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[ Abstract] On the basis of genetic algorithm, an intelligent search approach to determination of parameters of ARMAX
(Autor Regressive Moving Average model with external input) processes was proposed. By representing the system with

pole and zero pairs and repairing illegal chromosomes, the search space is limited to stable schemes. In calculation of objec

tive function the “shifted data window” was designed, so that every input-output pair is used to guide the evolution and

the “ Data Saturation” is avoided. To prevent premature convergence, the adaptive fitness function was introduced, the

conventional crossover and mutation operator was modified and the  catastrophic mutation” which is based on Metropolis

mechanism was adopted. So the performance of convergence to the global optimum is improved. The validity and efficien-

cy of proposed algorithm were illustrated by simulated results.
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1 INTRODUCTION

System identification is the foundation of control
engineering. In most cases, the parameters are esti-
mated by least squares based algorithms!'. All these
techniques are based upon the assumption of a smooth
search space with ever present derivatives, and are in
essence local search techniques that search for the op-
timum by using a gradient-following technique. In
actual system identification, the power spectrum of a
test input is sometimes localized in a low frequency
range or somew hat limited frequency range, then the
least squares ( LS) estimation tends to be illFcondi-
tioned. So, they often fail in search for global opti-
mum.

Genetic algorithm ( GA) has been established as
a variable search technique which is based on natural

evolution and selection!?'.

A genetic algorithm is a
parallel, global search technique that emulates natural
genetic operators. It needs not assume that the search
space is differentiable or continuous. Some re
searchers applied GA to linear or nonlinear dynamic
system identification!>™ ¥, All these researches as-
sume that the structure of system and the interval of
model parameters are known. But in many cases, it is
difficult to obtain the parameter intervals. In this pa-
per, the poles and zeros of ARMAX transfer function
are represented by the average of pairs ( @) and their
deviation from average ( B), so, for stable systems,
the search space should be limited to a( B) € (- 1,

+ 1).

GA has been theoretically and empirically proven
to provide robust search in complex spaces. However,
there is still a pressing need to improve our under
standing of the foundations of GA. One of primary
complaints toward GA is the occurrence of premature
convergence. Premature convergence can be subdued
through variation of crossover, selection and muta
tion, and through alterations such as population size,
crossover rate, and mutation rate!” 1% The work
presented here introduces adaptive fitness function
and dynamic crossover rate, adopts the “catastrophic
mutation” which is based on Metropolis mechanism,
and modifies the regular crossover and mutation oper
ation. So the performance of convergence to the glob-
al optimum is improved.

2 PRINCIPLE OF SYSTEM IDENTIFICATION

Consider a system described by an ARMAX
model' !
Alqg Dy()= B(qg Du(t~d)+
Clq ')e(t) (1

where A(q ')= 1+ a1q '+ arq *+ -t aug ",
B(qg')= bo(l+ big "+ bag *+ ot bug ™),
C(q‘l) = co(l+ clq41+ czq*2+ -t Cl(]Al) . A

(¢"') and B(q ') are irreducible and A (¢~ ') is
asymptotic stable, e( ) is a normally distributed ran-
dom sequence with zero mean and variance O:.

The true parameters are 0= [ a,an- 1 @p-2 - ai

b b1 - b1 bo d]".
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The estimated parameters are 00 = [a, @, 1 Im
@n-2 w- @l bubu1 b1 bo d ] :
The output of a deterministic system driven by
the actual input w(t) and A (q” ') and B (q” Y
are
y (k)= = any(k= n)= awiy(k= n+ Re
Lj— e al*y(k—*1)+ bo [bnu * 1 0 1
(k— m—-d )+ bpqu(k- m-
d>+ U+ biu(k-d - r
D+ u(k-d" )] (2)
Define optimal function ~1
J= JZM* (k)= y(k)]? (3)
- Fig.1 Complex plane
where y (k) is actual output, and w is the length of & plex plane
data window. (real pole) (6)
By minimizing J, the parameters are estimated. = pai
pijs1= (pi+ pu1)/2 % }1_2!1&_1 j
3 ANALYSIS OF SEARCH SPACE (complex pole) (7)
Define
The genetic algorithm is used for searching opti A" = (pi+ pui)/2 (8)
mal deterministic system according to optimal func o
tion (3). In manv cases. the search range of parame- B = % | 9 | (9)
ters is defined through prior knowledge about actual So
ARMA'X model. If thf: searf‘,h space is too wide', Piet = a?) £8P (real pole) (10)
many illegal schemes will be in search space, and if (0) + &p):
pis1= o £BPj  (complex pole) (11)

the search space is too narrow, it is possible to miss
optimal scheme. So, for enhancing the efficiency of
search program, we should restrict the search space as
narrow as possible, but ensure the estimated models
are stable. From polynomials A (¢~ ') and B(¢q™ '),
it is difficult to obtain the feasible search space direct-
ly unless we have prior knowledge about coefficients
of A(¢"') and B(q™'). So, A(q"') and B(q™ ')

should be represented as poles and zeros:

A(g )= (1= p1g ')(1- pag') -

(1- pug ) (4)

B(q—l): bo(1- Z1q‘1)(1— zzq_l)
(1= zug ) (5)
where pi(i=1,2, -n) and z;(j= 1,2, - m)

are poles and zeros of system respectively.

For a stable minimum phase system, the poles
and zeros are inside the unit circle (Fig. 1), therefore
the search space of poles and zeros should be limited
to be the unit circle. If the poles and zeros are real,
the search space will be limited to — 1< p;(z;)< 1,
which is convenient for GA. But in many cases, p;
and z; may be complex, which must appear in conju-
gate pairs. For implementation of GA, p; or z; must
be represented as real.

T aking the poles as example, if n is even, p;(i

= 1,2,
5, i=2 4,

.- n) can be represented as pairs p; j. 1(j=

-y n—2, n), so

pijs1= (pi+ pu1)/2 %

.
2

When B/#/ 20, pj.j+1 Is real pair, otherwise
pj.j+ 1 1s conjugate complex pair.

According to ( 10) and (11),
poles by a plane where the horizontal axis represents
the average value and the vertical axis the deviation
from the average. Every point in this new plane will

we can represent

represent two points, complex conjugate poles if it is
in the lower half plane and two real poles if it is in up-
per half plane. That turns the search space in Fig. 1
into S1in Fig. 2. If n is odd, the last pole p, should
be excluded, and be satisfied by - 1< p,< 1.

Fig.2 Pole (zero) pair plane

For minimum phase stable system, the zeros
should be treated as poles. We can identify system
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model by searching optimum pole and zero pairs in-
stead of coefficients of polynomials A (¢~ ') and B
(q '). So, we need not determine the interval of co-
efficients of A (¢~ ') and B(q™').

Nonlinear search space S in Fig. 2 is difficult to
GA. For convenience, we use rectangle S in Fig. 2 as
search space of GA in which Si/S = 0.6425. All
schemes in S-S which represent unstable models will
be illegal. By repairing illegal schemes in S-S, the
search space can be limited to S.

4 IMPLEMENTATION OF GA

The basic element processed by genetic algorithm
is the string formed by concatenating substrings, each
of which is coding of a parameter of the search space.
Thus each string represents a possible solution to the
problem. The genetic algorithm works with a set of
strings, called the population. With the guide of the
objective function, this population then evolves from
generation to generation through the application of
genetic operators. A genetic algorithm in its simplest
form uses three operators: Reproduction, Crossover,

and Mutation'?! .

4.1 Coding of chromosome
GAs require the natural parameter set of the op-
timization problem to be coded as a finite-length al-
phabet! > "' We must face the tradeoff problem be-
tween the length of coded string and the resolution of
the parameter value. When evaluating the chromo-
some, the string should be encoded, so the coding
and decoding process will waste the computation time
and slow down the convergent rate. In this paper, we
code chromosomes Gen by real value of parameters,
which is pole or zero pair parameters a”’( a’*/) and
B(p)( B(Z')), remanent pole p, and z, zero (n or m
is odd), bo and delay d.
Gen = a?’ B ...af/BY) .olibu BElup,
at® B LB L
auz_u B?fzn)i_uzmbod (12)

The chromosome can be viewed as a vector in-
cluding all parameters, so the decoding is not neces-
sary. Primitive chromosomes are generated randomly
in viable search space S 1.

4.2 Adaptive fitness function

The fitness function needs to be maximized so it
is chosen as'”!

F(j)= Cumx— J(j) (13)
where J(j) is the objective function of individual j

defined by (3).

positive fitness, which can be determined empirically

C ..x 1s a bias term needed to ensure a

or chosen as maximum of J(j ) of accumulated gener

ations.

When calculating J(j) by (3), the window size
w and the position of w in input-output sequence
play an important role in calculation of fitness. It has
been shown via simulation that the variance of the pa-
rameter estimates reduces as the window size w in-
creases. However, execution slows down as the win-
dow size increases. So the window size must be com-
promised. On the other hand, in order to use every
inputoutput datum to guide the evolution process,
the position of window shifts a time step when evolv-
ing several generations, with an effect akin to that of
forgetting factor in LS based algorithms''', so the
“Data Saturation” and abrupt disturbance are avoid-
ed.

C max 1s another important factor of F(j ). When
Cmax is chosen to be too high, the fitness of chromo-
somes inclines to uniform, so the search process will
slow down. If C. is too small, the fitness of chro-
mosomes will differ remarkably, so the GA leads to
dominant allele fixation in the loci prior to the discov-
ery of optimal or near optimal solution. To ensure
variance of chromosomes in population and high
searching speed, we introduce adaptive fitness func
tion as follow:

F(j) = max[J(j )] = J(j)+

q(k){max/[J(j)] - min/J(j)]} (14)
q (k) is the adaptive factor which is the
function of generation k. The ratio of offspring num-

where

ber of optimal chromosome to worst one in population
max| F(i)l 1+ gk

minl F(j )1~ q(k)

1+ qo maxlF(i)l 1+ g
< <
(k) Sq2, so \mian(j)l b q1

). q( k) is limited to ¢; <

182

. At the

beginning of evolution, min | F(7) | should be small-

er, the selection pressure is lower and the variability
of population is ensured. As the evolution advances,

must increase to enhance the selection

min| F(j) |
pressure to converge at the end. So we define ¢ (k)
as linear decreasing function of generation k&

q(k) = dik+ d, (15)

where di= 775 da= go di, ke is the de

termined number of generations, ¢ and ¢, are mini-
mum and maximum factor respectively.

In simple GA, the fitness is scaled to ensure
proper distinction in populations'>®. The proposed
adaptive fitness function defined in ( 14) not only ad-
just the selection pressure as evolution proceeding but

also scale the fitness function.

4.3 GA operators
4.3.1 Reproduction

Reproduction is based on the principle of the
“survival of the fittest”. A fitness, F(j), is assigned
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to each individual in the population where high num-
bers mean good fit. The number of offspring for each
individual is proportional to normalized fitness. The
strings with higher-than-average fitness will have
more than one offspring, and those with below-aver
age fitness will have less than one offspring on the av-
erage. To achieve this, the strings are selected ac
cording to “roulette wheel”!?!

In this paper, the algorithm keeps track of the
best string in the population and the best one is put
into the new population by removing the worst
string. This procedure is called “elitism”!®!.

4.3.2 Crossover and mutation

Reproduction directs the search toward the best
existing individuals but does not create any new indi-
viduals. In nature, an offspring is rarely an exact
clone of a parent, it usually has two parents and in-
herits genes from both. The main operator to work
on the parents is crossover, which is applied with a
certain probability, called crossover rate (p.). This
operator takes valuable information from both parents
and combines it to find a highly fit individual. In the
paper, numerical crossover is adopted ”. Two strings
from the reproduced population are mated at random,
the parents U and B give two new offsprings U and
U, as follow

U= Yo+ (1- V1 (16)

U= YO+ (1- Y)u (16)
where Y is a uniformly distributed random number
between 0 and 1.

The variability of population is effected by
Crossover rate (p.). As crossover rate increases, the
variability is increased, and the search process con-
verges more slowly. As crossover rate decreases, the
variability is decreased, so the probability of prema-
ture convergence is increased. The crossover rate
should decrease as the generation number is in-

creased.
pc: (pcmakaax_ pcmin)/(kmax_ 1) +
[(pcmin_ pcmax)/(kmax_ 1)]k ( 17)
where  pemin and pemax are minimum and maximum

crossover rate, k. is the determined number of gen-
eration, and k is generation number. To explore the
search space, when the optimal fitness function does
not change in several successive generations, which is
called “ Evolutionary Stagnation”, the crossover rate
should be higher than one calculated by ( 17).

When crossover can not ensure the variability in
population because of dominant allele fixation in pop-
ulation prior to the discovery of optimal or near opti-
mal solution, the new genetic strings should be intro-
duced. Mutation is thought of as disruptive tool when
the population converges prematurely to a local opti-
mum, in which case a high mutation rate is helpful.
However a high level of mutation yields an essentially
random search. The difficulty is in seeking the bal-

ance between exploration and fine-tuning. In normal
GA, mutation is a successive procedure after
crossover. In this paper, mutation and crossover are
implemented at the same time. When the two parents
of crossover have equal fitness, in which case
crossover will be void, we mutate any of them com-
pletely. When the fitness of parents are different re-
markably, mutation is not necessary. If the fitness of
two parents is approximately equal, the crossover can
be thought of as a local search in an area surrounding
that individual in a multimensional space. In this
way, mutation can prevent inbreeding in population
and insure higher efficiency of search process.

In variable coding, mutation operator simply re-
place any allele ( x;) of individuals with new allele

(x'}) as follow!”':
. k k k
X = Umnt r(umax - umin) ( 18)

where  whin and w4 is minimum and maximum val
ue of gene respectively, r is a uniformly distributed
random number in [0, 1].

It is shown via simulation that although we take
so much measures, it is unavoidable that the prema-
ture convergence occurs. When the ratio of average
fitness of population to maximum fitness is more than
0. 95, which is defined to be premature convergence,
the population becomes more homogeneous. In such
situation, the schemata of population should be dis-
rupted violently.

When premature convergence occurs we imple-
ment “ catastrophic mutation” to population. As to
any individual in premature population, we generate a
new individual in search space S| randomly, but the
new individual is accepted at the probability rate (p)

described by Metropolis mechanism! '

1 when J(j) SJ(i)
1
p = o ; otherwise (19)
exp( LA,

where J(j), J(i) are fitness of old and new indr
vidual respectively, 7T is the annealing temperature
which reduces at linear function of generation number

k.

T= (T mpxbompe= T min) I {Brne— 1) %

[(T win= T wax) / (kmax— 1) | & (20)
where T nin, T max are minimum and maximum an-
nealing temperature, k. is the maximum generation
number, k is the generation number.

With Metropolis rule, as search process approach
to the end, the probability of replacement of old indi-
vidual with new inferior one generated by ( 18) is de-
creased. As to any individual in population, the more
the fitness of new inferior individual close to the old
one, the higher the probability of acceptance is.
4.3.3 Mending of illegal chromosome

As to search space S of GA, the ratio (S— S;)/
Sis 0.3575, individuals in S— S are illegal chromo-
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somes, which cut down the efficiency of search pro-
cess. In some literature, illegal individuals are pun-
ished, so they have lower probability of survival'®.
In this paper, we turn those individuals into legal
ones by repairing some of schemata, so the efficiency
of the algorithm is increased.

In Fig. 2, unstable pole pair a? (k), B (k)
are repaired according to

o (k)= o (k) (21)
rand (0, 1- la® (k)l)
B(p)/(k) _ where B?/(k) > 0
rand (= 1= [d? (k)]% 0)
where B? (k)< 0
(22)
where rand(x, y) is uniformly distributed random

number in [ x, y|. Unstable pair at upper plane
(point “A”) in Fig. 2 is repaired in upper plane in S
(point “A””), and another one at lower plane ( point
“B”) is repaicred in lower plane in S (point “B’”).
To some extent, the modified individual is similar to
the old one.

S SIMULATED EXAMPLES

5.1 Example 1

The actual ARMAX process is assumed to be de-
scribed by
A(qg )= 1- 206¢" '+ 1.7778¢ -

0.5247¢°,
B(qg')= 1.0(1+ 1.5¢ '+ 0.685¢ %),
d=1,
bo= 10

The poles and zeros are:

Poles: p1.2= 0.75052 %0.6127j, ps= 0.5590
or pole pairs: a”’=0.75052, B/ = - 0.6127, p;
=0.5590

Zeros: z1,= — 0.75%0. 35j
or zero pairs: o /= - 0.75, B*= - 0.35

The input is inverse PRBS ( Pseudo-Random Br
nary Sequence) contaminated by normally distributed
random sequence with zero mean. The outputs are
simulated with two kinds of noise: one is normally
distributed white noise sequence, another is colored
noise with the color filter: C(¢™')= 1.0- 1. 0" '+
0.2¢ > Fig.3 shows the output with colored noise.
Table 1 is the convergent results, which are evolved
5000 generations. Fig. 4 shows the estimated param-
eters with generation. After about 1200 generations,
the algorithm converges to the true value for poles,
but shows some bias for zeros. The reason that the

40
Curput
20r Input
5
£
8 o}
S,
g
B
-20
~40% 50 100 150
Number of samples
Fig. 3 Input and output sequence with colored output noise
2
2 \M bo
'S 1 a'®
3 "
E. J| ; ’ #3
LE 1] p(#l
/ ﬁ(:)
—_ 7
at=!
-1 I 1 1 .
0 1000 2000 3000 4000 5000

Generation number

Fig. 4 GA estimation of simulated system
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zeros are biased but the poles are not is that the
steady-state gain is 16. 5, so the objective function is
less sensitive to changes in the zeros than in poles. It
should emphasized that the algorithm does not neces-
sarily converge to the optimum, but do best while
learning to do better. Fig. 5 shows the objective func
tion of optimal individual in population with
generations. After about 2000 generations, the algo-
rithm completes “rough search” process, and then
turns to “fine tuning” process. It is shown that the
convergent speed is excellent. Fig. 6 shows the aver
age objective function of population. The average ob-

jective function oscillates with generations, which

150

g

(7,3
=
T

Optimal objective value

" 2 000 4 000 6 000
Generation number

Fig. 5 Objective function of
best individual in population

200

Average objective value

2000 4000 %000
Generation npumber

Fig. 6 Average objective function of population

shows that the algorithm prematurely converges fre-
quently, but the envelope curve of oscillating process
declines with generations. That is the effect of
“ catastrophic mutation”, which ensures that the algo-
rithm escapes from premature convergence and con-
verges to globe optimum effectively.

5.2 Example 2
The actual ARMAX process is assumed to be de-
scribed by!!!

A(g')= 1- L.5¢ "'+ 0.7¢" %
B(qg')= 1+ 0.5¢" ",

d=1,

bo= 1.0

Poles: p1.2= 0.75 £0. 37] or pole pair: a”’ =
0.75, B?=-10.37

Zero: z1= - 0.5

The input and output noise are the same as ex-
ample 1. Table 2 shows the estimates of the system
with 3000 evolutionary generations, which shows
that the estimated results are good agreement with
true values.

6 CONCLUSIONS

In this paper it has been demonstrated how a ge-
netic algorithm can be used to estimate ARMAX pro-
cess, and how to improve the efficiency of GA. It has
shown by simulated examples that

1) By turning poles ( zeros) into pole ( zero)
pairs, we can limit the search space of GA to stable
schemes. It is unnecessary to determine the scope of
parameters, so the proposed algorithm is convenient
for engineering applications.

2) The proposed method of modifying illegal
chromosomes, which is based on similarity principle,
avoids the invalid search in search space, so it im-
proves the efficiency of algorithm.

3) The adaptive fitness and crossover rate can
adjust the variability in population with evolutionary

Table 1 Simulated results of example 1

Type of noise a'?’ pr) P3 bo al* =/ d  Objective function
White noise 0.7498 -0.6112 0.5642 1.1354 - 0.6204 - 0.4612 1 5.7351
Colored noise 0.7489 - 0.6118 0.5622 1.0745 - 0.6744 - 0.4154 1 3.1398
True value 0.7505 -0.6127 0.5590 1.0000 - 0.7500 - 0.3500 1
Table 2 Simulated results of example 2
Type of noise a'?’ v z) bo d Objective function
White noise 0.7107 - 0.3894 - 0.3599 0.9860 1 4.3958
Colored noise 0.7329 - 0.3782 - 0.4181 0.9787 1 1.3672
True values 0.7500 - 0.3700 - 0.5000 1.0000 1
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generations, so they can explore the search space
more effectively.

4) The modified crossover and mutation prohibit
inbreeding, enhance the ability of preventing prema-
ture convergence of GA.

5) The “catastrophic mutation” which is based
on Metropolis mechanism makes the GA escape from
premature convergence, and at the same ensures the
globe convergence.

Simulated examples validate that the proposed
algorithm is an efficient approach to identify ARMAX
process.
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