第 27 卷第 9 期 Volume 27 Number 9 2017 年 9 月 September 2017

DOI: 10.19476/j.ysxb.1004.0609.2017.09.19

Mn 对生物医用 Ti-Mo 合金组织与 力学性能的影响

武晓峰,杨会齐,王春雨

(辽宁工业大学 材料科学与工程学院, 锦州 121001)

摘 要:采用非自耗真空电弧炉制备 Ti-8Mo-xMn 系列合金,以考察 Mn 的添加对生物医用 Ti-Mo 合金显微组织与力学性能的影响。结果表明:两元 Ti-Mo 合金主要由细小的针状 *a*"马氏体相组成,加入 1%Mn(质量分数)后,等轴晶的 *β* 相大部被保留;当 Mn 的加入量达到 3%后,*β* 相全部被保留到室温。拉伸力学测试发现:*β* 相不稳定的 Ti-8Mo-1Mn 合金在拉伸过程中发生应力诱导的从*β* 相到 *a*"相的马氏体转变,呈现出"双屈服"现象。加入少量 Mn(1%和 3%)提高合金塑性,伸长率由 35%最大提高到 53%。Mn 量增加到 5%、7%后,合金强度得到大幅提高,抗拉强度最大由 856 MPa 提高到 1201 MPa,同时伸长率为 22%。所有含 Mn 合金的显微硬度都较高,最高为 386HV,是两元 Ti-Mo 合金的(251HV)1.65 倍。含 *ω* 相的 Ti-8Mo-1Mn 合金的弹性模量最高,达 150 GPa。其它含 Mn 合金的弹性模量在 76~87 GPa 之间,与人骨骼的接近,有潜力成为生物医用材料。 关键词: Ti-Mo 合金;锰;显微组织;力学性能;生物材料

文章编号: 1004-0609(2017)-09-1902-07 中图分类号: TG146.2; TG113.1; TG113.2 文献标志码: A

与其他生物医用金属材料相比, 钛及钛合金由于 具有较低的密度、高的比强度、良好的耐蚀性和生物 相容性等显著特点,因此成为矫形外科、骨骼置换及 关节修复等医疗外科手术中广泛应用的金属材料[1]。 目前,在临床医学中应用的钛及钛合金主要是纯 Ti(CP-Ti)和 Ti-6Al-4V(TC4)合金, 但它们具有较高的 弹性模量(约 110 GPa),远高于人骨(3~20 GPa),如果 植入人体,会对周围的骨骼产生"应力屏蔽",导致 植入体周围出现骨吸收,最终引起植入体的无菌松动, 缩短使用寿命^[2]。另外,在TC4合金中析出的极微量 的钒离子和铝离子,会降低细胞的适应性,长期使用 存在安全隐患^[3]。研究结果表明:在构成钛合金的各 类相中,具有体心立方结构的 β 相弹性模量最低^[2]。 因此,研究无毒的、具有更低弹性模量和更好生物相 容性的新型生物医用β型或亚稳β型钛合金已成为近 年来的研究热点之一。

目前,研究和开发的医用 β 型钛合金主要有 Ti-Nb^[4]、Ti-Mo^[5]和 Ti-Ta^[3]等二元系,Ti-Mo-Nb^[6]、 Ti-Nb-Zr^[7]及 Ti-Nb-Ta^[8]等三元系及 Ti-Nb-Ta-Zr^[7]等 四元系合金。这些合金中都含有 Nb、Mo 及 Ta 等 β 相稳定元素。虽然这些元素无毒性,但由于它们稳定 β 相的作用不强,因此加入量大,而它们的熔点都很高, 如 Mo 的熔点高达 2620 ℃,这势必造成熔炼的困难, 形成的组织易产生偏析,影响力学和耐腐蚀性能。另外, Nb、Mo 及 Ta 等元素都属于贵重的稀有元素。因此, 以廉价的强 β 相稳定元素 Fe、Mn 等完全或一部分代替 Nb、Mo 及 Ta 等元素形成的 β 型钛合金具有很大的研 究、开发价值。近年来,研究的这类合金主要为 Ti-Fe^[9]、 Ti-Mn-Fe^[1]、Ti-Sn-Cr^[1]、Ti-Mo-Fe^[10]和 Ti-Mn^[11]等。

Mn 是强 β 相稳定元素,且其对 β 相具有较大的 固溶强化效应^[12]。作为世界卫生组织确认的 14 种人 体必需的微量元素之一,微量 Mn 对维持人体正常的 新陈代谢具有重要作用。最近,SANTOS 等^[11]对医用 Ti-Mn 合金的浸渍和细胞活性试验表明,当 $w(Mn) \leq$ 13%时,Ti-Mn 合金具有优良的细胞存活率,与 CP-Ti 的相当。目前,Mn 元素加入二元 Ti-Mo 合金的研究 并未见有报道。本文作者在低钼 Ti-8Mo 合金的基础 上,研究 Mn 对 Ti-Mo 合金显微组织与力学性能的影 响,以期开发性能优良的 β 型 Ti-Mo-Mn 三元及含 Mn 多元生物医用 Ti 合金。

基金项目:国家自然科学基金资助项目(51104016);稀贵金属综合利用新技术国家重点实验室开放课题资助(SKL-SPM-201204) 收稿日期:2016-07-21;修订日期:2016-12-26

通信作者: 武晓峰, 教授, 博士; 电话: 0416-4199650; E-mail: hgd901@126.com

1 实验

所设计的母合金为 Ti-8Mo-xMn(简称为 TMM)(x=0、1、3、5及7(质量分数,%),分别简称 为M0,M1、M3、M5和M7),采用Ti、Mo及Mn 纯金属,在高纯氩气保护和Ti吸收条件下用非自耗真 空电弧炉熔炼。合金的成分见表1(括号内数据是名义 成分)。为使合金锭成分均匀,反复熔炼5遍以上。

表1 试验合金的名义成分和实际成分

 Table 1
 Nominal and real chemical compositions of TMM alloys

Alloy	Mass fraction/%			
No.	Мо	Mn	Ti	
M0	8.0 (8.07)	0	Bal.	
M1	8.0 (8.14)	1.0 (1.08)	Bal.	
M3	8.0 (7.96)	3.0 (3.05)	Bal.	
M5	8.0 (8.11)	5.0 (5.02)	Bal.	
M7	8.0 (7.92)	7.0 (7.10)	Bal.	

为获得 β 相,将各合金成分的母合金锭进行固溶 处理,首先将母合金锭加热到 β 相区,然后在 900 °C 固溶 30 min,最后水淬,得到固溶处理后的合金锭。 经打磨及线切割后得到 XRD、金相及拉伸试样。试样 经研磨、电解抛光和浸蚀处理,用金相显微镜观察显 微组织,采用的腐蚀剂为氢氟酸、硝酸及水的混合溶 液,体积比为 $V(HF):V(HNO_3):V(H_2O)=4:8:88。合金的$ 相结构采用 D/max-2500X 射线衍射仪(Cu K_a辐射)进行分析。用 CMT 5105 电子万能试验机进行拉伸性能 $测试,得到合金的抗拉强度 <math>\sigma_b$ 、屈服强度 σ_s 、伸长率 δ 、弹性模量 E 等力学性能。拉伸试样尺寸如图 1 所 示,测试温度为室温,每种合金的试样重复测试 4 次。

2 结果与讨论

2.1 合金的相结构和显微组织

图 2 所示为固溶处理后不同含 Mn 量的 TMM 合金的 XRD 谱。由图 2 可以看出, Ti-8Mo 两元合金主要由 HCP 马氏体 a"相组成,同时还有极少量的 BCC β相。这与 ZHANG 等^[6]报道的结果相类似。所不同的是, Ti-8Mo 合金全部由 a"相组成,这可能是由于不同的固溶温度和冷却速度所致。a"相为斜方晶格马氏体,

图1 拉伸试样示意图

Fig. 1 Schematic diagram of tensile specimen (Unit: mm)

通过淬快冷析出。其它的两元 Ti 合金如 Ti-Nb^[4]、 Ti-Fe^[13]等当添加元素含量相对较低时也出现这种相。

Mn 的加入对 Ti-8Mo 合金的相结构的影响是显著的。1%的 Mn 就使得大量的 β 相保留到室温。加入 3%的 Mn 可使整个合金变为体心立方晶的 β 相。继续增加 Mn 量从 5%到 7%,仍为 β 相,只是 β 相的衍射峰向左偏移,这是 Mn 固溶于 Ti 基体的结果。Mn 一直被认为是强 β 相稳定元素。最近在一系列的 Ti-Mn 合金的研究中,SANTOS 等^[11]发现,对于 Ti-Mn 合金,当 Mn 量高于 9.0%后,β 相会全部保留到室温。

值得注意的是,在 M1 合金中出现了极少量的具 有六方晶格结构的ω亚稳相,这在图2的右上角的放 大图中看得更清楚。这种现象在 Ti-Mo-Fe 三元合金中

图 2 不同含 Mn 量的 TMM 合金 XRD 谱

Fig. 2 XRD patterns of TMM alloys with different Mn contents

也出现过^[10]。 ω 亚稳相从 β 相中析出,并与之存在共格关系。 $\beta \rightarrow \omega$ 转变为无扩散型相变,极快的冷却速度也不能抑制其进行^[12]。虽然 ω 相析出量很少,但对Ti 合金的力学性能尤其是弹性模量影响很大,这在后面测试的力学性能中可清楚地看到。

图 3 所示为 TMM 合金的光学显微组织。由图 3 可见, M0 两元合金的组织主要为细小的针状马氏体 (XRD 鉴定为 α"相)(见图 3(a))。加入 1%的 Mn 使整个 合金转变为等轴晶的 β 相, 晶界清晰可见。另外, 还 有少量针状的 α"相沿晶界析出(见图 3(b))。继续增加 Mn, α"相消失, 各合金全部由等轴晶的 β 相组成(见 图 3(c)和(d))(M7 金相组织图略)。

图 4 所示为 TMM 合金中 β 相的晶格常数。由图 4 可见,随着 Mn 量的增加,β 相的晶格常数随之减小。 这是由于 Mn 的原子半径(0.131 nm)比 Ti 的(0.147 nm) 小得多,以 Mn 原子取代 Ti 原子形成置换固溶体,造 成其晶格常数的减小。

2.2 合金的力学性能

图 5 和 6 所示分别为 TMM 合金室温下的拉伸应 力-应变曲线和由此得到的含 Mn 量与屈服强度 σ_s 、抗 拉强度 σ_b 及伸长率 δ 的关系曲线。由图 5 可见,所有 合金的拉伸曲线都经历弹变-屈服-塑变-断裂的过 程,所不同的是,M1 合金出现了"双屈服"(Double yielding)现象。在 841 MPa 首先屈服,然后在 964 MPa 发生第二次屈服。由图 6 可见,加入 1%的 Mn,合金的 σ_s 、 σ_b 及 δ 值都有所提高。Mn 量增加到 3%, σ_s 、 σ_b 有所下降, δ 值继续增加,达到 53%;之后,随着 Mn 量的进一步增加,强度值大幅增加。含 Mn 量达到 7% 后, σ_s 和 σ_b 值达到最大,分别为 1182 和 1201 MPa。而合金的 δ 值不断下降,由 Mn 量 3%的 53%下降到 Mn 量 7%的 22%。

上述力学性能结果与合金中相的种类、数量及大 小密切相关。据报道,在 Ti 合金中有两种 ω 相,即 非热(Athermal)ω相和等温(Isothermal)ω相^[14]。前者通 常从高温β相区冷却到室温的淬火过程中形成,为无 扩散转变,而后期则是在固溶后通过其后的时效处理 而析出,为扩散转变。已有证据充分表明, Ti 合金的 脆性与非热ω相的数量、大小密切相关^[15]。当ω相的 数量多、晶粒相对大时,会导致 Ti 合金的韧性急剧降 低, 如 Ti-7.5Mo-1Fe 合金^[10], 而当ω相的数量较少且 为极其细小的颗粒时,并不降低合金的韧性,如非轧 制的 Ti-10Mo 合金^[15]。综合以上 XRD 谱(见图 2)、金 相组织(见图 3)及应力-应变拉伸(见图 5 和 6)结果,可 以认为, M1 合金中的ω相数量有限且晶粒尺寸很小, 并不会对合金的韧性造成损伤。相反, 该合金与未添 加 Mn 的两元 M0 合金相比,强度和塑性都得到提高。 M1 合金良好的塑性在于除含有极少量的 ω 相外, 主 要由 β 相组成。 β 相为体心立方结构,比两元 M0 合 金中的斜方马氏体 α"相的塑性变形能力更强^[16]。M3

图 3 不同含 Mn 量 TMM 合金的光学显微组织

Fig. 3 Optical micrographs of TMM alloys with different Mn contents: (a) M0; (b) M1; (c) M3; (d) M5

图 4 β相的晶格常数与含 Mn 量的关系

Fig. 4 Relationship between lattice parameters of β phase and Mn content

图 5 TMM 合金的应力-应变曲线

Fig. 5 Stress-strain curves of TMM alloys

图 6 拉伸性能与含 Mn 量的关系曲线

Fig. 6 Relationship between tensile properties and Mn content

强度的下降与 ω 相的消失有关。M5 和 M7 的高强度 是由 Mn 元素的固溶强化效应引起的。

M1 合金产生的二次屈服现象与其不同的变形机 理有关。含 β 相 Ti 合金的变形机理主要为位错滑移、 应力诱导的马氏体转变(SIMT)及它们的组合^[16-18],取 决于 β 相的稳定性。当 β 相中所含稳定元素少、Ms 点接近室温,β相不稳定时,合金受到应力作用,就 会有部分β相转变为α"相。变形首先按应力诱导的马 氏体转变进行,然后位错滑移。当β相中所含稳定元 素多、Ms 点处于高温, β 相稳定,SIMT 不易发生, 变形按位错滑移进行。Ti 合金的轧制或拉伸等受应力 作用时变形就可能以 SIMT 方式进行。TAVARES 等^[19] 对 Ti-35Nb-0.35Si 合金拉伸后的断口附近做 X 衍射, 观察到在拉伸前所没有的 α "衍射峰,证明了亚稳的 β 相在拉伸过程中经历了拉伸应力所导致的 α"马氏体 转变。对于本研究的 M1 合金,由于所含 β 相稳定元 素(Mn)含量低,β相不稳定,拉伸时,首先通过 SIMT 变形方式产生第一次屈服,之后产生快速、短暂的加 工硬化,这增大了 α" 相形成的难度,继而以位错滑 移方式产生第二次屈服, 然后以这种方式塑性变形, 直至断裂。其它的含 Mn 合金, 由于 Mn 含量高, β 相稳定,塑性变形只能以位错滑移方式进行。

图 7 所示为 TMM 合金的显微硬度、弹性模量和 Mn 含量的关系。由图 7 可看出,显微硬度和弹性模 量具有相同的变化趋势。Ti-8Mo 两元合金的硬度值最 低,仅为 251HV。加入 1%的 Mn 后,硬度值骤升到 386HV,提高 65%。当 Mn 加入量增加到 3%后,硬度 值减小到 348HV;之后,随着 Mn 的增加,硬度值略 有增加,M1 的弹性模量最高,为 150 GPa;M3 的最 低,为 76 GPa;M5、M7 的与 M0 的相当,其值在 80~

图 7 TMM 合金的显微硬度、弹性模量和 Mn 含量的关系 Fig. 7 Relationships among microhardness, elastic modulus and Mn content of TMM alloy

90 GPa 之间。

注意到, Ti-8Mo-1Mn 合金的硬度值最大, 增幅 也最高。这也与该合金中含有的 ω 相有关。 ω 是硬而 脆的相。研究表明,在 Ti 合金中所有的相(α 、 α '、 α ''、 β 及 ω 相)中, ω 相的硬度最高^[5],这使得含 ω 相的 M1 合金的硬度值达到最大。由于 Mn 元素的强烈稳定 β 相的作用,在 Mn 加入量为 3%时, ω 相消失,硬度 值下降。之后,硬度值略有提高是由于 Mn 元素对 Ti 基体的固溶强化作用。

众所周知,弹性模量是材料的本质性能,取决于 原子间的结合力[17]。这种结合力与材料的晶体结构和 原子间距有关。许多研究表明,在 Ti 合金的各种相中, 弹性模量的顺序由大到小依次为ω、α'、α"、β,ω相 的最高, β 的最低^[18,20-22]。只有 M1 合金中含有 ω 相, 故该合金高的弹性模量主要是淬火中析出的ω相造成 的。其次, ω 相的析出导致了 Mn 和 Mo 元素在 β 相 中的富集,使得其 Ms 点下降,弹性模量增大^[23]。再 次, M1 高的 E 值还与 Mn 固溶于 Ti 中的效应有关。 由图 4 可知, Mn 原子加入到 Ti 基体中减小了晶格常 数和单位晶胞体积,单位晶胞体积越小,原子间的结 合力就越强, E值就越大^[24]。当含 Mn 量增加到 3%时, ω 相消失,同时 Mn 和 Mo 元素在 β 相中的富集现象 也消失,虽然 Mn 量增加, Mn 的固溶效应增加,但比 ω 相对弹性模量的影响要小得多,故仅剩 β 相的 M3 合金的弹性模量大幅降低。之后,随着 Mn 量的增加, Mn 的固溶效应增加,原子间结合力增大,M5 和 M7 合金的 E 值略为增大。由此可以看出,在 Ti 合金中, 晶体结构对弹性模量的影响比原子间距的大得多,尤 其是 ω 相的影响最大, ω 相急剧增加弹性模量值。因 此, 要获得低弹性模量的生物医用 Ti 合金必须控制 ω 相的形成。

如前所述,金属生物材料具有的低的弹性模量可 以为骨愈合和重构提供更有利的条件。弹性许用应变 值,即屈服强度与弹性模量的比值(R)是衡量金属材料 是否适用于骨科及整形外科等生物医用领域的一个十 分有用的参数^[24]。R 值越高,材料越适用于生物医用 领域。TMM 和常用的金属生物医用材料的 σ_s 、E 和 R值如表 2 所示。由表 2 可看出,与传统的生物医用金 属材料 CP-Ti^[25]和 316 L^[25](不锈钢)相比,所有的 TMM 合金的 σ_s 和 R 值都高,除 M1 合金外,E 值更低。与 T64(Ti-6Al-4V)^[25]及 Ti-15Mo 合金^[6]相比,这些合金同 样 E 值低,其中 M5 和 M7 合金的 R 值更高。这两种 合金的 R 值甚至比目前生物医用 β 型或亚稳 β 型钛合 金中具有优良生物相容性和力学性能的 TNTZ (Ti-29Nb-13Ta-5Zr)合金^[7]的值都高,前者分别为 12.5×10⁻³和13.4×10⁻³,后者为10.8×10⁻³。因此, 从力学相容性角度,TMM 合金比传统的生物医用金 属材料更适合用于骨科及整形外科等生物医用领域。

表 2 TMM 合金的 *E*、σ_s和 *R* 值

Table 2	Values	of E , $\sigma_{\rm s}$	and R	of TMM	alloys
---------	--------	---------------------------	---------	--------	--------

Alloy	E/GPa	$\sigma_{ m s}/{ m MPa}$	$R/10^{-3}$
CP Ti	103	170	1.7
T64	110	825	7.2
316 L	200	170	0.85
TNTZ	80	864	10.8
Ti-15Mo	78	544	7
M0	84	677	8.1
M1	150	837	5.6
M3	76	462	6.1
M5	80	997	12.5
M7	87	1172	13.4

3 结论

1) 两元 Ti-Mo 合金主要由细小的针状 α"马氏体 相组成。加入强 β 相稳定元素 Mn 后,抑制了淬火中 α"相的析出,1%Mn 使得等轴晶的 β 相绝大部分被保 留,但仍有少量 α"析出,并出现少量 ω 相。当 Mn 的 加入量达到 3%后,β 相全部被保留到室温。

 β相不稳定的 M1 合金在拉伸过程中发生应力 诱导的从 β 相到 a"相的马氏体转变,呈现出"双屈服"现象, Mn 量提高后消失,转变为单一屈服。

3) 加入少量 Mn(1%、3%)提高合金塑性,伸长率 由 35%最大提高到 53%。Mn 量提高到 5%、7%后, 合金强度得到提高,抗拉强度由 854 MPa 提高到 1201 MPa,同时具有 22%的伸长率。所有含 Mn 合金的显 微硬度很高,最高为 386HV,是两元 Ti-Mo 合金的 1.65 倍。含 ω 相的 M1 合金的弹性模量最高,达 150 GPa。其它含 Mn 合金的弹性模量值在 76~87 GPa 之 间,与人骨骼的接近。

4) Mn 含量为 5%和 7%合金的 RSM 值(屈服强度 与弹性模量的比值)比现广泛使用的医用合金钛 CP-Ti 和 Ti-6Al-4V 高得多,最能满足金属生物材料力学相 容性的要求。另外,Ti-Mo-Mn 系列合金还具有熔点 低、易熔炼、不易产生偏析,成本低等优点。

1907

REFERENCES

- NIINOMI M, NAKAI M, HIEDA J. Development of new metallic alloys for biomedical applications[J]. Acta Biomaterialia, 2012, 8(11): 3888–3903.
- [2] 刘恩雪, 王 清, 马仁涛, 查钱锋, 冀春俊, 董 闯. 低 Nb 含量 Ti-Mo-Nb-Zr-Sn BCC 低弹性模量固溶体合金的成分设计[J]. 中国有色金属学报, 2012, 22(12): 3378-3385.
 LIU En-xue, WANG Qing, MA Ren-tao, CHA Qian-feng, JI Chun-jun, DONG Chuang. Composition design of BCC Ti-Mo-Nb-Zr-Sn solid solution alloy with low content Nb and modulus of elasticity[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(12): 3378-3385.
- [3] ZHOU Y L, NIINOMI M, AKAHORI T. Effects of Ta content on Young's modulus and tensile properties of binary Ti-Ta alloys for biomedical applications[J]. Materials Science and Engineering A, 2004, 371(1/2): 283–290.
- [4] GUO S, ZHANG J S, CHENG X N. A metastable β-type Ti-Nb binary alloy with low modulus and high strength[J]. Journal of Alloys and Compounds, 2015, 644(25): 411–415.
- HO W F, JU C P, CHERN LIN J H. Structure and properties of cast binary Ti-Mo alloys[J]. Biomaterials, 1999, 20(7): 2115–2122.
- [6] ZHANG L B, WANG K Z, XU L J, XIAO S L, CHEN Y Y. Effect of Nb addition on microstructure, mechanical properties and castability of β-type Ti-Mo alloys[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(7): 2214–2220.
- [7] ZHOU Y, LI Y X, YANG X J. Influence of Zr content on phase transformation, microstructure and mechanical properties of Ti75-xNb25Zrx (x=0-6) alloys[J]. Journal of Alloys and Compounds, 2009, 486(1/2): 628-632.
- [8] 王国辉,孙 威,赵 颉,陈 斌,胡常青. Ti-25Nb-25Ta 合金 剪切带形成与结构特征的电子显微研究[J]. 电子显微学 报, 2014, 33(5): 399-405.
 WANG Guo-hui, SUN Wei, ZHAO Jie, CHEN Bin, HU Chang-qing. Electron microscopic study on the formation of shear bands and structural characteristics of Ti-25Nb-25Ta

alloy[J]. Journal of Electron Microscopy, 2014, 33(5): 399-405.

 [9] 孟庆宇,路 新,徐 伟,支玲玲,陈 骏,曲选辉. 粉末冶金 Ti-Fe 合金的显微组织及力学性能[J].材料热处理学报, 2016, 37(8): 36-40.

MENG Qing-yu, LU Xin, XU Wei, ZHI Ling-ling, CHEN Jun, QU Xuan-hui. Microstructure and mechanical properties of powder metallurgy Ti-Fe alloy[J]. Journal of Heat Treatment of Materials, 2016, 37(8): 36–40.

[10] LIN D J, LI CHERNN J H, JU C P. Structure and properties of

Ti-7.5Mo-xFe alloys[J]. Biomaterials, 2002, 23(8): 1723-1730.

- [11] SANTOS P F, NIINOMI M, CHO K. Microstructures, mechanical properties and cytotoxicity of low cost beta Ti-Mn alloys for biomedical applications[J]. Acta Biomaterialia, 2015, 26(15): 366–376.
- [12] 张 翥, 王群骄, 莫 畏. 钛的金属学和热处理[M]. 北京: 冶 金工业出版社, 2014: 16-74.
 ZHANG Zhu, WANG Qun-jiao, MO Wei. Metallography and heat treatment of titanium[M]. Beijing: Metallurgical Industry Press, 2014: 16-74.
- [13] HAGHIGHI S E, LU H B, JIAN G Y, CAO G H, HABIBI D. Effect of α" martensite on the microstructure and mechanical properties of beta-type Ti-Fe-Ta alloys[J]. Materials and Design, 2015, 76(5): 47–54.
- [14] CARDOSO F F, FERRANDINI P L, LOPES E S N. Ti-Mo alloys employed as biomaterials: Effects of composition and aging heat treatment on microstructure and mechanical behavior[J]. Journal of Mechanical Behavior of Biomedical Materials, 2014, 32(4): 31–38.
- [15] ZHOU Y L, LUO D M. Microstructures and mechanical properties of Ti-Mo alloys cold-rolled and heat treated[J]. Materials Characterization, 2011, 62(10): 931–937.
- [16] WILLIAMS J C, FONTAINE D, PATON N E. The ω phase as an unusual shear transformation[J]. Metallurgical Materials Transactions B, 1973, 4(10): 2701–2708.
- [17] ZHANG D C, YANG S, WEI M, MAO Y F, TAN C G, LIN J G. Effect of Sn addition on the microstructure and superelasticity in Ti-Nb-Mo-Sn alloys[J]. Journal of Mechanical Behavior of Biomedical Materials, 2012, 13(13): 156–165.
- [18] DING D, ZHANG D C, LUO Z C, TAN C G, ZHANG Y, LIN J G. Effects of Si addition on mechanical properties and superelasticity of Ti-7.5Nb-4Mo-2Sn shape memory alloy[J]. Materials and Design, 2014, 61(9): 146–149.
- [19] TAVARES A M G, RAMOS W S, BLAS J C G. Influence of Si addition on the microstructure and mechanical properties of Ti-35Nb alloy for applications in orthopedic implants[J]. Journal of Mechanical Behavior of Biomedical Materials, 2015, 51(11): 74–87.
- [20] SOUZA S A, MANICARDI R B, FERRANDINI P L. Effect of the addition of Ta on microstructure and properties of Ti-Nb alloys[J]. Journal of Alloys and Compounds, 2010, 504(2): 330–340.
- [21] ZHOU Y L, NIINOMI M, AKAHORI T. Decomposition of martensite α" during aging treatments and resulting mechanical properties of Ti-Ta alloys[J]. Materials Science and Engineering A, 2004, 384(1/2): 92–101.
- [22] FAN Z. On the Young's moduli of Ti-6Al-4V alloys[J]. Scripta

Metallurgica et Materialia, 1993, 29(11): 1427-1432.

- [23] KIM H Y, HASHIMOTO S, KIM J I. Effect of Ta addition on shape memory behavior of Ti-22Nb alloy[J]. Materials Science and Engineering A, 2006, 417(1/2): 120–128.
- [24] SONG Y, XU D S, YANG R, LI D, WU W T, GUO Z X. Theoretical study of the effects of alloying elements on the

strength and modulus of-type bio-titanium alloys[J]. Materials Science and Engineering A, 1999, 260(1/2): 269-276.

[25] NIINOMI M. Mechanical properties of biomedical titanium alloys[J]. Materials Science and Engineering A, 1998, 243(1/2): 231–236.

Effect of manganese addition on microstructure and mechanical properties of Ti-Mo Biomedical alloys

WU Xiao-feng, YANG Hui-qi, WANG Chun-yu

(School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, China)

Abstract: A series of Ti-8Mo-*x*Mn alloys were fabricated by nonconsumable electrode vacuum arc furnace, the effect of Mn addition on the structure and mechanical properties of the alloy was investigated. The results indicate that α'' phase-dominated binary Ti-Mo alloy exhibits a fine, acicular martensitic structure. When 1% Mn (mass fraction) is added, most of equiaxed β phase structure is retained. With Mn content increasing to 3% (mass fraction), entire β phase is retained. Mn alloy with instability β phase exhibits the two-stage yielding from stress-strain curves due to the stress-induced martensite transformation from β to α'' during tensile deformation. Addition of a small amount of Mn (1% and 3%) improves the plasticity of alloys, and the elongation increases from 35% to 53%. With Mn content increasing to 5% and 7% (mass fraction), the strength dramatically improves and tensile strength increases from 854 MPa to 1201 MPa, companied with 22% elongation. All the alloys with Mn exhibits the high microhardness, the highest is 386HV, which is 1.65 times than that of binary Ti-Mo alloy. The elastic modulus of Ti-8Mo-1Mn alloy with ω phase is the highest of all alloys seem to have a great potential for use as an implant material.

Key words: Ti-Mo alloy; manganese; microstructure; mechanical property; biomaterial

Foundation item: Project (51104016) supported by Natural Science Foundation of China; Project (SKL-SPM-201204) supported by State Key Laboratory of New Technology for Comprehensive Utilization of Rare and Precious Metals, China

Received date: 2016-07-21; Accepted date: 2016-12-26

Corresponding author: WU Xiao-feng; Tel: +86-416-4199650; E-mail: hgd901@126.com

(编辑 李艳红)