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[ Abstract] The static model for metal matrix composites in diffusion welding was established by means of artificial neu-

ral network method. The model presents the relationship between weld joint properties and welding parameters such as

welding temperature, welding pressure and welding time. Through simulating the diffusion welding process of SiC,/

6061A1 composite, the effects of welding parameters on the strength of welded joint was studied and optimal technical pa-

rameters was obtained. It is proved that this method has good fault-tolerant ability and versatility and can overcome the

shortage of the general experiment. The established static model is in good agreement with the actual welding process, so

it becomes a new path for studying the weldability of new material.

[ Key words] artificial neural network; diffusion welding; composite

[ CLC number] TG 407

[ Document code] A

1 INTRODUCTION

Metal matrix composites (MMCs), due to their
outstanding properties such as high specific strength,
specific modulus, size stability, high temperature
resistant and cosmicray resistant, are widely used in
aerospace, aviation and electron fields, and become
the major developing and studying direction of com-
posites. However, the bad weldability of MMCs re-
sulted from its special microstructure is the main ob-
stacle for its application. The weldability of SiC,/
6061A1 composite was studied systematically in previ-

ous 1]
s paper .

It was found that the microstructure
and performances of the welded joint are highly sensi-
tive to welding parameters. The welding process of
MMC, which concerns not only the diffusion of the
matrix atom but also the change of the interface be-
tween matrix and reinforcement, is very complicated
and different from that of monolithic matrix metal.
In the temperature range between liquidus and solidus
of the composite, the matrix metal melt in welded
joint will diffuse and infiltrate to the reinforcement.
In addition, the oxide film also affects the perfor
mances of the welded joint. It is necessary to estab-
lish the mathematical model for MMCs in diffusion
welding to reveal the relationship between welding
parameters and welded joint properties. With charac
teristics as self-study, self-adapting and non-linear
dynamic handling, artificial neural network (ANN)
is fit for modeling and predicting the performances of

(241 " In the present work the

the nomrlinear system
static model of welding process for the new composite
was established by artificial neural network method
on the basis of previous studies, and the welding pro-
cess was simulated to explore the new path for study-

ing on weldability of new material.
2 ESTABLISHMENT OF STATIC MODEL

2.1 Experimental

SiCy/ 6061A1 composite was made by squeeze
casting. Its tensile strength is 280 M Pa and solidus is
570 C. The mean diameter of SiC whisker reinforce-
ments was 0. 5Hdm, and its volume fraction was 18%
~ 20%. By wire cutting, the welding specimens
with size of Smm X 10mm X 30 mm were got. Diffu-
sion welding by electric resistance heating was con-
ducted in the vacuum chamber (1.3 x 10" * Pa),
where the temperature was measured by thermo-
couple and remained constant throughout the welding
process.

The strength of welded joint could be thought as
the main quality of diffusion welded joint for SiC,/
6061A1 composite, so establishing the static model for
the composite is to present the relationship between
the strength and the welding parameters.

2.2 Establishment of static model
In order to establish the static model of SiC,/
6061A1 composite in diffusion welding, 35 groups of
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experiment were made. The experimental result ag-
gregation was divided into learning and testing sample
sub-aggregations. The testing sample sub-aggregation
was input after the network had been trained by
learning sample sub-aggregation. The predicted data
and testing results are listed in T able 1.

In BP network model, the input layer had three
nodes which represented welding temperature ( 0),
welding pressure (p) and welding time (), respec
tively; the middle layer had five nodes and output
layer had a node which represented the strength of
diffusion welded joint for SiC,,/ 6061A1 composite.

The data from group 1 to 23 in Table 1 was used
as learning parameters. The non-linear function was
adopted as transfer function. The rate of learning was

0.5 and momentum factor was 0. 4. The convergence
curve of the mean square error (MRS) for training
normalization is shown in Fig. 1. It can be seen that
MRS decreases with increasing training times; after
training for 5000 times, MRS tends to be stable. In
the meantime, the maximum relative error of output
results is 7.20%, average relative error is 3.92%
and the mean square error is 2. 73%, so the training
network can be regarded as convergent one and the
model can meet the requirements.

2.3 Verification of model

The data of groups 24 to 35 in Table 1 was taken
as testing parameters. It is found that the maximum
relative error of verification sample is 4. 90% , the av-

Table 1 Comparison of predicted tensile strength with experimental results

Experimental Welding temperature Welding pressure Welding time

Welded joint strength/ M Pa Relative error

group / / MPa / min Experimental Predicted ! %
1 620 5 5 270 263.6 2.37
2 620 5 15 274 277.8 1.38
3 620 5 45 285 276.5 2.90
4 620 ] 60 281 271.9 3.20
5 620 5 30 287 287.6 0.20
6 610 5 30 271 271.5 0.18
7 600 5 30 269 259.7 3.40
8 590 5 30 240 238.1 0.79
9 580 ] 30 224 214.4 4.20
10 570 5 30 183 186. 1 1. 60
11 560 5 30 154 164.0 6.40
12 540 5 30 99 96.5 2.50
13 520 5 30 78 81.3 4.20
14 500 5 30 72 79.3 10. 10
15 480 5 30 63 62.7 0.47
16 460 ] 30 54 57.9 7.20
17 440 5 30 48 46.9 2.20
18 420 5 30 46 44.6 3.00
19 400 5 30 37 37.1 0.27
20 600 2 30 130 122.7 5. 60
21 600 3 30 211 211.5 0.23
22 600 4 30 241 241.9 0.37
23 600 6 30 280 265.3 5.20
24 600 7 30 288 273.7 4.90
25 620 6 30 283 277.2 2.04
26 620 4 30 271 271.8 0.29
27 620 3 30 228 231.1 1.35
28 620 2 30 139 136.8 1.58
29 620 1 30 104 109.1 4.90
30 615 5 30 280 274.7 1. 89
31 605 ] 30 270 266.3 1.37
32 595 5 30 269 259.17 3.45
33 585 ] 30 225 226.1 0.48
34 575 5 30 213 214.3 0.61
35 565 5 30 160 165.2 3.25
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erage relative error is 2. 51%, and mean square error
is 1.87% . The data of groups 24 to 35 in Table 1 a
gree with the model well, which proves the model is
effective. In the meantime, the comparison of output
results with experimental ones is shown in Fig. 2,
which proves further the network has good common-
ality. It indicates the model can be used as the static
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Fig.1 Convergence curve of model during training
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Fig. 2 Effects of welding parameters
on tensile strength of welded joints

model for SiC,/6061A1 composite in diffusion weld-

ing.

3 SIMULATION OF DISSUSION WELDING
PROCESS

The diffusion welding process of SiC,/6061A1

composite is simulated by the model, the results are
shown in Fig.3. It is found that the temperature
(0), pressure (p) and time (¢) of welding deter
mine the strength of welded joint and the effect of
welding temperature is the most evident.

For example, when the diffusion welding was
carried out at a temperature lower than the solidus of
the composite at p = 5MPa and ¢ = 30min, the
strength of welded joint increases with increasing
temperature, and the maximal strength reaches
134 MPa (48% of the matrix strength). When the
welding temperature changes about 10 C betw een the
solidus and 606 C, the strength of welding joint
changes obviously. When the welding temperature is
above 606 C, the strength of welded joint increases
smoothly with increasing temperature, and the maxi
mum strength is 270~ 280 M Pa (about 90% ~ 100%
of the matrix strength. Otherwise, at the beginning
of welding, the strength of welded joint increases as
the welding process goes on. When the welding time
exceeds 30min, the strength tends to be stable.
However, at the adjacent temperature of solidus, the
strength increases with time, which perhaps results
from that the holding time during welding is too long
and the matrix metal melt on the bonding interface
infilitrates into the interface. The relationship be
tween welding parameters and welded joint strength
reflected by the model agrees well with the experr
mental results given in previous paper .

Otherwise, by the static model, the optimal
welding parameters at which the maximum strength
of welded joint can be obtained are simulated, as
shown in Table 2. It is shown that considerably good
agreement is obtained, the maximum error is only
3.1%.

In general, the predicted results for SiC,/
6061A1 MMC in diffusion welding by the static model
reveals the intrinsic relationship among diffusion
welding parameters of the composite, and shows the
change condition in welding process. It is indicated
that the static model for MM C during diffusion weld

Table 2 Optimal welding parameters and
corresponding welded joint strength

p 0 t %/ MPa Relative
/MPa /C /min  predicted Experimental error/ %
3 620 40 234 230 1.7
4 620 45 273 275 0.7
S 615 30 284 275 3.1
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Fig.3 Simulation curve of model
(a) —p= 3MPa; (b) —p= 4MPa; (¢) —p= 5MPa

ing can overcome the confinements of the experiment
and lower precision of convention curve fitting. And
the model can play an important role in selecting dif-
fusion welding parameters for new materials in practi-
cal production.

4 CONCLUSIONS

1) The static model predicting the properties of
welded joint for composite SiC,,/ 6061Al in diffusion
welding is established successfully, and the model has
higher precision and stronger fault-tolerance.

2) The optimal welding parameters obtained in
simulating welding process by the model agree well
with the experimental results, which indicates that
establishing static model for diffusion welding by
AAN is an effective path for studying of weldability

on new material.
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