition dependence of lattice parameter of (Sm, Dy)(Fe, Co)₂ phase in R(Fe_{1-x}Co_x)₂ alloys

3) (Sm, Dy)₆(Fe, Co)₂₃

Dy₆Fe₂₃ phase is stable only in the Dy-Fe binary system and is of the Th₆Mn₂₃-type cubic structure. X-ray diffraction analysis found the (Sm, Dy)₆Fe₂₃ phase in R₆Fe₂₃ alloy is stable (Fig. 2). When Co is substituted for Fe, R₆(Fe_{1-x}Co_x)₂₃ alloys are a single (Sm, Dy)₆(Fe, Co)₂₃ phase up to $x = 0.45$. The R₆(Fe_{0.5}Co_{0.5})₂₃ alloy consists of (Sm, Dy)(Fe, Co)₃ and (Sm, Dy)₆(Fe, Co)₂₃ phases as well as a small amount of (Sm, Dy)₂(Fe, Co)₁₇ phase. It seems that the (Sm, Dy)₆(Fe, Co)₂₃ phase dissolves 36% Co (mole fraction) at 1 073 K.

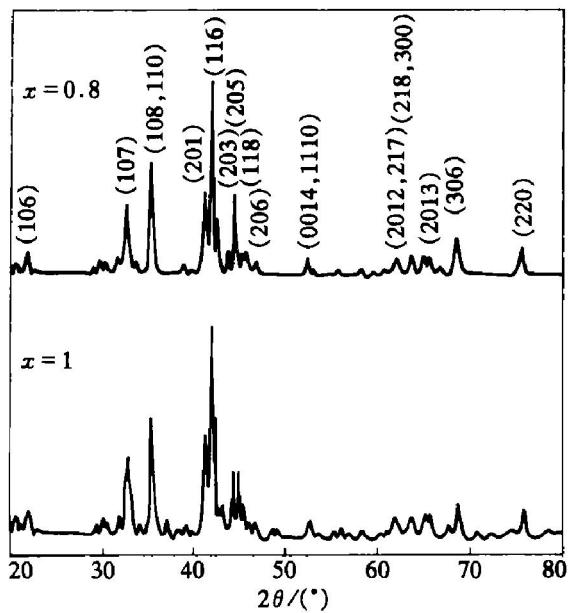


Fig. 2 X-ray diffraction pattern of (Sm, Dy)₆Fe₂₃ in R₆Fe₂₃ alloy

4) (Sm, Dy)₂(Fe, Co)₇

The Sm₂Co₇ and Dy₂Co₇ phases are stable in the Sm-Co and Dy-Co systems, respectively, and are of a hexagonal Ce₂Ni₇ structure. When Dy is substituted for Sm, the (Sm, Dy)₂Co₇ phase in R₂Co₇ alloy is stable in the R-Co system. When Fe is substituted for Co, the microstructure of R₂(Fe_{1-x}Co_x)₇ alloys is nearly a single (Sm, Dy)₂(Fe, Co)₇ phase in the range of 0.75 $\leq x \leq 1$ (Fig. 3). The X-ray diffraction analysis and EPMA confirm that R₂(Fe_{0.3}Co_{0.7})₇ alloy consists of (Sm, Dy)₂(Fe, Co)₇ and (Sm, Dy)₂(Fe, Co)₁₇ as well as small amount of (Sm, Dy)(Fe, Co)₅.

Co_3 phases. Ref. [11] reported that the $\text{Sm}_2(\text{Fe}, \text{Co})_7$ phase in $\text{Sm}-\text{Fe}-\text{Co}$ alloys dissolves less than 4% Fe(mole fraction) at 1 473 K and Fe is not found in the $\text{Sm}_2(\text{Fe}, \text{Co})_7$ phase in the 95Co5Fe/Sm diffusion couple annealed at 1 073 K. It means that the substitution of Dy for Sm is beneficial to the formation of $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_7$ phase in $\text{R}_2(\text{Fe}_{1-x}\text{Co}_x)_7$ alloys. Therefore, the $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_7$ phase in $\text{R}_2(\text{Fe}_{1-x}\text{Co}_x)_7$ alloys dissolves about 19% Fe(mole fraction) at 1 073 K.

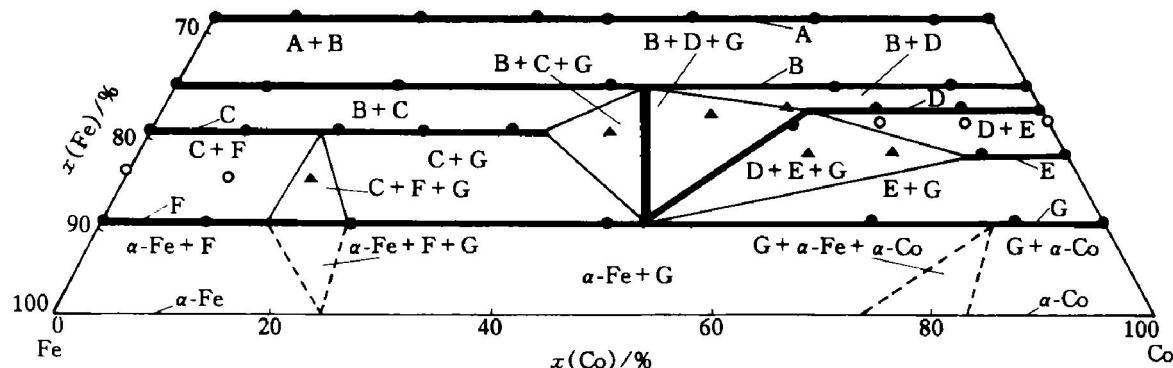
Fig. 3 X-ray diffraction patterns of $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_7$ in $\text{R}_2(\text{Fe}_{1-x}\text{Co}_x)_7$ alloys

5) $(\text{Sm}, \text{Dy})(\text{Fe}, \text{Co})_5$

The $(\text{Sm}, \text{Dy})\text{Co}_5$ phase in RCo_5 alloy is stable and is of a hexagonal CaCu_5 -type structure. When Fe is substituted for Co, the microstructure of $\text{R}(\text{Fe}_{1-x}\text{Co}_x)_5$ alloys is nearly a single phase in the range of $0.9 \leq x \leq 1$. However, the microstructure of $\text{R}(\text{Fe}_{0.2}\text{Co}_{0.8})_5$ alloy consists of $(\text{Sm}, \text{Dy})(\text{Fe}, \text{Co})_5$, $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_{17}$ and a small amount of $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_7$ phases. It means that the Fe solubility in $(\text{Sm}, \text{Dy})(\text{Fe}, \text{Co})_5$ phase is nearly 8% at 1 073 K, which is similar to that reported in Ref. [11].

6) $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_{17}$

From the $\text{Sm}-\text{Fe}$, $\text{Sm}-\text{Co}$, $\text{Dy}-\text{Fe}$ and $\text{Dy}-\text{Co}$ systems, there are $\text{Sm}_2\text{Fe}_{17}$, $\text{Sm}_2\text{Co}_{17}$, $\text{Dy}_2\text{Fe}_{17}$ and $\text{Dy}_2\text{Co}_{17}$ phases. The $(\text{Sm}, \text{Dy})_2\text{Fe}_{17}$ phase in R_2Fe_{17} alloy is stable and is of an hexagonal $\text{Th}_2\text{Ni}_{17}$ -type structure. This result is different from that of $\text{Sm}_2\text{Fe}_{17}$ or $(\text{Sm}, \text{Pr})_2\text{Fe}_{17}$ ^[15], which is of rhombohedral $\text{Th}_2\text{Zn}_{17}$ -type structure. It seems that the substitution of Dy for Sm is beneficial to forming the phase with the $\text{Th}_2\text{Ni}_{17}$ -type structure. When Co is substituted for Fe, the $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_{17}$ phase with the $\text{Th}_2\text{Ni}_{17}$ -type structure in $\text{R}_2(\text{Fe}_{1-x}\text{Co}_x)_7$ alloys is stable when $x \leq 0.2$. However, the $(\text{Sm},$


$\text{Dy})_2(\text{Fe}, \text{Co})_{17}$ phase possesses the $\text{Th}_2\text{Zn}_{17}$ -type structure when $x > 0.3$. Both the $\text{Th}_2\text{Ni}_{17}$ -type and $\text{Th}_2\text{Zn}_{17}$ -type structures coexist in the range of $0.2 \leq x < 0.3$.

3.2 Isothermal section at 1 073 K

The 1 073 K isothermal section of the $\text{R}-\text{Fe}-\text{Co}$ pseudoternary system with $R \leq 33.3\%$ (mole fraction) is shown in Fig. 4. This isothermal section consists of nine single-phase regions: $(\text{Sm}, \text{Dy})(\text{Fe}, \text{Co})_2$, $(\text{Sm}, \text{Dy})(\text{Fe}, \text{Co})_3$, $(\text{Sm}, \text{Dy})_6(\text{Fe}, \text{Co})_{23}$, $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_7$, $(\text{Sm}, \text{Dy})(\text{Fe}, \text{Co})_5$, $\text{Th}_2\text{Ni}_{17}$ -type and $\text{Th}_2\text{Zn}_{17}$ -type $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_{17}$, α -Fe and α -Co; 14 two-phase regions: $(\text{Sm}, \text{Dy})(\text{Fe}, \text{Co})_2 + (\text{Sm}, \text{Dy})(\text{Fe}, \text{Co})_3$, $(\text{Sm}, \text{Dy})(\text{Fe}, \text{Co})_3 + (\text{Sm}, \text{Dy})_6(\text{Fe}, \text{Co})_{23}$, $(\text{Sm}, \text{Dy})(\text{Fe}, \text{Co})_3 + (\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_7$, $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_7 + (\text{Sm}, \text{Dy})(\text{Fe}, \text{Co})_5$, $(\text{Sm}, \text{Dy})(\text{Fe}, \text{Co})_3 + \text{Th}_2\text{Zn}_{17}$ -type $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_{17}$, $(\text{Sm}, \text{Dy})(\text{Fe}, \text{Co})_5 + \text{Th}_2\text{Zn}_{17}$ -type $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_{17}$, $(\text{Sm}, \text{Dy})_6(\text{Fe}, \text{Co})_{23} + \text{Th}_2\text{Zn}_{17}$ -type $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_{17}$, $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_{17} + \text{Th}_2\text{Zn}_{17}$ -type $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_{17}$, $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_{17} + \text{Th}_2\text{Ni}_{17}$ -type $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_{17}$, $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_{17} + \text{Th}_2\text{Ni}_{17}$ -type $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_{17}$, $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_{17} + \alpha$ -Fe, $\text{Th}_2\text{Zn}_{17}$ -type $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_{17} + \alpha$ -Fe, $\text{Th}_2\text{Zn}_{17}$ -type $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_{17} + \alpha$ -Co and α -Fe + α -Co; and six three-phase regions: $(\text{Sm}, \text{Dy})(\text{Fe}, \text{Co})_3 + (\text{Sm}, \text{Dy})_6(\text{Fe}, \text{Co})_{23} + \text{Th}_2\text{Zn}_{17}$ -type $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_{17}$, $(\text{Sm}, \text{Dy})(\text{Fe}, \text{Co})_3 + \text{Th}_2\text{Zn}_{17}$ -type $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_{17} + (\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_7$, $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_7 + (\text{Sm}, \text{Dy})(\text{Fe}, \text{Co})_5 + \text{Th}_2\text{Zn}_{17}$ -type $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_{17}$, $(\text{Sm}, \text{Dy})_6(\text{Fe}, \text{Co})_{23} + \text{Th}_2\text{Ni}_{17}$ -type $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_{17} + \text{Th}_2\text{Zn}_{17}$ -type $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_{17}$, $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_{17} + \text{Th}_2\text{Zn}_{17}$ -type $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_{17} + \alpha$ -Fe and $\text{Th}_2\text{Zn}_{17}$ -type $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_{17} + \alpha$ -Fe + α -Co. Compared with the $\text{Sm}-\text{Fe}-\text{Co}$ ternary system reported in Ref. [11], the isothermal section of $\text{R}-\text{Fe}-\text{Co}$ pseudoternary system with $R \leq 33.3\%$ (mole fraction) contains $(\text{Sm}, \text{Dy})_6(\text{Fe}, \text{Co})_{23}$ phase, and the homogeneity range of $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_7$ phase for the $\text{R}-\text{Fe}-\text{Co}$ system is larger than that of $\text{Sm}_2(\text{Fe}, \text{Co})_7$ phase for the $\text{Sm}-\text{Fe}-\text{Co}$ system.

3.3 Vertical section of $\text{RFe}_2-\text{RCO}_2$

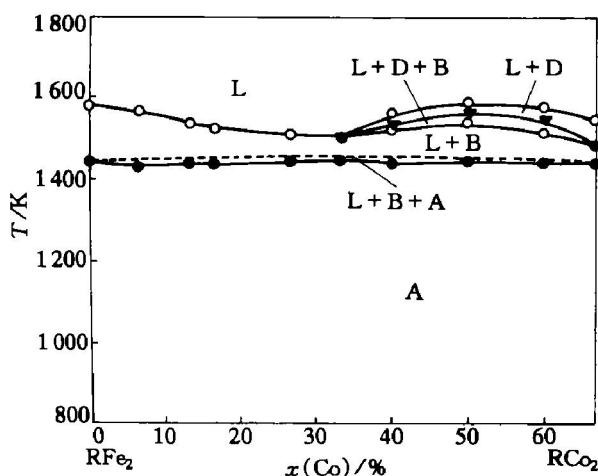

Based on the results of DTA, OM and XRD, a vertical section of $\text{RFe}_2-\text{RCO}_2$ in $\text{R}-\text{Fe}-\text{Co}$ pseudoternary system is tentatively drawn in Fig. 5. It consists of two single-phase regions: L and $(\text{Sm}, \text{Dy})(\text{Fe}, \text{Co})_2$; two two-phase regions: L + $(\text{Sm}, \text{Dy})(\text{Fe}, \text{Co})_2$ and L + $(\text{Sm}, \text{Dy})_2(\text{Fe}, \text{Co})_7$ and two three-

Fig. 4 Isothermal section of R-Fe-Co pseudoternary system with $R \leq 33.3\%$ (mole fraction) at 1073 K

A= (Sm, Dy)(Fe, Co)₂; B= (Sm, Dy)(Fe, Co)₃; C= (Sm, Dy)₆(Fe, Co)₂₃; D= (Sm, Dy)₂(Fe, Co)₇; E= (Sm, Dy)(Fe, Co)₅; F= Th₂Ni₁₇ type (Sm, Dy)₂(Fe, Co)₁₇; G= Th₂Zn₁₇ type (Sm, Dy)₂(Fe, Co)₁₇

●—Single phase region; ○—Two phase region; ▲—Three phase region

Fig. 5 Vertical section of RFe₂-RCO₂ in R-Fe-Co pseudoternary system

A= (Sm, Dy)(Fe, Co)₂; B= (Sm, Dy)(Fe, Co)₃; C= (Sm, Dy)₂(Fe, Co)₇

phase regions: L+ (Sm, Dy)(Fe, Co)₃+ (Sm, Dy)₂(Fe, Co)₇ and L+ (Sm, Dy)(Fe, Co)₂+ (Sm, Dy)(Fe, Co)₃.

[REFERENCES]

- [1] Leupold H A, Potenza E, Tauber A, et al. High coercivity 2:17 cobalt rare earth magnets [J]. *J Appl Phys*, 1984, 55(6): 2097– 2099.
- [2] Sabiryanov R F, Jaswal S S. Magnetic properties of hard/soft composites: SmCo₅/Co_{1-x}Fe_x [J]. *Phys Rev B*, 1998, 58(18): 12071– 12074.
- [3] GUO Z J, ZHANG Z D, WANG B W, et al. Giant magnetostriiction and spin reorientation in quaternary (Sm_{0.9}Pr_{0.1})(Fe_{1-x}Co_x)₂ [J]. *Phys Rev B*, 2000, 61(5): 3519– 3523.
- [4] GUO Huiqun, GONG Hua-ying, YANG Hong-ying, et al. Effect of Co substitution for Fe on magnetic and magnetostrictive properties in Sm_{0.88}Dy_{0.12}(Fe_{1-x}Co_x)₂ compounds [J]. *Phys Rev B*, 1996, 54(6): 4107– 4112.
- [5] WANG Bowen, GUO Zhijun, ZHANG Zhidong, et al. Structure and magnetostriction of (Pr_xDy_{1-x})Fe₂ and (Pr_{0.4}Dy_{0.6})(Fe_{1-x}M_x)₂ (M = Co, Ni) alloys [J]. *J Appl Phys*, 1999, 85(5): 2805– 2809.
- [6] Velu E M T, Obermyer R T, Sankar S G, et al. Temperature compensated Pr_{1-x-y}Sm_xRyCo_{5-y} permanent magnets (R = Er, Dy, Ho, Gd, and Tb; x = 0.24; y = 0.2, 0.3, and 0.4) [J]. *J Appl Phys*, 1990, 67(9): 4662– 4664.
- [7] Cataldo L, Lefevre A, Ducret F, et al. Binary system Sm-Co: revision of the phase diagram in the Co rich field [J]. *J Alloys and Compounds*, 1996, 241: 216– 223.
- [8] GE W Q, WU C H, CHUANG Y C. Reinvestigation of the Sm-Co binary system [J]. *Z Metallkd*, 1993, 84: 165– 169.
- [9] Massalski Thaddeus B. *Binary Alloy Phase Diagrams* [M]. Metals Park: American Society for Metals, 1990.
- [10] van der Goot A S, Buschow K H J. The dysprosium-iron system: structural and magnetic properties of dysprosium iron compounds [J]. *J Less-Common Met*, 1970, 21: 151– 157.
- [11] Schneider G, Henig E -Th, Lukas H L, et al. Phase relations in the samarium-poor Sm-Co-Fe system [J]. *J Less-Common Met*, 1985, 110: 159– 170.
- [12] Hening E -Th, Grieb B. Phase diagrams for permanent magnet materials [A]. Long Gary J, Grandjean Fernande. *Supermagnets, Hard Magnetic Materials* [C]. London: Kluwer Academic Publishers, 1990, 171– 126.
- [13] MEI Wu, Okane Toshimitsu, Umeda Takateru. Phase diagram and inhomogeneity of (TbDy)-Fe(T) (T = Mn, Co, Al, Ti) systems [J]. *J Alloys and Compounds*, 1997, 248: 132– 138.
- [14] Wang B W, Wu C H, Chuang Y C, et al. Study of R-Fe pseudobinary system in Laves phase region (R = Dy_{0.65}Tb_{0.25}Pr_{0.1}) [J]. *J Mater Sci Tech*, 1996, 12: 119– 122.
- [15] Wang B W, Li Y X, Hao Y M, et al. Isoplethic section in the quaternary system Fe-Co-Sm-Pr at 800 °C with Sm/Pr = 1 and R ≤ 33.3% (R = Sm_{0.5}Pr_{0.5}) [J]. *J Alloys and Compounds*, 2001, 319: 214– 217.

(Edited by HUANG Jin-song)