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Abstract: A numerical simulation based on a regularized phase field model is developed to describe faceted dendrite growth
morphology. The effects of mesh grid, anisotropy, supersaturation and fold symmetry on dendrite growth morphology were
investigated, respectively. These results indicate that the nucleus grows into a hexagonal symmetry faceted dendrite. When the mesh
grid is above 640x640, the size has no much effect on the shape. With the increase in the anisotropy value, the tip velocities of
faceted dendrite increase and reach a balance value, and then decrease gradually. With the increase in the supersaturation value,
crystal evolves from circle to the developed faceted dendrite morphology. Based on the Wulff theory and faceted symmetry
morphology diagram, the proposed model was proved to be effective, and it can be generalized to arbitrary crystal symmetries.
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1 Introduction

Interfacial energy anisotropy and mobility reflect
the crystal structure of interfaces in materials. The
crystallographic anisotropy has an important effect on
the evolution dynamics and the final morphology
structures in materials processing [1,2]. In particular, the
anisotropy allows for the simulation of dendrite growth
branches in solidification problems [3,4]. When
anisotropy is weak for solid/liquid interfaces in most
metallic materials, strong anisotropy often leads to facet
interface structures such as in silicon, snowflakes or
smooth surfaces. Faceted patterns appear in advanced
and technological materials [5]. Faceted dendrites have
attracted much attention due to their unique crystal
structures particularly [6—9]. For example, on account of
their aesthetics, snowflakes have attracted considerable
interest for decades [10]. While robust theoretical
interpretations of facet equilibrium shapes exist, the
dynamical aspects of faceted pattern formation are still

less understood. Thus, it is important to understand and
investigate the mechanism by numerical simulation.

The most significant computational advantages of
phase field method are that the explicit tracking of the
interface is unnecessary, the interface curvature,
anisotropy and kinetics parameters are implicitly
incorporated in the phase field equation, and the phase
field method has been proved to be a powerful tool for
microstructure evolution simulation [11-16]. The
method was developed by KARMA and RAPPEL [17] in
1996 for solidification of pure substances and later
generalized by KARMA [18] for alloy solidification.
However, in the early time, phase field method was
mainly used to study the dendrite growth with weak
anisotropy value [4,18]. When the anisotropy is so
sufficiently strong missing orientations occur and sharp
corners form in the Wulff shape [19—21]. This becomes
ill-posed and reduces to un-regularized phase field
equations. In order to recover accurately equilibrium
shapes with corners due to missing orientations, in 2001,
EGGLESTON et al [22] dealt with the ill-posedness
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through regularizing convexifying anisotropic surface
energy, and simulated facet equilibrium shape with
strong anisotropic interfacial energy. In an alternative
phase-field approach, SUZUKI et al [23] simulated
faceted crystal growth of silicon from the undercooled
melt of silicon—nickel alloys. Recently, there also have
been a number of attempts to regularize the phase-field
equation [24—28]. For example, LIN et al [27] proposed
a simplified anisotropic function, and then extended it to
a 3D model.

In this work, based on Eggleston model [22], an
effective regularized phase field model was presented to
model faceted structure with six-fold symmetry, and the
effects of mesh grid, anisotropy parameters, and
supersaturation on faceted dendrite growth morphology
were examined in detail. Furthermore, the fundamental
idea of regularizing phase field model can be extended to
generalize faceted dendrite morphology with arbitrary
symmetries.

2 Phase field model

The equilibrium condition at solid/liquid interface is
obtained by the Gibbs—Thomson equation [22]:
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where R(6) is the curvature radius of the solid/liquid
interface, W(0)(=Wya(0)) is the interface thickness to be
anisotropic, a(d)(=1+ycos(66)) is an anisotropic interface
energy function, y is the dimensionless anisotropy
parameter, 6 is the folds of symmetry, f~ and f° are the
free energy densities of liquid and solid phases,
respectively. When y<1/35, two sides of Eq. (1) are
positive, and crystal morphology is smooth and
continuity. When y>1/35, the left side of Eq. (1) is
negative as a result of the missing orientations, and
discontinuous interface, which occurs concave similar to
“ears”. Besides, Eq. (1) can calculate the equilibrium
shape [2,3] for two dimensions in parametric form as

x=W(0)cos 8—W'(O)sin 6 2)
y=W(0)sin —W'(O)cos O 3)

Figure 1 shows the parametric plots for Wulff shape
under different conditions. The unregularized Wulff
shape is presented in dash red in Fig. 1(a). As shown for
one typical strong anisotropy value, the equilibrium
shape develops into sharp corners, and the high energy
orientation for “ears” parts is missing. In order to
simulate dendrite growth with strong anisotropy value,
these “ears” must be removed, and the equation needs to
be regularized. As seen in Fig. 1(b), missing orientations

--- Wulff \
— Regularized Wulff )

(®)

- UI(0)
— 1)

Fig. 1 Parametric plots: (a) Equilibrium shape of Wulff with
“ears”(dash red line), equilibrium shape of regularized Wulff
without “ears”(solid black line), plot of interface energy
function W(6) (solid blue line), plot of regularized interface
energy function W(#) (solid green line); (b) Illustrating
regularization method, inverse interface energy function
(1/W(0)) and inverse regularization function 1//(6)

in the equilibrium shape occur when the reciprocal W(6)
plot becomes concave. Therefore, in order to regularize
the phase field equations, the interface energy within
these missing orientations were regularized referring to
method of EGGLESTON et al [22], as follows:
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As illustrated in Ref. [2], it replaces the anisotropy

function in these regimes by choosing appropriately
circular sections, which is shown in Fig. 1(b) for the case
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of six-fold symmetry. Where 6, is the first missing
orientation angle of the equilibrium shape, and it is
calculated through Eq. (5) by standard Newton iteration
method:

W(60,)sin Ot Wy(6,,)cos 60,=0 &)
Based on Eq. (4) and regularization model by
EGGLESTON et al [22], effective regularized phase

field equations are presented to model faceted dendrite
shape:

For gi—ﬁm sas§i+0m,andi=0, 3,

2
7y [:(ﬂcos 9] [1+(1—k)U]%:

os 6,

{a(é’ )] b +d— 8 — AU +0,)(1— ¢ (6)

cos 4

For gi—é’m SOS§i+t9m,and =1, 4,

2
ro{“(‘gm) cos (e—n/s)} [1+(1—k)U]%=

cos 6,

2
a(6,,) 200 _
{m} [cos™ (0 —n/3)(4, + )+

m

0, (4, cos (20 —21/3) ¢, sin (20 —27/3)) -

6, (¢, cos (20 —21/3) + ¢, sin (20 —27/3))]+
P-4 MU +6,)(1-¢") (7)

,and i=2, 5,

m —

For E1—6’ <9<—z+c9
3 3

2
ro{“(‘g O o5 (0- 27:/3)} [1+(1— k)U]a¢
cos 6,

m

{ﬂ} [cos” (0 —2m/3)(d, + ) +

cos 6
0,(g, cos (20 +2n/3) — ¢, sin (20 + 2n/3)) -

6, (¢, cos (20+27/3) + ¢, sin (20 +27/3))] +
-4 — MU +6,)(1-¢7) (8)

For §i+6’m < 0£§(i+1)—49m , and i=0-5,
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where ¢ represents the phase field parameter, ¢=1
represents the bulk solid phase, ¢ =—1 represents the bulk
liquid phase, the phase field parameter varies smoothly
between two bulk values within the diffuse interface
region, 7(0)(=t,a(d)) is a relaxation time of phase field,
O(=arctan(0,@#/0,@)) is the angle of the horizontal axis and
the direction normal to the interface, and ¢ is time.

The anisotropic and dimensionless forms of solute
isothermal equations with ATC are given by [9]

[1+k]8U 6(51 ¢VU+]MJ
2 ot 2

l§{¢[1+(1—k)U]} (10)

where j, is anti-trapping current expression [29,30], k
is the molar partition coefficient, U represents the solute
field, and D is the solute diffusivity in the liquid phase.
All parameters in Egs. (6)—(10) are dimensionless.

Using a suitable asymptotic expansion, the capillary
length dy and the kinetic coefficient expressions f§ are
related to the phase field equation in Ref. [18].

3 Numerical simulation

3.1 Initial and boundary conditions

An initial crystal radius is assumed to be r, and
crystal exists at the center of square simulation domain.
The left, right, top and bottom domain surfaces are
treated as symmetrical closed boundaries. The initial
phase field and supersaturation are taken as ¢=1, U=0 in
the solid and ¢=—1, U=Q elsewhere in the domain.

3.2 Simulation method

Equations (6)—(10) are solved by standard finite
difference method, time stepping A¢ is by standard
explicit Euler scheme, and V’¢ using a nine-point
formula with nearest and next nearest neighbors, which
reduces the grid anisotropy [30,31]. For convenience, the
following parameters are chosen: time step Ar=0.008,
space step Ax=Ay=0.4, =1, Wy=1, 1=6.383, Q=—0.45,
D=2, dy=0.277. Unless otherwise state, these parameters
are not varied.

Various mesh grids are presented to show whether
the simulation results are convergent. Figure 2 shows the
dendrite growth shape of different mesh grids at
t=60000A¢. As shown in Fig. 2(a), when mesh grid is
128x128, the initial crystal nucleus cannot grow freely in
the grid space, the boundary effect restricts its growth
strongly, and the crystal keeps growing on one circle
shape. When the mesh grid is increased up to 256%256,
the anisotropy dendrite growth shape can be found in
Fig. 2(b), but the shape is still affected by the boundary
size. If the mesh grid continues to increase to 384x384
(Fig. 2(c)), it can be seen that crystal obviously grows
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Fig. 2 Crystal growth shape of six different mesh grids at /=60000Az: (a) 128x128; (b) 256%256; (c) 384x384; (d) 512x512;

(e) 640%640; (f) 768x768

into hexagonal facet shape. When the mesh grid moves
to 512x512 (Fig. 2(d)), the grid boundary effects on the
dendrite shape become small, six-fold dendrite arms
have the same tip shape. If the mesh grid is further
increased, Figs. 2(e) and (f) show the evolution of the
morphologies, the hexagonal shape is shown in the same
mesh grid space 512x512, where no visible discrepancy
exists in the shape. To quantify the discrepancy between
the two shapes, a relative difference is defined as follows.
The tip growth velocities of six different mesh grids are
shown in Fig. 3. As presented, with time moving on, the
velocity decreases to each corresponding steady value
from one same original value. When increasing the
mesh grid, the steady velocity gradually convergences to
one value. In order to check the value and get a proper
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Fig. 3 Dendrite arm tip growth velocity versus time for various
mesh grids

calculation mesh grid, an inserted figure is presented in
Fig. 3. From the high magnification figure, it can be seen
that when the mesh grid increases to 512x512, the steady
velocity is near to the convergence value, but the
difference between Fig. 2(d) and Figs. 2(e) and (f) can
not be seen. However, the tip velocity under mesh grid of
640x640 is equal to that of 768x768, which indicates
that mesh grid has no influence on dendrite growth shape
when mesh grid is above 640x640. Thus, the mesh grid
of 640%640 is adopted in the following section.

4 Results and discussion

4.1 Faceted dendrite shape with six-fold symmetry

Figure 4 shows numerical simulation results at
t=70000A¢. Figure 4(a) shows the shape evolution of
hexagonal facet interface at =70000Az, where every
contour is at an interval of 10000A¢. With time going on,
crystal gradually grows into facet dendrite, and the cusp
curvature between two dendrite arms becomes deeper.
Notice that in Fig. 4(b) crystal grows into a hexagonal
facet shape, and secondary dendrite arms cannot be
found, which is not similar to the non-faceted dendrite
shape [4]. Figure 4(c) shows the solute field shape,
which is similar to the shape of Fig. 4(b).

The tip velocity versus time curve in above
conditions is plotted in Fig. 5(a). As shown in Fig. 5(a), a
normal trend is that the initial high tip velocity falls
to a nearly steady state value. The inserting phase
field figures show the progress of shape evolution.
Furthermore, the solidus concentration profiles in solid
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Fig. 4 Hexagonal facet shape: (a) Interface shape evolution at every 10000A¢; (b) Phase field shape at =70000A¢; (c) Solute field

shape at =70000A¢
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Fig. 5 Tip growth velocity and solidus concentration profiles of six-fold facet shape: (a) Tip growth velocity versus time; (b) Solidus

concentration profile in solid and liquid along central dendrite axis grid

and liquid along one central dendrite axis grid can show
the change of solute field (Cy/C, means the ratio of
solidus concentration and initial given concentration C.,,
where C, is the value of the concentration C far from the
interface). This means that the solidus concentration has
one low concentration along the dendritic arm, arrives to
the interface, and the concentration that increases to one
maximum value for the solute is released, corresponding
to the growth of dendrite, then to one general
concentration in the supersaturation liquid. Compared
with non-faceted dendrite growth [29,31], the change of
concentration is not sharp, because no secondary
dendrite arms make solute release less.

4.2 Effect of anisotropy parameter

Figure 6 illustrates dendrite tip steady velocities at
various strong anisotropy values. As seen from the Fig. 6,
with increasing anisotropy value, steady state tip
velocities have an increasing trend, touch to one balance
value, and then decrease. The fact that the tip velocity
decreasing with increasing anisotropy value results
from the increase in the range of missing orientations.
Notice that faceted dendrite shape has no significant
change, which is shown in Fig. 7. For the difference of
shape, it can also be presented by the Wulff theory
equilibrium shape in Fig. 8, as shown in Fig. 8(a), the
main hexagonal shape has the near same area shape with
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Fig. 6 Steady tip velocities at different strong anisotropies

113

ear”, only has different sizes of the missing orientations
ears parts. In order to clear the difference, one part of the
Waulff shape is magnified in Fig. 8(b), which shows that
the main area decreases with increasing the strong
anisotropy. Compared with Fig. 8(b), the further
magnified figure is illustrated in Fig. 8(c), it can be
found that the tip location becomes larger with
increasing the strong anisotropies from 0.0287 to 0.04,
then, increasing the anisotropies more, the tip location
changes to be smaller. Combining Fig. 6 with Fig. 8, the
reason for the decrease in tip velocity change is that the
range of missing orientations is increased and more
solutes are released at the anisotropy values of
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0.0287-0.04, which directly induces the increase of
growth velocity. However, when the anisotropy value is
more than 0.04, the missing orientations increase quickly,
while solute releasing increases slowly, then the final
result is that the tip location becomes smaller, and a
decreasing trend forms with further increasing the
anisotropy value.

4.3 Effect of supersaturation

Figure 9 shows the tip growth velocity and steady
tip velocity of six-fold facet shape. The steady velocity
value comes from the inserting figure. When the
undercooling () is fixed by the given model, thus the
supersaturation is more important for the faceted dendrite
growth, which can reflect the influence degree between
them.

(b) 08
0.6
0.2
-0.2
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-0.6
-0.8
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295

As shown, one circular seed only grows to a round
crystal when ©Q* is 0.0225. With increasing super-
saturation value, the influence of solute field boosts,
interface stability becomes worse, and fractal begins to
appear and grow more, finally grows to one hexagonal
facet shape when ©* is 0.1225. Furthermore, the
hexagonal shape evolves to one developed facet shape.
This is because the larger the supersaturation value is, the
more greatly the phase field varies, which enhances the
degree of anisotropy growth, renders much more
disturbance at the interface, leading to a non-circular
crystal.

4.4 Dendrite shape with different symmetries
In order to illustrate the fact that the formulation
is general and can be applied to arbitrary crystal

=]
~

o

Fig. 7 Faceted dendrite shape at different strong anisotropies: (a) y=0.0287; (b) y=0.05; (c) y=0.07
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Fig. 8 Wulff theory equilibrium shape versus different strong anisotropies: (a) Equilibrium shape at one figure; (b) One sixth of

magnified equilibrium shape; (c) Magnified disorientations of equilibrium shape
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symmetries, through changing the anisotropy function
a(0), different models corresponding to different
crystalline symmetries can be obtained. Using the
regularized idea it is proved that the model can be
extended to other symmetries facet dendrite growth
conditions. Figure 10 shows the facet dendrite evolution
diagram. As shown in Fig. 10, there are three concentric
circles, the calculation results are placed on these circles.
For illustrating the fact that this method is effective, we
choose three-, six-, nine-, twelve-, and fifteen-fold
symmetries models. It can be seen that the simulation
facet shapes with different symmetries shape are in
excellent agreement with their analytic Wulff shape.
Exactly, these circles have one nucleus with radius of 15.
The first circle is the regularized Wulff equilibrium shape,
the initial phase field shape for different symmetries is
compared with the Wulff shapes on the second circle,
and this figure shows that there is actually no observable
discrepancy between initial phase field shape and Wulff
theory equilibrium shape. The third circle is the typical
faceted dendrite shape when simulation time of moving
on is enough, which furthermore demonstrates that this
method can be used to simulate arbitrary symmetries
crystal shape.

e —————
2
-
-
-
~
N

Fig. 10 Diagram of faceted dendrite shape with different
symmetries: (a) Regularized Wulff shape; (b) Initial phase field
shape; (c) Typical facet dendrite shape (More specifically, the
parameters for three-, six-, nine-, twelve-, and fifteen-fold
symmetries models are Q=—0.45, —0.25, —0.45, —0.5, —0.55;
and y=0.15, 0.04, 0.03, 0.015, 0.015, respectively)

5 Conclusions

1) For the six-fold symmetry structure, when mesh
grid is greater than 640x640, the mesh grid has no
influence on faceted dendrite growth shape.

2) With increasing strong anisotropy value, the tip
steady velocities are enhanced. When the anisotropy

value varies between 0.04 and 0.06, the tip velocities
arrive to one balance value, and then the tip velocities
have a decreasing trend with further increasing the
anisotropy  value. With increasing the square
supersaturation, tip velocities have a nonlinear increasing
phenomenon, and hexagonal facet shape evolves into
developed dendrite structure.

3) Importantly, based on the regularized idea, the
revised phase field equation is proposed, one evolution
diagram 1is plotted by three-, six-, nine-, twelve- and
fifteen-fold symmetries shapes. Both the regularized
Waulff equilibrium shape and modeling facet shape all
demonstrate that this method has sufficient ability to
simulate arbitrary crystal symmetries structures.
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Mo& RO, RN Rz, Mwasd, & ad!
1 PEAE T RS BB B HER, 754 710129;
2. P TR IS0, 7% 710129;
3. TR RS B MHER, % 710054

o E: @A B AR R SRAE NP IR AR TE S . AR T 43 I A A KN & T S A
TN B R AN B EE SRR N TR AR KSR IR . 25 SRR, BEE I IR 4R, S B KOS AR MY
NPT Mk TR T 640%640 B, /N TITESUASZASE Y A K/ NI o B % A e PR R I, /N
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