[Article ID] 1003- 6326(2001) 05- 0764- 04 ## Effect of loading point position on fracture mode of rock ¹⁰ RAO Qiu hua(饶秋华)¹, SUN Zong-qi(孙宗颀)¹, WANG Gui yao(王桂尧)², XU Ji cheng(徐继成)³, ZHANG Jing-yi(张静宜)³ (1. College of Resources, Environment and Civil Engineering, Central South University, Changsha 410083, P. R. China; 2. River and Sea Department, Changsha Communications University, Changsha 410076, P. R. China; 3. Open Laboratory of Mechanics, Central South University, Changsha 410083, P. R. China) [**Abstract**] Anti-symmetric four-point bending specimen with different loading point positions was used to study effect of loading point position on fracture mode of rock in order to explore a feasible method for achieving Mode II fracture and determining Mode II fracture toughness of rock, K_{IIC} . Numerical and experimental results show that the distance between the inner and outer loading points, $L_{1}+L_{2}$, has a great influence on stresses at notch tip and fracture mode. When $L_{1}+L_{2}>0.5L$ or $0.1L< L_{1}+L_{2}<0.5L$, maximum principal stress σ_{1} exceeds the tensile strength σ_{1} . The ratio of τ_{max}/σ_{1} is relatively low or high and thus Mode I or mixed mode fracture occurs. When $L_{1}+L_{2}<0.1L$, σ_{1} is smaller than σ_{1} and the ratio of τ_{max}/σ_{1} is much higher, which facilitates the occurrence of Mode II fracture. [Key words] fracture mode; loading point position; stress analysis; rock [CLC number] 0 346. 1; TU 458 [Document code] A #### 1 INTRODUCTION Mode II (shear) fracture is often detected in rock engineering, e. g. in earthquake zones or in rock bridges between two adjacent discontinuities in rock masses, especially in underground excavations and in the toe of rock slopes. An increasing interest in Mode II fracture of rock in recent years has resulted in a great demand to determine Mode II fracture toughness, $K_{\rm IIC}$, since $K_{\rm IIC}$ is an important and useful parameter which represents the resistance of rock to the initiation of shearing fracture. Although a number of testing methods providing pure shear loading on pre-existing crack plane have been proposed to measure $K_{\rm IIC}^{[1\sim 3]}$, there is no standard method available for $K_{\rm IIC}$ to date. Anti-symmetric four-point bending test is a common method for studying fracture under pure shear loading. Unlike the fracture under pure tensile loading which has a fixed trajectory vertical to the loading direction, the fracture under pure shear loading is usually in an indefinite direction, depending on the specimen dimension, the notch length, in particular, the loading point position $^{[4-6]}$. The effect of loading point position on fracture mode has not been quite clear. The aim of this paper is to study this problem experimentally and numerically in order to find out a favorable loading point position for achieving Mode II fracture and explore a feasible method to determine K_{IIC} of rock. #### 2 TEST ARRANGEMENT AND RESULT #### 2. 1 Materials The rock type used in this study is marble A and B. The mechanical properties of these rocks, i. e. the tensile strength $\sigma_{\rm t}$, uniaxial compressive strength $\sigma_{\rm c}$, internal friction angle ϕ , cohesion C, elastic modulus E and Mode I fracture toughness $K_{\rm IC}$, were obtained by ISRM (the International Society for Rock Mechanics) standard testing methods. These values are listed in Table 1. Table 1 Mechanical properties of rocks σ_t/MPa σ_c/ M Pa φ/(°) Rock type Marble A 3. 1 79 41 $M\,arble\,\,B$ 4.7 61 47 $K_{\rm IC}$ / (MPa \bullet m^{1/2} Rock type C/MPaE/GPa Marble A 25 25 1.26 Marble B 30 21 0.94 ### 2. 2 Specimens and methods Fig. 1 illustrates the configuration of anti-symmetric four-point bending specimen and the loading form. The load is applied to the beam by two upper and bottom steel rollers. The notch is located in the symmetric plane of the specimen, where there is only shear force without any bending moment. Therefore the notch is subjected to pure shear loading. Table 2 gives the dimensions of these specimens and the load- ① [Foundation item] Project (49272151) supported by the National Natural Science Foundation of China [Received date] 2000- 12- 05; [Accepted date] 2001- 03- 19 Fig. 1 Anti-symmetric four-point bending test **Table 2** Dimensions of specimens and loading point positions | Specimen | Dimension $L \times W \times B$ | Notch length a | a/ W | Loading point position | | |----------|---------------------------------|------------------|------|------------------------|-------------------| | No. | / mm | / mm | | L_1/mm | L_2/mm | | A1(5)* | $220\times60\times15$ | 30 | 0.5 | 30 | 95 | | A2(4)* | $220\times60\times15$ | 2×20 | 0.3 | 5.5 | 95 | | A3(5)* | $220\times60\times15$ | 30 | 0.5 | 5.5 | 75 | | B1(3)* | 220 × 60 × 15 | 2 × 24 | 0.4 | 5 | 10 | ^{*} The number in the parentheses denotes how many specimens were tested for each sample ing point positions. There are four kinds of loading point positions used in the tests. L_1 and L_2 are 30 mm and 95 mm, 5.5 mm and 95 mm, 5.5 mm and 75 mm, 5 mm and 10 mm, respectively. All of the tests were carried out on a servo-controlled Instron 1342 press with a capacity of 100 kN under position control. The peak load was measured and the fractured trajectory was carefully analyzed after tests. ## 2. 3 Test results For the single-notched specimen, if $L_1/W \ge 0.33$, the stress intensity factor K_m (m = I, II or mixed mode I-II) can be calculated by [7] $$K_{m} = \frac{Q}{BW^{1/2}} \begin{bmatrix} 1.47 - 5.1(a/W - 0.5)^{2} \end{bmatrix} \bullet$$ $$\sec \frac{\pi_{a}}{2W} \sqrt{\sin \frac{\pi_{a}}{2W}}$$ $$Q = \frac{L_{2} - L_{1}}{L_{1} + L_{2}} p$$ (1) where p is thrust load. If $L_1/W < 0.33$, K_m can be deduced by the boundary disposition method as follows^[8]: $$K_{m} = \frac{Q}{BW^{1/2}} \left| -3.40(\frac{\alpha}{W})^{4} + 15.78(\frac{\alpha}{W})^{3} - 16.04(\frac{\alpha}{W})^{2} + 9.70(\frac{\alpha}{W}) - 0.85 \right|$$ (2) For the double notched specimen, when 0. 167 $\leq 2a/W \leq 0.883$, K_m can be determined by [9] $$K_m = \frac{2Q}{BW} \sqrt{\pi_a} F(\frac{2a}{W}) \tag{3}$$ where F is a shape factor and listed in Table 3. | Table 3 Shape factor <i>F</i> | | | | | | |--------------------------------------|-------|--------|-------|--|--| | 2a/ W | F | 2 a/ W | F | | | | 0. 2 | 0. 33 | 0.6 | 0.93 | | | | 0.3 | 0. 52 | 0.7 | 0.17 | | | | 0.4 | 0. 69 | 0.8 | 0.156 | | | | 0.5 | 0. 82 | | | | | Table 4 shows the test results of the crack initiation angle θ_{mC} and the fracture toughness K_{mC} , where the subscript m denotes the fracture mode, i. e. m = I (Mode I fracture) or m = I - II (Mixed Mode I - II) when $\theta_{mC} \neq 0$ and m = II (Mode II fracture) when $\theta_{mC} = 0$. The typical fracture trajectories of these specimens are displayed in Fig. 2. Fig. 2 Fracture trajectories of specimens with different loading point positions (a) —Specimen A1 (L₁= 30 mm, L₂= 95 mm); (b) —Specimen A2 (L₁= 5.5 mm, L₂= 95 mm); (c) —Specimen B1 (L₁= 5 mm, L₂= 10 mm) ## 3 NUMERICAL CALCUALTION A series of finite element calculations were conducted to study the stress distribution in the specimens with different loading point positions. Six-noded triangular plane elements with isotropic properties were used. Mesh refinement was performed in the vicinity of the notch tips in order to improve the accuracy of calculation. The boundary conditions were defined by applying node forces at the upper support points and zero vertical displacements at the bottom support points. Figs. 3 and 4 illustrate two typical contours of maximum principal stress σ_l and maximum shear stress τ_{max} for the specimens A1 and B1, where the tensile stress is defined as positive. Table 5 lists the maximum values of σ_l and τ_{max} at the notch tips, as well as the ratios of σ_l / σ_t and τ_{max} / σ_l . **Table 4** Test results of specimens (mean value) | Specimen No. | Peak shear force $Q_{\rm m}/{\rm kN}$ | $\frac{\text{Crack initi}}{\theta_{mC}(1)/(°)}$ | $\frac{\text{fation angle}}{\theta_{mC}(2)/(°)}$ | Fracture toughness K_{mC} / (MPa $^{\bullet}$ m $^{1/2}$) | $\frac{K_{mC}}{K_{IC}}$ | Fracture mode | |--------------|---------------------------------------|---|--|--|-------------------------|-------------------| | A1 | 1. 65 | 68. 8 | _ | 0.74 | 0. 59 | Mode I | | A2 | 3. 25 | 51.3 | 54. 3 | 1.58 | 1.26 | Mixed mode I - II | | A3 | 3. 23 | 57.9 | _ | 1.45 | 1.15 | Mixed mode I - II | | B1 | 4. 20 | 0 | 0 | 3.28 | 3.49 | Mode II | **Table 5** Numerical results of tested specimens (mean value) | Specimen No. | L_1+L_2/mm | $\left(L_{1}+L_{2}\right) /L$ | σ_1/MPa | σ_1/σ_t | $\tau_{max}/M\mathrm{Pa}$ | τ_{max}/σ_1 | |---------------------|-----------------------|--------------------------------|----------------|---------------------|---------------------------|-----------------------| | A1 (Single notch) | 125 | 0. 57 | 3. 5 | 1. 13 | 3 | 0. 86 | | A2 (Double notches) | 100. 5 | 0.46 | 4. 0 | 1. 29 | 7 | 1. 75 | | A3 (Single notch) | 80. 5 | 0. 37 | 4. 5 | 1.45 | 7 | 1.56 | | B1 (Double notches) | 15 | 0. 07 | 3. 0 | 0.64 | 7 | 2. 33 | Fig. 3 Stress contours for specimen A1 (a) —Maximum principal stress $\sigma_1(MPa)$; (b) —Maximum shear stress $\tau_{max}(MPa)$ **Fig. 4** Stress contours for specimen B1 (a) —Maximum principal stress $\sigma_{I}(MPa)$; (b) —Maximum shear stress $\tau_{max}(MPa)$ ## 4 DISCUSSION # **4.** 1 Effect of loading point position on fracture trajectory The fracture trajectories of the specimens with different loading point positions are quite different (see Fig. 2 and Table 4). For the single-notched specimen, when the distance between the inner and outer loading points is relatively long, L_1+L_2 is equal to 80.5 mm (0.1 $L < L_1+L_2 < 0.5L$) and 125 mm ($L_1+L_2 > 0.5L$), the crack is usually initiated at an angle, 57.9° (specimen A3) or 68.8° (specimen A1), to the notch plane and then rapidly reaches the edge of the specimen in a curve line. For the double notched specimen, when L_1+L_2 is 100.5 mm (0.1 $L < L_1+L_2 <$ 0.5L), two cracks initiate at 51.3° and 54.3° simultaneously at the two notch tips, then stretch to a certain length and finally abruptly connect with the opposite notch tip (specimen A2). Noticeably, when $L_1 + L_2$ is very small, $15 \, \text{mm} \, (L_1 + L_2 < 0.1 L)$, the crack is initiated and propagated in the original notch plane (specimen B1). It is concluded that for both the single- and double-notched specimens, the crack initiation angle θ_{mC} decreases as $L_1 + L_2$ decreases. This is attributed to the change of stresses at the notch tip when the distance between the two loading points becomes shorter, which will be discussed as follows. ## **4.2** Effect of loading point position on stresses at notch tip and on fracture mode Numerical results indicate that under the pure shear loading, both tensile and shear stresses exist at the notch tips and they have the same order of magnitude, see Table 5. When the distance between the inner and outer loading points decreases, the maximum principal stress σ_1 may increase (for the single-notched specimen) or decreases (for the double-notched specimen), but the ratio of τ_{max}/σ_1 increases for both the single- and double-notched specimens. In specimen A1, the magnitude of σ_l exceeds its tensile strength σ_t and thus causes the fracture initiation. Since the ratio of τ_{max}/σ_l is lower, the tensile stress is predominant during the fracture process and the fracture is of Mode I. The crack initiation angle, 68.8°, is in good agreement with the theoretical crack initiation angle of Mode I fracture under the pure shear loading, 70.5°, based on the maximum circumferential stress criterion ($\sigma_{\!F}$ criterion) [10]. For specimens A2 and A3, since σ_l is larger than σ_l and the ratio of τ_{max}/σ_l is relatively higher than that in specimen A1, the fracture initiation is caused by the tensile stress, while the fracture propagation results from the co-action of both the tensile and shear stresses. It may be thought that the fracture is of mixed mode I - II. The crack initiation angle, 51.3° ~ 57.9°, is smaller than the theoretical crack initiation angle 70.5°, which corresponds to that of Mode I fracture under the pure shear loading. The measured fracture toughness K_{mC} is slightly larger than K_{IC} and about 1~ 2 times K_{IC} . Specimen B1 is an exception. When the inner and outer loading points are very close to the notch plane, the notch tip is subjected to an extremely high shear stress, $7\,M\,Pa$, and relatively low tensile stress, $3\,M\,Pa$ (smaller than σ_t). This leads to a high ratio of τ_{max}/σ_1 , 2.33 in the specimen. The lower tensile stress and higher shear stress facilitate the occurrence of Mode II fracture. The obtained Mode II fracture toughness K_{IIC} is much larger than K_{IC} and about 3. 5 times K_{IC} . ### 5 CONCLUSIONS - 1) Loading point position has a great influence on fracture mode of rock. When the distance between the inner and outer loading points is very long, e.g. $L_1+L_2>0.5L$, Mode I fracture occurs. - 2) When the distance between the inner and outer loading points becomes shorter, e. g. 0. $1L < L_1 + L_2 < 0.5L$, mixed mode I II fracture occurs. - 3) Mode II fracture occurs when the distance between the inner and outer loading points is very short, e.g. $L_1+L_2<0.1L$. - 4) The ratios of Mode II to Mode I fracture toughness, $K_{\rm IIC}/K_{\rm IC}$, and mixed mode I II to Mode I fracture toughness, $K_{mC}/K_{\rm IC}$, are different. The former is about $2\sim 4$ and the latter is $1\sim 2$. ## [REFERENCES] - [1] Awaji H, Sato S. Combined mode fracture toughness measurement by the disk test [J]. J of Eng Mater Tech, 1978, 100: 175-182. - [2] Richard H A. A new compact shear specimen [J]. Int J Fract, 1981: R105- 107. - [3] Banks Sills L, Arcan M. An edge cracked mode II fracture specimen [J]. Exp Mech, 1983, 23(3): 257-261 - [4] Carpinteri A, Ferrara G, Melchiorri G. Single edge notched specimen subjected to four point shear: an experimental investigation [A]. Shah S P, Swartz S E, Barr B. Fracture of Concrete and Rock: Recent Developments [C]. 1989. 605-614. - [5] Jung S J, Enbaya M, Whyatt J K. The study of fracture of brittle rock under pure shear loading [A]. Mybe L R, Tsang C F, Cook N G W, et al. Fractured and Jointed Rock Masses: Proceedings of the Conference on Fractured and Jointed Rock Masses [C]. Lake Tahoe, California, USA, 1992. 457- 463. - [6] RAO Qiu hua. Pure Shear Fracture of Brittle Rock, a Theoretical and Laboratory Study [D]. Sweden: Lulea University of Technology, 1999. 54-77. - [7] Li L Y. A simple method for calculation of $K_{\rm I}$ and $K_{\rm II}$ for four-point bending specimen [J]. J Water Conservancy, (in Chinese), 1989, 9: 54–59. - [8] WANG Guryao. Study of Mode II Fracture of Rock and its Engineering Application [D]. Changsha: Central South University of Technology, 1996. - [9] Otsuka A. Investigation of Mode II fatigue characteristics of aluminum alloy weldments using four-point shear loading test technique [A]. Proceedings of the 16th fatigue symposium [C]. Soc Mater Sci, Japan, 1982. - [10] Erdogan F, Shi G C. On the crack extension in plate under in plane loading and transverse shear [J]. J Basic Eng, 1963, 85(4): 519-527. (Edited by YUAN Sai-gian)