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Abstract: The bulk TC17 was subjected to the high energy shot peening (HESP) at the air pressures ranging from 0.35 to 0.55 MPa 
and processing durations ranging from 15 to 60 min. The microhardness (HV0.02) from topmost surface to matrix of the HESP 
processed TC17 was measured, which generally decreases with the increase of depth from topmost surface to matrix and presents 
different variation with air pressure and processing duration at different depths. A fuzzy neural network (FNN) model was established 
to predict the surface layer microhardness of the HESP processed TC17, where the maximum and average difference between the 
measured and the predicted microhardness were respectively 8.5% and 3.2%. Applying the FNN model, the effects of the air pressure 
and processing duration on the microhardness at different depths were analyzed, revealing the significant interaction between the 
refined layer shelling and the continuous grain refinement. 
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1 Introduction 
 

Nanocrystalline materials are attracting great 
attention due to their excellent physical, chemical and 
mechanical properties comparing with the conventional 
coarse-grained materials [1−4]. In recent years, surface 
severe plastic deformation has been widely used to create 
a nanocrystalline layer on the surface of bulk materials to 
achieve optimized properties on the surface compared 
with the unchanged underlying material. Severe 
plasticity roller burnishing (SPRB) [5], surface 
mechanical attrition treatment (SMAT) [6], supersonic 
fine particle bombarding (SFPB) [7], surface mechanical 
grinding treatment (SMGT) [8] and shot peening (SP) [9] 
are common methods for surface severe plastic 
deformation. In particular, SP is quite an effective 
method to fabricate ultra fine grained surface layer and 
significantly improve the mechanical properties in 
industry. High energy shot peening (HESP), i.e., SP with 
increased intensity and exposure duration, has been 
widely applied to achieving the surface 
nanocrystallization (SNC). UNAL and VAROL [10] 
found that the thickness of nanograined layer on the 
surface increased with the increase of plastic deformation 

rate in SP treatment. The grains in the surface layer of 
304 stainless steel weld joint after HESP treatment were 
refined to a nanometer level [11]. HOU et al [12] 
obtained a nanocrystalline layer on the surface of AZ91D 
magnesium alloy via HESP, and the average grain size in 
the nanocrystalline layer was ~40 nm. Furthermore, the 
mechanical property, especially the microhardness in the 
processed layers, is largely increased via SNC. AHMED 
et al [13] found that SP markedly increased the 
microhardness in a small depth of deformed layer. XIE et 
al [14,15] pointed out that the microhardness of SP 
treated titanium matrix composites reached the 
maximum value on the topmost surface and gradually 
decreased with the increase of depth. Meanwhile, 
microhardness increased with the increase of SP intensity 
due to severe plastic deformation. 

Artificial neural network (ANN) modelling is a 
non-linear statistical analysis technique. It is essentially a 
‘black box’ linking input data to output data using a 
particular set of non-linear functions. ANN provides a 
way of using example of a target function to find the 
coefficients that make a certain mapping function 
approximate the target function as closely as possible 
[16]. Recently, ANN modelling is widely used to analyze 
non-linear and complex relationship in materials science  
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and engineering [17−21]. MALINOV and SHA [22] 
found that the ANN model was quite convenient to 
investigate the effect of processing parameters on the 
mechanical properties of titanium alloys. KUMAR    
et al [23] predicted the wear behavior of SMAT treated 
Ti−6Al−4V by employing ANN model, in which the 
importance of the three input parameters in the output 
value was analyzed. MALEKI et al [24] established an 
ANN model with high accuracy to predict the 
mechanical properties of SP processed 18CrNiMo7-6 
steel, taking the depth from topmost surface and the 
peening intensity as the input parameters of ANN. Fuzzy 
neural network (FNN) was developed based on the ANN 
coupling with fuzzy set, which presented higher accuracy 
than ANN [25,26] and was particularly suitable to handle 
noisy and scattered data [27]. 

The TC17 is a deeply hardenable near β titanium 
alloy, which has been widely used to fabricate the jet 
engine and compressor components [28]. LI et al [29] 
observed the gradient structure of the HESP processed 
TC17 and the microhardness of the surface layer 
increased by 43.0%. However, variation of 
microhardness with processing parameters (such as air 
pressure and processing duration) is still unclear. 
Therefore, the aim of this study is to achieve a 
comprehensive understanding of the relationship 
between the microhardness of the HESP processed TC17 
and the processing parameters, which will contribute to 
optimizing the processing parameters. In the present 
work, a FNN model was developed to predict the surface 
layer microhardness of the HESP processed TC17 since 
the microhardness is relatively scattered. Based on the 
FNN model, the effects of air pressure and processing 
duration on the microhardness at different depths of the 
HESP processed TC17 were acquired. As a result, the 
present work can be applied to predicting the surface 
layer microhardness of the HESP processed TC17, which 
provides guidance for the better application of the SNC 
by the HESP in industry. 
 
2 Experimental 
 
2.1 Procedures 

The hot-forged bar TC17 was supplied with a 
diameter of 50.0 mm, in which the measured chemical 
composition (mass fraction, %) is 5.12 Al, 2.03 Sn, 2.10 
Zr, 4.04 Mo, 3.94 Cr, 0.10 Fe, 0.12 C, 0.007 N, 0.007 H, 
0.12 O and balance Ti. The as-received TC17 bar was 
annealed at 823 K for 1 h followed by cooling in furnace 
to room temperature. Figure 1 shows the microstructure 
and XRD pattern of the annealed TC17 prior to high 
energy shot peening (HESP). As seen from Fig. 1, the 
annealed TC17 consists of primary α grains and retained 

transformed β phase. The TC17 specimens with 
dimensions of 70 mm × 19 mm × 4 mm were 
manufactured from the as-annealed TC17 bar, and the 
surfaces (70 mm × 19 mm) of TC17 specimens were 
ground by using silicon carbide paper to #600 prior to 
HESP treatment. 
 

 

Fig. 1 Microstructure (a) and XRD pattern [29] (b) of 

as-annealed TC17 prior to HESP treatment 

 
The HESP of TC17 was carried out on an air blast 

machine MP6000PT with a 10 mm-diameter peening 
nozzle. The distance between the peening nozzle and the 
TC17 specimen surface was 500 mm, and the mass flow 
rate was 10 kg/min. The surface of TC17 specimens was 
shot-peened by using ASH230 steel shots with a 
diameter of 0.6 mm at the air pressures of 0.35, 0.45, 
0.55 MPa and the processing durations of 15, 30, 60 min. 

Following HESP, the microhardness on the cross- 
section of TC17 specimen at different depths from 
topmost surface to matrix was measured via Tukon 
2100B microhardness tester at a load of 20 g and dwell 
time of 10 s. Figure 2 shows the alignment of the 
measured points in the surface layer of the HESP 
processed TC17, the distance between the two 
neighboring points was above 30 μm and the vertical 
distance between the measured point and the topmost 
surface was measured via Leica DMI3000M optical 
microscope. 
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Fig. 2 Measured points of microhardness on cross section of 

HESP processed TC17 

 

2.2 Microhardness 
Figure 3 shows the microhardness variation of the 

HESP processed TC17 with the depth below topmost 
surface. In general, the microhardness gradually 
decreases with the increase of depth from topmost 
surface to matrix, and tends to be steady at a depth of 
~100 μm below topmost surface (Fig. 3). However, the 
effect of air pressure and processing duration on the 
microhardness seems to be different at different depths 
below topmost surface. As a result, it is quite difficult to  

determine the effect of the air pressure and processing 
duration on the microhardness based on the scattered 
microhardness in Fig. 3. 
 

3 Establishment of fuzzy neural network 
model 

 
3.1 FNN model 

Figure 4 presents the fuzzy neural network (FNN) 
model structure for predicting the microhardness (HV0.02) 
of high energy shot peening (HESP) processed TC17. 
The air pressure (p) processing duration (t) and depth 
below topmost surface (h) are the three inputs, and the 
microhardness (M) is the output of network. US, UM, 
and UL represent the membership functions, 0

iq , 1
iq , 

2
iq , 3

iq  are the weight coefficients of the middle layer 
of network, S and Q respectively represent the sum and 
multiplication, wi is the weight value representing the ith 
rule degree, and mi is the outputs of middle layer [30]. 

The activation function in the output layer of FNN 
model is a linear function, while the activation function 
in the hidden layer is selected to be a sigmoidal function  

 

 

Fig. 3 Variation of microhardness with depth below topmost surface of HESP processed TC17 

 

 

Fig. 4 FNN model for predicting microhardness of HESP processed TC17 
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as follows:  

2exp[ ( ) ]i i i
j j j jx a b   ,  j=1, 2, 3            (1) 

 
where x1, x2, x3 respectively represent the air pressure, 
processing duration, depth below topmost surface, i

ja  
and i

jb  are the material constants. 
The fuzzy subset of process parameters with large 

{UL}, middle {UM}, and small {US} is regulated and 
shown in Fig. 5, and the subject functions are covered as 
follows: 
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For processing duration in Fig. 5(b),  
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For depth below topmost surface in Fig. 5(c),  
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The total 27 fuzzy rules can be acquired as follows: 
For the rule Ri, 
If p is UL1, t is UL2 and h is UL3, then,  

0 1 2 3
i i i i im q q p q t q h                         (11) 

1 2 3
i i i iw                                   (12) 

 
The total output (M) of the Pi-Sigma FNN model is 

as follows:  
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 (13) 
To optimize the variables of membership functions 

and weight coefficients in FNN model, an error 
back-propagation learning algorithm is presented by 
minimizing the error function as follows:  

 2d
1

2
E m M                              (14) 
 
where md is the desired output, and M is the current 
output of network. 

Updating the weight and threshold as follows: 
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Fig. 5 Parted sections of fuzzy set for processing parameters of air pressure (a), processing duration (b) and depth below topmost 
surface (c) 
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where k is the number of weight updates, η and β are the 
learning rates. 
 
3.2 Prediction of microhardness 

In the present work, 160 data points of the measured 
microhardness at the air pressures ranging from 0.35 to 
0.55 MPa, the processing durations ranging from 15 to 
60 min and the depths from 6 to 151 μm below topmost 
surface are selected as the teacher’s samples to train the 
FNN model. The other 25 data points are the verification 
samples and all the verification samples are within the 
teacher’s bounds. In the training process, the learning 
rates η and β in FNN model are 6.6×10−5 and 2.8×10−5, 
respectively. It should be noted that the back-propagation 
learning algorithm is iterative, numerous re-initialization 
and re-training of the network were established to 
achieve the best solution. The maximum difference   
and the average difference between the predicted and  
the experimental microhardnesses of the teacher’s 
samples are 9.3% and 2.8% after 5294 repetition training 
cycles. 
 
3.3 Verification of FNN model 

The comparison between the verification data and 
the predicted microhardness of the HESP processed 
TC17 by using FNN model is shown in Table 1. As seen 
from Table 1, the maximum difference and the average 
error between the predicted and the measured 
microhardness values are 8.5% and 3.2%, respectively. 
As a result, it could be concluded that the present FNN 
model can be used to efficiently predict the surface layer 
microhardness of HESP processed TC17. 
 
4 Effect of processing parameter on 

microhardness 
 

By using the fuzzy neural network (FNN) model, 
the effect of the air pressure and processing duration on 
the surface layer microhardness of high energy shot 
peening (HESP) processed TC17 is acquired. The typical 
predicted results are shown in Fig. 6 and Fig. 7. 

Figure 6 shows the microhardness variation of 
predicted surface layer of HESP processed TC17 with 
the depth below topmost surface. As seen from Fig. 6, a 
gradient change occurs in the surface layer 
microhardness of HESP processed TC17. Our previous 
work [29] demonstrated that gradient nanocrystalline 
structure of TC17 was attained via HESP, where severe 

plastic deformation with high strain and strain rate 
causes rapid accumulation of dislocations at the topmost 
surface layer of HESP processed TC17. Consequently, 
significant work-hardening occurs [31]. The refinement 
of grains highly increases the grain boundary density and 
the microhardness. With the increase of depth below 
topmost surface, the grain size gradually tends towards 
that of the matrix and the dislocation density decreases. 
Consequently, microhardness decreases rapidly and then 
tends to be a steady value at about 100 μm below 
topmost surface. 
 

Table 1 Comparison between predicted microhardness of 

HESP processed TC17 and verification data 

No.
Air 

pressure/
MPa 

Processing 
duration/

min 

Depth/ 
μm 

Microhardness 
(HV0.02) 

Error/
% 

Measured FNN

1 0.45 30 13 546 576 5.5

2 0.35 15 14 539 570 5.8

3 0.45 30 21 483 524 8.5

4 0.35 30 25 499 510 2.2

5 0.35 15 25 520 511 1.7

6 0.35 60 28 489 487 0.4

7 0.35 15 29 488 496 1.6

8 0.35 15 33 507 486 4.1

9 0.55 30 33 450 454 0.9

10 0.45 30 43 520 492 5.4

11 0.55 30 44 446 431 3.4

12 0.35 60 59 449 441 1.8

13 0.45 30 66 477 441 7.5

14 0.35 30 71 461 464 0.7

15 0.55 30 78 454 444 2.2

16 0.45 30 82 451 446 1.1

17 0.35 60 83 433 424 2.1

18 0.35 15 89 453 465 2.6

19 0.35 30 94 434 455 4.8

20 0.45 30 100 430 435 1.2

21 0.35 15 103 428 437 2.1

22 0.35 30 105 457 443 3.1

23 0.55 30 107 427 455 6.6

24 0.35 15 134 421 431 2.4

25 0.35 60 144 395 409 3.5

 

Figure 7 shows the microhardness variation with air 
pressure and processing duration at different depths 
below topmost surface of HESP processed TC17. As 
seen from Fig. 7(a), the microhardness at 10 μm below 
topmost surface increases with the increase of processing 
duration and then decreases at the processing duration 
above 25 min. The microhardness at the depths of 30 and  
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Fig. 6 Variation of predicted microhardness with depth below topmost surface of HESP processed TC17 

 

 
Fig. 7 Effects of processing duration (a) and air pressure (b) on microhardness at different surface layer depths of HESP processed 

TC17 

 

90 μm below topmost surface slightly increases and then 
decreases at the processing duration above 40 min. The 
microhardness at a depth of 150 μm below topmost 
surface slightly varies with the increase of processing 
duration. As seen from Fig. 7(b), with the increase of air 
pressure, the microhardness at 10 μm below topmost 
surface slightly increases until a sharp increase at a 
pressure of 0.5 MPa. The microhardnesses at 30 μm and 
90 μm below topmost surface gradually decrease with 
the increase of air pressure. Similarly as that in Fig. 7(a), 
the microhardness at a depth of 150 μm below topmost 
surface slightly varies with the increase of air pressure. 

For HESP, grain refinement until nanocrystallization 
needs duration accumulation. Consequently, the 
microhardness at 10 μm below topmost surface increases 
as the processing duration increases from 15 to 25 min 
(Fig. 7(a)) due to continuous grain refinement effect. 
However, with the further increase of processing 
duration, the refined layer at the topmost surface 
gradually peels off because of the severe plastic 
deformation. That is, the nanocrystallized topmost 

surface is replaced by the newly exposed layer with 
larger grain size. As a result, the microhardness at 10 μm 
below topmost surface decreases at the processing 
duration above 25 min, as shown in Fig. 7(a). It should 
be noted that a steep near-surface gradient structure of 
the HESP processed TC17 occurs followed by a smooth 
variation as depth increases. That is, the effect of the 
topmost layer shelling on the microhardness decreases as 
the depth below topmost surface increases. Therefore, 
the microhardness slightly increases due to gradually 
formed refinement layer and then decreases at the 
processing duration above 40 min at the depths of 30 and 
90 μm below topmost surface (Fig. 7(a)). On the other 
hand, the refined layer shells at a high rate as the air 
pressure increases, and the high air pressure greatly 
accelerates the grain size refinement. As a result, as the 
air pressure increase to 0.5 MPa, the microhardness 
slightly increases where the refined layer shelling and the 
grain size refinement are almost in equilibrium. With the 
further increase of air pressure, the grain size refinement 
caused by high air pressure plays a more significant role. 
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Finally, a sharp increase of microhardness at 10 μm 
below topmost surface occurs, as shown in Fig. 7(b). At 
the processing duration above 30 min, the peeling off of 
topmost layer occurs and the new duration accumulation 
begins, which can be confirmed as shown in Fig. 7(a). 
Consequently, the grain refinement at the depths of 30 
and 90 μm below topmost surface decreases and further 
refinement is not sufficient, leading to a gradual decrease 
in microhardness with the increase of air pressure, as 
shown in Fig. 7(b). At 150 μm below topmost surface, 
the effects of the processing parameters on the 
microhardness are slight, therefore, the microhardness 
slightly varies with the increase of processing duration 
and air pressure (Figs. 7(a) and (b)). 
 
5 Conclusions 
 

1) The surface layer microhardness of the HESP 
processed TC17 generally shows a gradient variation 
with the depth below topmost surface to matrix, and the 
microhardness shows different variations with air 
pressure and processing duration at different depths. 

2) The FNN model for predicting the surface layer 
microhardness of the HESP processed TC17 is 
established. By using the FNN model, the maximum and 
the average difference between the predicted and 
measured microhardnesses are 8.5% and 3.2%, 
respectively. 

3) Applying the FNN model, effect of the air 
pressure and processing duration on the surface layer 
microhardness of HESP processed TC17 was analyzed. 
The microhardness at 10 μm below topmost surface 
shows an initial increase and then decreases following 
duration above 25 min, and increases with the increase of 
air pressure. The microhardnesses at 30 μm and 90 μm 
below topmost surface slightly increase and then 
decrease at the processing duration above 40 min, and 
gradually decrease with the increase of air pressure. The 
microhardness at 150 μm below topmost surface slightly 
varies with the increase of air pressure and processing 
duration. 
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高能喷丸处理后 TC17 合金表层显微硬度预测模型 
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摘  要：通过高能喷丸对 TC17 合金进行表面处理，喷丸空气压力为 0.35~0.55 MPa，喷丸时间为 15~60 min。测

量了 TC17 合金高能喷丸处理后最表层至基体的显微硬度。测量结果表明，显微硬度随深度的增大而逐渐减小，

且不同深度处显微硬度随空气压力与喷丸时间的变化各不相同。建立了 TC17 合金高能喷丸处理后表层显微硬度

的模糊神经网络模型。借助该模型，显微硬度的预测值与测量值的最大相对误差为 8.5%，平均误差为 3.2%。基

于模糊神经网络模型，研究了空气压力与喷丸时间对 TC17 合金高能喷丸处理后不同深度处显微硬度的影响。结

果表明，细化层的脱落与连续的晶粒细化作用之间有显著的交互作用。 

关键词：TC17 合金；高能喷丸；显微硬度；模糊神经网络；模型 
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