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Abstract: A numerical simulation based on a regularized phase field model is developed to describe faceted dendrite growth 
morphology. The effects of mesh grid, anisotropy, supersaturation and fold symmetry on dendrite growth morphology were 
investigated, respectively. These results indicate that the nucleus grows into a hexagonal symmetry faceted dendrite. When the mesh 
grid is above 640×640, the size has no much effect on the shape. With the increase in the anisotropy value, the tip velocities of 
faceted dendrite increase and reach a balance value, and then decrease gradually. With the increase in the supersaturation value, 
crystal evolves from circle to the developed faceted dendrite morphology. Based on the Wulff theory and faceted symmetry 
morphology diagram, the proposed model was proved to be effective, and it can be generalized to arbitrary crystal symmetries. 
Key words: phase field method; strong anisotropy; faceted dendrite; Wulff theory; tip velocity; symmetry 
                                                                                                             

 
 
1 Introduction 
 

Interfacial energy anisotropy and mobility reflect 
the crystal structure of interfaces in materials. The 
crystallographic anisotropy has an important effect on 
the evolution dynamics and the final morphology 
structures in materials processing [1,2]. In particular, the 
anisotropy allows for the simulation of dendrite growth 
branches in solidification problems [3,4]. When 
anisotropy is weak for solid/liquid interfaces in most 
metallic materials, strong anisotropy often leads to facet 
interface structures such as in silicon, snowflakes or 
smooth surfaces. Faceted patterns appear in advanced 
and technological materials [5]. Faceted dendrites have 
attracted much attention due to their unique crystal 
structures particularly [6−9]. For example, on account of 
their aesthetics, snowflakes have attracted considerable 
interest for decades [10]. While robust theoretical 
interpretations of facet equilibrium shapes exist, the 
dynamical aspects of faceted pattern formation are still 

less understood. Thus, it is important to understand and 
investigate the mechanism by numerical simulation. 

The most significant computational advantages of 
phase field method are that the explicit tracking of the 
interface is unnecessary, the interface curvature, 
anisotropy and kinetics parameters are implicitly 
incorporated in the phase field equation, and the phase 
field method has been proved to be a powerful tool for 
microstructure evolution simulation [11−16]. The 
method was developed by KARMA and RAPPEL [17] in 
1996 for solidification of pure substances and later 
generalized by KARMA [18] for alloy solidification. 
However, in the early time, phase field method was 
mainly used to study the dendrite growth with weak 
anisotropy value [4,18]. When the anisotropy is so 
sufficiently strong missing orientations occur and sharp 
corners form in the Wulff shape [19−21]. This becomes 
ill-posed and reduces to un-regularized phase field 
equations. In order to recover accurately equilibrium 
shapes with corners due to missing orientations, in 2001, 
EGGLESTON et al [22] dealt with the ill-posedness 
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through regularizing convexifying anisotropic surface 
energy, and simulated facet equilibrium shape with 
strong anisotropic interfacial energy. In an alternative 
phase-field approach, SUZUKI et al [23] simulated 
faceted crystal growth of silicon from the undercooled 
melt of silicon–nickel alloys. Recently, there also have 
been a number of attempts to regularize the phase-field 
equation [24−28]. For example, LIN et al [27] proposed 
a simplified anisotropic function, and then extended it to 
a 3D model. 

In this work, based on Eggleston model [22], an 
effective regularized phase field model was presented to 
model faceted structure with six-fold symmetry, and the 
effects of mesh grid, anisotropy parameters, and 
supersaturation on faceted dendrite growth morphology 
were examined in detail. Furthermore, the fundamental 
idea of regularizing phase field model can be extended to 
generalize faceted dendrite morphology with arbitrary 
symmetries. 
 
2 Phase field model 
 

The equilibrium condition at solid/liquid interface is 
obtained by the Gibbs−Thomson equation [22]: 
 

L S( ) ( )
1 35 cos6
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where R(θ) is the curvature radius of the solid/liquid 
interface, W(θ)(=W0a(θ)) is the interface thickness to be 
anisotropic, a(θ)(=1+γcos(6θ)) is an anisotropic interface 
energy function, γ is the dimensionless anisotropy 
parameter, 6 is the folds of symmetry, f L and f S are the 
free energy densities of liquid and solid phases, 
respectively. When γ≤1/35, two sides of Eq. (1) are 
positive, and crystal morphology is smooth and 
continuity. When γ>1/35, the left side of Eq. (1) is 
negative as a result of the missing orientations, and 
discontinuous interface, which occurs concave similar to 
“ears”. Besides, Eq. (1) can calculate the equilibrium 
shape [2,3] for two dimensions in parametric form as 
 
x=W(θ)cos θ−W′(θ)sin θ                        (2) 
 
y=W(θ)sin θ−W′(θ)cos θ                        (3) 
 

Figure 1 shows the parametric plots for Wulff shape 
under different conditions. The unregularized Wulff 
shape is presented in dash red in Fig. 1(a). As shown for 
one typical strong anisotropy value, the equilibrium 
shape develops into sharp corners, and the high energy 
orientation for “ears” parts is missing. In order to 
simulate dendrite growth with strong anisotropy value, 
these “ears” must be removed, and the equation needs to 
be regularized. As seen in Fig. 1(b), missing orientations 

 

 

Fig. 1 Parametric plots: (a) Equilibrium shape of Wulff with 

“ears”(dash red line), equilibrium shape of regularized Wulff 

without “ears”(solid black line), plot of interface energy 

function W(θ) (solid blue line), plot of regularized interface 

energy function Ŵ(θ) (solid green line); (b) Illustrating 

regularization method, inverse interface energy function 

(1/W(θ)) and inverse regularization function 1/Ŵ(θ) 

 
in the equilibrium shape occur when the reciprocal W(θ) 
plot becomes concave. Therefore, in order to regularize 
the phase field equations, the interface energy within 
these missing orientations were regularized referring to 
method of EGGLESTON et al [22], as follows: 
 

ˆ ( )W   
 

m m

m
m m

m

m
m m

m

m
m m

m

( ),  ( 1) ,  0 5
3 3

( )cos
,  ,  0,3

cos 3 3

( )cos( / 3)
,  ,  1, 4

cos 3 3

( )cos( 2 / 3)
,  ,  2,5

cos 3 3

W i i i

W
i i i

W
i i i

W
i i i

        


      
         

         


   

 
  


 

  


 
  



 

          (4) 
As illustrated in Ref. [2], it replaces the anisotropy 

function in these regimes by choosing appropriately 
circular sections, which is shown in Fig. 1(b) for the case 
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of six-fold symmetry. Where θm is the first missing 
orientation angle of the equilibrium shape, and it is 
calculated through Eq. (5) by standard Newton iteration 
method:  
W(θm)sin θm+Wθ(θm)cos θm=0                   (5)  

Based on Eq. (4) and regularization model by 
EGGLESTON et al [22], effective regularized phase 
field equations are presented to model faceted dendrite 
shape: 

For m m3 3
i i
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where  represents the phase field parameter, =1 
represents the bulk solid phase,  =−1 represents the bulk 
liquid phase, the phase field parameter varies smoothly 
between two bulk values within the diffuse interface 
region, τ(θ)(=τ0a(θ)) is a relaxation time of phase field, 
θ(=arctan(∂y/∂x)) is the angle of the horizontal axis and 
the direction normal to the interface, and t is time. 

The anisotropic and dimensionless forms of solute 
isothermal equations with ATC are given by [9] 
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where atj


 is anti-trapping current expression [29,30], k 

is the molar partition coefficient, U represents the solute 
field, and D is the solute diffusivity in the liquid phase. 
All parameters in Eqs. (6)−(10) are dimensionless. 

Using a suitable asymptotic expansion, the capillary 
length d0 and the kinetic coefficient expressions β are 
related to the phase field equation in Ref. [18]. 
 
3 Numerical simulation 
 
3.1 Initial and boundary conditions 

An initial crystal radius is assumed to be r, and 
crystal exists at the center of square simulation domain. 
The left, right, top and bottom domain surfaces are 
treated as symmetrical closed boundaries. The initial 
phase field and supersaturation are taken as =1, U=0 in 
the solid and  =−1, U=Ω elsewhere in the domain. 
 
3.2 Simulation method 

Equations (6)−(10) are solved by standard finite 
difference method, time stepping ∆t is by standard 
explicit Euler scheme, and 2   using a nine-point 
formula with nearest and next nearest neighbors, which 
reduces the grid anisotropy [30,31]. For convenience, the 
following parameters are chosen: time step ∆t=0.008, 
space step ∆x=∆y=0.4, τ0=1, W0=1, λ=6.383, Ω=−0.45, 
D=2, d0=0.277. Unless otherwise state, these parameters 
are not varied. 

Various mesh grids are presented to show whether 
the simulation results are convergent. Figure 2 shows the 
dendrite growth shape of different mesh grids at 
t=60000∆t. As shown in Fig. 2(a), when mesh grid is 
128×128, the initial crystal nucleus cannot grow freely in 
the grid space, the boundary effect restricts its growth 
strongly, and the crystal keeps growing on one circle 
shape. When the mesh grid is increased up to 256×256, 
the anisotropy dendrite growth shape can be found in  
Fig. 2(b), but the shape is still affected by the boundary 
size. If the mesh grid continues to increase to 384×384    
(Fig. 2(c)), it can be seen that crystal obviously grows 
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Fig. 2 Crystal growth shape of six different mesh grids at t=60000∆t: (a) 128×128; (b) 256×256; (c) 384×384; (d) 512×512;       

(e) 640×640; (f) 768×768 

 

into hexagonal facet shape. When the mesh grid moves 
to 512×512 (Fig. 2(d)), the grid boundary effects on the 
dendrite shape become small, six-fold dendrite arms 
have the same tip shape. If the mesh grid is further 
increased, Figs. 2(e) and (f) show the evolution of the 
morphologies, the hexagonal shape is shown in the same 
mesh grid space 512×512, where no visible discrepancy 
exists in the shape. To quantify the discrepancy between 
the two shapes, a relative difference is defined as follows. 
The tip growth velocities of six different mesh grids are 
shown in Fig. 3. As presented, with time moving on, the 
velocity decreases to each corresponding steady value 
from one same original value. When increasing the  
mesh grid, the steady velocity gradually convergences to 
one value. In order to check the value and get a proper  
 

 

Fig. 3 Dendrite arm tip growth velocity versus time for various 

mesh grids 

calculation mesh grid, an inserted figure is presented in 
Fig. 3. From the high magnification figure, it can be seen 
that when the mesh grid increases to 512×512, the steady 
velocity is near to the convergence value, but the 
difference between Fig. 2(d) and Figs. 2(e) and (f) can 
not be seen. However, the tip velocity under mesh grid of 
640×640 is equal to that of 768×768, which indicates 
that mesh grid has no influence on dendrite growth shape 
when mesh grid is above 640×640. Thus, the mesh grid 
of 640×640 is adopted in the following section. 
 
4 Results and discussion 
 
4.1 Faceted dendrite shape with six-fold symmetry 

Figure 4 shows numerical simulation results at 
t=70000∆t. Figure 4(a) shows the shape evolution of 
hexagonal facet interface at t=70000∆t, where every 
contour is at an interval of 10000∆t. With time going on, 
crystal gradually grows into facet dendrite, and the cusp 
curvature between two dendrite arms becomes deeper. 
Notice that in Fig. 4(b) crystal grows into a hexagonal 
facet shape, and secondary dendrite arms cannot be 
found, which is not similar to the non-faceted dendrite 
shape [4]. Figure 4(c) shows the solute field shape, 
which is similar to the shape of Fig. 4(b). 

The tip velocity versus time curve in above 
conditions is plotted in Fig. 5(a). As shown in Fig. 5(a), a 
normal trend is that the initial high tip velocity falls    
to a nearly steady state value. The inserting phase   
field figures show the progress of shape evolution. 
Furthermore, the solidus concentration profiles in solid  
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Fig. 4 Hexagonal facet shape: (a) Interface shape evolution at every 10000Δt; (b) Phase field shape at t=70000Δt; (c) Solute field 

shape at t=70000Δt 

 

 
Fig. 5 Tip growth velocity and solidus concentration profiles of six-fold facet shape: (a) Tip growth velocity versus time; (b) Solidus 

concentration profile in solid and liquid along central dendrite axis grid 

 
and liquid along one central dendrite axis grid can show 
the change of solute field (Cs/C means the ratio of 
solidus concentration and initial given concentration C, 
where C is the value of the concentration C far from the 
interface). This means that the solidus concentration has 
one low concentration along the dendritic arm, arrives to 
the interface, and the concentration that increases to one 
maximum value for the solute is released, corresponding 
to the growth of dendrite, then to one general 
concentration in the supersaturation liquid. Compared 
with non-faceted dendrite growth [29,31], the change of 
concentration is not sharp, because no secondary 
dendrite arms make solute release less. 
 

4.2 Effect of anisotropy parameter 
Figure 6 illustrates dendrite tip steady velocities at 

various strong anisotropy values. As seen from the Fig. 6, 
with increasing anisotropy value, steady state tip 
velocities have an increasing trend, touch to one balance 
value, and then decrease. The fact that the tip velocity 
decreasing with increasing anisotropy value results  
from the increase in the range of missing orientations. 
Notice that faceted dendrite shape has no significant 
change, which is shown in Fig. 7. For the difference of 
shape, it can also be presented by the Wulff theory 
equilibrium shape in Fig. 8, as shown in Fig. 8(a), the 
main hexagonal shape has the near same area shape with 

 
Fig. 6 Steady tip velocities at different strong anisotropies 

 
“ear”, only has different sizes of the missing orientations 
ears parts. In order to clear the difference, one part of the 
Wulff shape is magnified in Fig. 8(b), which shows that 
the main area decreases with increasing the strong 
anisotropy. Compared with Fig. 8(b), the further 
magnified figure is illustrated in  Fig. 8(c), it can be 
found that the tip location becomes larger with 
increasing the strong anisotropies from 0.0287 to 0.04, 
then, increasing the anisotropies more, the tip location 
changes to be smaller. Combining Fig. 6 with Fig. 8, the 
reason for the decrease in tip velocity change is that the 
range of missing orientations is increased and more 
solutes are released at the anisotropy values of 
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0.0287−0.04, which directly induces the increase of 
growth velocity. However, when the anisotropy value is 
more than 0.04, the missing orientations increase quickly, 
while solute releasing increases slowly, then the final 
result is that the tip location becomes smaller, and a 
decreasing trend forms with further increasing the 
anisotropy value. 
 
4.3 Effect of supersaturation 

Figure 9 shows the tip growth velocity and steady 
tip velocity of six-fold facet shape. The steady velocity 
value comes from the inserting figure. When the 
undercooling (Ω) is fixed by the given model, thus the 
supersaturation is more important for the faceted dendrite 
growth, which can reflect the influence degree between 
them. 

As shown, one circular seed only grows to a round 
crystal when Ω2 is 0.0225. With increasing super- 
saturation value, the influence of solute field boosts, 
interface stability becomes worse, and fractal begins to 
appear and grow more, finally grows to one hexagonal 
facet shape when Ω2 is 0.1225. Furthermore, the 
hexagonal shape evolves to one developed facet shape. 
This is because the larger the supersaturation value is, the 
more greatly the phase field varies, which enhances the 
degree of anisotropy growth, renders much more 
disturbance at the interface, leading to a non-circular 
crystal. 

 
4.4 Dendrite shape with different symmetries 

In order to illustrate the fact that the formulation  
is  general  and  can  be  applied  to  arbitrary  crystal 

 

 

Fig. 7 Faceted dendrite shape at different strong anisotropies: (a) γ=0.0287; (b) γ=0.05; (c) γ=0.07 
 

 

Fig. 8 Wulff theory equilibrium shape versus different strong anisotropies: (a) Equilibrium shape at one figure; (b) One sixth of 

magnified equilibrium shape; (c) Magnified disorientations of equilibrium shape 
 

 
Fig. 9 Tip growth velocity and steady tip velocity of six-fold facet shape: (a) Tip growth velocity versus time; (b) Relationship 
between steady tip growth velocity and square supersaturation 
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symmetries, through changing the anisotropy function 
a(θ), different models corresponding to different 
crystalline symmetries can be obtained. Using the 
regularized idea it is proved that the model can be 
extended to other symmetries facet dendrite growth 
conditions. Figure 10 shows the facet dendrite evolution 
diagram. As shown in Fig. 10, there are three concentric 
circles, the calculation results are placed on these circles. 
For illustrating the fact that this method is effective, we 
choose three-, six-, nine-, twelve-, and fifteen-fold 
symmetries models. It can be seen that the simulation 
facet shapes with different symmetries shape are in 
excellent agreement with their analytic Wulff shape. 
Exactly, these circles have one nucleus with radius of 15. 
The first circle is the regularized Wulff equilibrium shape, 
the initial phase field shape for different symmetries is 
compared with the Wulff shapes on the second circle, 
and this figure shows that there is actually no observable 
discrepancy between initial phase field shape and Wulff 
theory equilibrium shape. The third circle is the typical 
faceted dendrite shape when simulation time of moving 
on is enough, which furthermore demonstrates that this 
method can be used to simulate arbitrary symmetries 
crystal shape. 
 

 

Fig. 10 Diagram of faceted dendrite shape with different 

symmetries: (a) Regularized Wulff shape; (b) Initial phase field 

shape; (c) Typical facet dendrite shape (More specifically, the 

parameters for three-, six-, nine-, twelve-, and fifteen-fold 

symmetries models are Ω=−0.45, −0.25, −0.45, −0.5, −0.55; 

and γ=0.15, 0.04, 0.03, 0.015, 0.015, respectively) 

 
5 Conclusions 
 

1) For the six-fold symmetry structure, when mesh 
grid is greater than 640×640, the mesh grid has no 
influence on faceted dendrite growth shape. 

2) With increasing strong anisotropy value, the tip 
steady velocities are enhanced. When the anisotropy 

value varies between 0.04 and 0.06, the tip velocities 
arrive to one balance value, and then the tip velocities 
have a decreasing trend with further increasing the 
anisotropy value. With increasing the square 
supersaturation, tip velocities have a nonlinear increasing 
phenomenon, and hexagonal facet shape evolves into 
developed dendrite structure. 

3) Importantly, based on the regularized idea, the 
revised phase field equation is proposed, one evolution 
diagram is plotted by three-, six-, nine-, twelve- and 
fifteen-fold symmetries shapes. Both the regularized 
Wulff equilibrium shape and modeling facet shape all 
demonstrate that this method has sufficient ability to 
simulate arbitrary crystal symmetries structures. 
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摘  要：建立一种有效修正相场模型来模拟小平面枝晶生长形貌。通过该模型分别研究网格大小、各向异性值、

过饱和度及不同重对称性对小平面枝晶生长形貌的影响。结果表明，随着时间的推移，晶核生长为六重对称性的

小平面形貌。当网格尺寸大于 640×640 时，小平面形貌不受模拟网格大小的影响。随着各向异性值的增加，小平

面枝晶的尖端速度增大到一个饱和值后再逐渐降小。随着过饱和度的增加，晶核从一个圆形演化为发达的小平面

枝晶形貌。根据 Wulff 理论和对应的小平面对称性模拟形貌图，证明所提出的模型是有效的，并能够拓展到任意

重对称性的晶核生长的模拟。 

关键词：相场方法；强各向异性；小平面枝晶；Wulff 理论；尖端速度；对称性 
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