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Yi-an CUI1,2,3, Xiao-xiong ZHU1,2,3, Wen-sheng WEI1,2,3, Jian-xin LIU1,2,3, Tie-gang TONG1,2,3 

 
1. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China; 

2. Hunan Key Laboratory of Non-ferrous Resources and Geological Hazard Detection, 
Central South University, Changsha 410083, China; 

3. Key Laboratory of Metallogenic Prediction of Nonferrous Metals, Ministry of Education, 
Central South University, Changsha 410083, China 

 
Received 2 January 2017; accepted 8 June 2017 

                                                                                                  
 

Abstract: A dynamic imaging method for monitoring self-potential data was proposed. Based on the Darcy’s law and Archie’s 
formulas, a dynamic model was built as a state model to simulate the transportation of metallic ions in porous medium, and the 
Nernst equation was used to calculate the redox potential of metallic ions for observation modeling. Then, the state model and 
observation model form an extended Kalman filter cycle to perform dynamic imaging. The noise added synthetic data imaging test 
shows that the extended Kalman filter can effectively fuse the model evolution and observed self-potential data. The further sandbox 
monitoring experiment also demonstrates that the self-potential can be used to monitor the activities of metallic ions and exactly 
retrieve the dynamic process of metallic contamination. 
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1 Introduction 
 

The environmental problems during metallic mining 
and smelting attract increased attention. Particularly, the 
solid and liquid metallic wastes always threaten the 
surrounding soil and groundwater safety [1,2]. Duly 
detecting and monitoring the contamination sources is an 
active way to reduce the risk of metallic contamination. 
Because of the conductivity of metallic ions and the 
electrochemical characteristics of the redox reaction, 
there are obvious resistivity and self-potential anomalies 
in metallic contaminated zone. Thus, the electrical 
resistivity method, self-potential method, or other 
geophysical methods are widely used to monitor and 
evaluate metallic contamination [3,4]. Besides, the 
convenience of passive source, the self-potential method 
is very sensitive to redox potential. Many researchers 
have measured distinctive self-potential anomalies on the 
ground which is contaminated by metallic ions [5−8]. 
Thereby, the self-potential method plays an important 
role in the environmental geophysics and is very suitable 
for performing soil and groundwater monitoring for the 

prevention and treatment of metallic pollution [9,10]. 
The routine contamination plume tomography based 

on monitoring data depends on independently inverting 
all the data of each observation [11]. This kind of 
independent inversion is based on static models. The 
correlation information among model evolution is 
ignored. Thus, the performance of data interpretation is 
always suffered from observation error and the 
inaccuracy of inversion algorithms [12,13]. Some 
researchers tried to use the inversion result of previous 
data as the initial and reference model for the inversion 
of subsequent datasets and received a better inversion 
result [14,15]. In order to take full advantages of the 
correlation information among monitoring data, the 
Kalman filter technique is used to estimate the model 
parameters of dynamic system by fusing the observation 
data and model evolution [16−18]. LEHIKOINEN     
et al [19,20] and NENNA et al [21] introduced the 
Kalman filter into the inversion for monitoring electrical 
resistivity data and imaging the movements of 
groundwater. The metallic wastes contaminate 
environment through the diffusion of metallic ions     
to surrounding soil and underground water during its  

                       
Foundation item: Project (41574123) supported by the National Natural Science Foundation of China; Project (2013FY110800) supported by the National 

Basic Research Scientific Program of China 
Corresponding author: Yi-an CUI; Tel: +86-731-88877075; E-mail: cuiyian@csu.edu.cn 
DOI: 10.1016/S1003-6326(17)60205-X 



Yi-an CUI, et al/Trans. Nonferrous Met. Soc. China 27(2017) 1822−1830 

 

1823

transportation in the underground porous medium. In 
order to effectively monitor metallic contamination 
plume, we adopt the self-potential method to measure 
redox potential induced by metallic ions and use the 
extended Kalman filter to process observed self-potential 
data. Through metallic ions diffusion model construction 
and self-potential observation, we build an extended 
Kalman filter cycle to perform dynamic imaging of 
metallic contamination plume. 
 
2 Description of method 
 
2.1 Dynamic geoelectric modeling 

In the process of metallic contaminant diffusion in 
underground porous medium, the movement of fluid in 
saturated porous media is governed by [21] 

 

( )
K

v P g z    


                       (1) 

 
where v is the Darcy velocity; K is the permeability;  is 
the porosity; μ is the dynamic viscosity of the pore fluid; 
P is the differential pressure; ρ is the fluid density; g is 
the acceleration of the gravity; and z is the height 
difference. 

Let some abstract particles unify specific metallic 
ions, and then the activities of metallic contamination 
can be treated as a macroscopic embodiment of all 
particles’ movement. At time k, the location of particle i 
can be denoted as 

 
1

c( )dk k
i iX X v r t                           (2) 

 
where 1k

iX   is the location at time k−1; dt is the time 
interval or time step; and rc is a random velocity used to 
simulate the anisotropy and the motion noise of particles. 

After all particles’ locations are certain, the relative 
particle concentration (S) can be expressed as 

 
S=n/nall                                     (3) 

 
where n is the number of particles in a grid, and nall is the 
number of particles in the whole space. 

According to the Archie’s law, the electrical 
conductivity of porous media is mainly governed by the 
pore fluid. 

 

w w(1/ ) ma B                               (4) 
 

where σ is the electrical conductivity of the solution 
saturated porous media, a is the tortuosity factor, σw 
represents the electrical conductivity of the solution,  
denotes the porosity, Bw is the solution saturation, m is 
the cementation exponent of the porous media, and ξ is 
the saturation exponent. In a metallic contaminant 
diffusion case, all the parameters can be regarded as 
constants except the solution saturation. And the solution 
saturation varies proportionally with the metallic ion 

concentration. 
Thereby, a linear relationship between the electrical 

conductivity distributions of the porous media and the 
metallic ion concentration can be built by using a linear 
coupling coefficient kc.  
σ(S)=kcS                                    (5) 

 
Considering the movements of metallic ions in 

porous medium as a dynamic system with electrical 
conductivity distribution variation, the model state at 
present time k can be evolved from the model state at 
previous time k−1 of the dynamic system. 

 
σ(S)k=Hkσ(S)k−1+wk                            (6) 

 
where Hk is a nonlinear state evolving operator 
determined by the diffusion model based on the Darcy’s 
law. For simplicity, rewrite Eq. (6) as 

 
Mk=HMk−1+wk                                (7) 

 
where H is the state evolving operator; Mk is the model 
state expressed by the relative particle concentration S; 
and wk is the process noise which is assumed to be drawn 
from a zero mean multivariate normal distribution with 
covariance Q. 

 
wk~N(0, Q)                                  (8) 
 
2.2 Self-potential observation 

While a solution of metallic ions flows through a 
porous medium, there will be complex redox reactions 
accompanied. The redox potential can be calculated by 
Nernst formula [22]: 

 
EH=2.3(kBt/e)pε                                (9) 

 
where kB is the Boltzmann constant; t is the absolute 
temperature; e is the elementary charge of the electron; 
and pε is the relative electron activity. 

In this case, the redox potential induces 
self-potential anomalies when it is monitored on the 
ground. The self-potential and redox potential obeys the 
Poisson’s equation. 

 
( ) ( )HE                             (10) 

 
where σ is the electrical conductivity of the underground 
medium; and φ is the self-potential. 

Define Zk to be the self-potential data measured 
from model Mk at time k, and then, 

 
Zk=FMk+vk                                 (11) 

 
where F is the nonlinear forward calculating operator 
denoting the solving process of Eq. (10) by using the 
finite element method or other numerical simulation 
methods; and vk is the observation noise which is 
assumed to be drawn from a zero mean multivariate 
normal distribution with covariance R. 

 
vk~N(0, R)                                 (12) 
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2.3 Extended Kalman filter imaging 
The extend Kalman filter is the nonlinear version of 

the Kalman filter. It can be built on a model state 
equation and a model observation equation. In the 
underground porous medium, the model state equation of 
metallic ions diffusion can be expressed as Eq. (7), and 
its corresponding self-potential observation equation is 
defined by Eq. (11). While the initial model state M0, the 
process noise {w1, …, wk} and the observation noise 
{v1, …, vk} are independent of each other, Eqs. (7) and 
(11) can be used to form an extend Kalman filter for the 
dynamic process of metallic ions diffusion. 

As a recursive estimator, the extended Kalman filter 
can keep using a previous state estimation and the 
present observation data to calculate the present state 
estimation. Each recursive process is divided into two 
phases, predicting and filtering, of each recursive process. 
In the predicting phase, a present state estimation is 
evolved from the previous state estimation. This present 
state estimation is named as a priori state estimation, and 
denoted by 1k kM 


 and its corresponding covariance 

1k kP  . The predicting calculation is shown as follows: 
 

1 1 1k k k kM HM  
 

                          (13) 
 

T
1 1 1( ) kk k k kP HP H Q                       (14) 
 
In the filtering phase, the priori state estimation is 

corrected by the present observation data Zk. The refined 
state estimation is called as a posteriori state estimation, 
and denoted by k kM


 and its corresponding covariance 

k kP . The filtering calculation is shown as follows: 
 

k1 1( )kk k k k k kM M K Z FM   
  

              (15) 
 

k 1( )k k k kP I K F P                           (16) 
 

where Kk is the Kalman gain, 
 

T T 1
k 1 1( )kk k k kK P F FP F R 

                 (17) 
 
As shown in Fig. 1, by repeating this process of 

predicting and filtering, the Kalman filter can provide a 
series of state estimation to reconstruct a dynamic 
process and achieve the dynamic imaging. 
 
3 Results 
 
3.1 Dynamic imaging using synthetic data 

During the metallic contamination self-potential 
monitoring, a series of self-potential data will be 
acquired. Continuously inputting the observation data 
into the extended Kalman filter, a series of refined model 
corresponding to the observed data will be output. This 
process can be regarded as dynamic imaging for metallic 
contamination diffusion based on monitoring 
self-potential data. 

 

 
Fig. 1 Flowchart of dynamic imaging 

 
In order to evaluate the dynamic imaging algorithm, 

a numerical dynamic model was built to produce 
synthetic data. The 2D model area with a background 
electrical conductivity 1×10−3 S/m is divided to 30×30 
grids, and the grid sizes are 0.1 m × 0.1 m. By following 
the time step, particles gathered at the center of the top 
section spread out as Eq. (2). The aim is to simulate the 
transportation of metallic contamination plume in an 
underground porous medium. In this numerical model, 
3000 particles are employed. And the permeability, the 
porosity, the dynamic viscosity of solution and the fluid 
density are set to be 1×10−11 m/s, 30%, 1×10−3 Pa∙s and 
1×103 kg/m3, respectively. Thus, according to Eq. (1), the 
Darcy velocity varies proportionally with the depth along 
y direction. With the model involved, the particles 
continue to diffuse and form a series of synthetic 
geoelectric section at different time step. 

For convenience, the ratio of the electrical 
conductivity to the background, named the relative 
electrical conductivity, was used to describe the synthetic 
geoelectric sections. Figure 2 shows six relative 
electrical conductivity distribution snapshots of the 
particles diffusing process at time steps of 10, 30, 60, 
100, 150 and 210, respectively. 

The synthetic self-potential observation data can be 
obtained by forwarding these geoelectric model sections 
at different time steps. The finite element method was 
used to perform the forward and calculate the electric 
potential distribution. Then, the surface data points were 
selected with 5 cm interval to simulate a self-potential 
observation dataset. And a random noise of 30% of   
the self-potential values are added respectively to the  
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Fig. 2 Relative electrical conductivity distribution snapshots of 2D dynamic model at different time steps: (a) 10; (b) 30; (c) 60;    

(d) 100; (e) 150; (f) 210 
 
synthetic data for each time step. These added noises are 
used to simulate the observation errors generated during 
the process of acquiring field data from a noisy 
measurement. Figure 3 shows the synthetic self-potential 
observation data at time steps of 10, 30, 60, 100, 150 and 
210, respectively. The solid blue line is drawn from the 
directly forwarded data, and the red dashed line is drawn 
from the noise added data. 

By following the flowchart as Fig. 1, we input the 
noise added synthetic self-potential data into the 
extended Kalman filter recursion to perform the dynamic 
imaging. After alternately predicting and filtering, a 
series of resulting model sections were output. 

As shown in Fig. 4, there are relative electrical 
conductivity distribution sections calculated from the 
corresponding synthetic self-potential observation data at 
time steps 10, 30, 60, 100, 150 and 210, respectively. 
Comparing Fig. 4 with Fig. 2, the dynamic imaging 

results match the original models very well. This 
demonstrates that the extended Kalman filter algorithm 
achieves dynamic imaging with high accuracy and a 
good performance on anti-noise. 
 
3.2 Dynamic imaging using self-potential monitoring 

experiment data 
A metallic ions diffusion monitoring experiment has 

been implemented in a sandbox in laboratory. Then, the 
laboratory measured time-lapse self-potential data were 
used to recover the diffusion process by the Kalman 
dynamic imaging. The sandbox is 1.0 m long, 0.5 m 
wide, and 0.5 m high. It was open at the top and filled 
with saturated fine sand with an average grain size of 
approximately 0.25 mm. And a small amount of KMnO4 
solution was uniformly mixed into the sand. A container 
filled with saturated FeCl2 solution was set on top of a 
sandbox. The FeCl2 solution can be dripped into the sand  
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Fig. 3 Synthetic self-potential observation data at different time steps: (a) 10; (b) 30; (c) 60; (d) 100; (e) 150; (f) 210 
 
from the small opening hole on the bottom of the 
container. The leakage of the FeCl2 into the sandbox will 
cause sand to change its electric conductivity due to the 
effects of the highly concentrated ferrous ions. Meanwhile, 
the ferrous ions react with KMnO4 in the sandbox and 
induce redox reactions. The ionic reaction is as follows: 

 
5Fe2++ 4MnO +8H+=Mn2++5Fe3++4H2O          (19) 

 
These redox reactions may induce self-potential 

anomalies that can be measured on the sand surface. As 
shown in Fig. 5, in order to measure the self-potential, a 

strip fixed with 18 lead wire non-polarized electrodes is 
placed on the top of the sandbox. Each electrode is 5 cm 
apart except electrodes 9 and 10 which is set to be 10 cm 
apart. Meanwhile, a reference electrode is set on the 
bottom of the sandbox. The self-potential differences 
between each of the measuring electrodes and the 
reference electrode are recorded by a multi-channel 
electric instrument. The instrument is named as 
WGMD-60 resistivity measurement system initially 
manufactured for resistivity, self-potential, and other 
geophysical exploration. 
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Fig. 4 Relative electrical conductivity distribution snapshots of reconstructed model by dynamic imaging at different time steps:   

(a) 10; (b) 30; (c) 60; (d) 100; (e) 150; (f) 210 
 

 
Fig. 5 Experimental setup: (a) Sketch of electrode system; (b) Photo of setup 
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Before the FeCl2 solution starts to leak into the 
sandbox, the initial self-potential signals are measured at 
each electrode. All the measuring electrodes have 
potential values from −0.5 to 0.9 mV. The self-potential 
monitoring starts immediately after the FeCl2 begins 
leaking. The self-potential data of each measuring 
electrode are recorded within a time interval of 30 s. All 
the measuring electrodes show some changes in their 

self-potential values while FeCl2 solution is leaking into 
the sandbox. The multi-channel electric instrument 
shows a rapid down stroke of negative potential within 
the solution diffusion range. It also shows that the further 
the electrodes are away from the FeCl2 diffusion center, 
the smaller the amplitude variation of self-potential 
signal is. Figure 6 shows the recorded monitoring 
self-potential curves at time from 30 to 240 s. 

 

 

Fig. 6 Monitoring self-potential data recorded on electrodes in sandbox at different time: (a) 30 s; (b) 60 s; (c) 90 s; (d) 120 s;      

(e) 150 s; (f) 180 s; (g) 210 s; (h) 240 s 
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Fig. 7 Dynamic imaging of monitoring data at different time: (a) 30 s; (b) 60 s; (c) 90 s; (d) 120 s; (e) 150 s; (f) 180 s; (g) 210 s;   

(h) 240 s 

 

Then, these monitoring self-potential data are 
processed by the Kalman dynamic imaging cycle. In a 
similar way to the synthetic case, the model state of the 
metallic ions diffusion evolves depending on the Darcy’s 
equation. Then, the Archie’s equation is used to 
transform the ionic concentration distribution to the 
electrical conductivity distribution. And the self-potential 
observation data were used to refine the electrical 
conductivity distribution. As the dynamic imaging results, 
a series of relative electrical conductivity distribution 
models were output. As shown in Fig. 7, these are 
imaging results at time from 30 to 240 s, respectively. 

According to the results calculated from the Darcy’s 
model [21], the FeCl2 plume reaches the bottom of the 
sandbox at time 180 s. The imaging results of 
self-potential monitoring data align well with the 
theoretical results. As shown in Fig. 7, the relative 
electrical conductivity distribution varies little after at 
time 180 s because the diffusion slowed down rapidly 
after the plume reaches the bottom. That means the 
dynamic imaging method is effective to invert the 
self-potential monitoring data and recover the dynamic 
process of metallic ions diffusion. 
 
4 Conclusions 
 

1) Based on the electrochemical properties of 
metallic ions, self-potential method was used to monitor 
the underground metallic contaminants. And a 
corresponding dynamic imaging method was proposed to 
interpret the monitoring self-potential data by using the 

extended Kalman filter. 
2) Like other geophysical inversions, it is very 

difficult to recover a geoelectric model exactly only by a 
single self-potential observation. Thereby, instead of 
using regular inversion methods, the Kalman filter 
technique was used to perform dynamic imaging for the 
self-potential monitoring data. By combining the model 
evolving information with self-potential observation data 
to minimize possible inversion artifacts, the Kalman 
filter recursion can exactly recover the process of 
metallic ions diffusion in porous medium. 

3) The noise added numerical test demonstrates that 
the dynamic imaging method can interpret self-potential 
monitoring data successfully. It also shows that the 
algorithm is effective, robust, and tolerance to noise. 

4) The laboratory experiment proves that the 
metallic ions diffusion in porous medium can be 
monitored effectively by self-potential observation.  
Also, the laboratory monitoring data test proves that   
the dynamic imaging method can precisely retrieve   
the metallic ions plume even with being given very 
limited observation data at each time step. That is   
very meaningful to real metallic contamination 
monitoring. 
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基于自然电场监测的金属污染物动态成像 
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摘  要：提出了自然电场数据的动态成像方法。基于达西定律和阿尔奇公式，构建模拟孔隙介质中金属离子运动

的动态模型。采用能斯特方程计算金属离子的氧化还原电位。在此基础上建立自然电场监测金属离子活动的状态

模型和观测模型，利用扩展卡尔曼滤波技术对金属离子活动过程进行动态成像。模拟数据测试结果表明，该方法

能有效将金属离子运动模型与自然电场观测数据融合，实现动态成像。进一步沙箱监测实验表明，自然电场法可

以有效监测金属离子污染，利用动态成像方法可以有效重构金属离子的扩散过程。 

关键词：动态成像；自然电场；金属污染；扩展卡尔曼滤波 
 (Edited by Xiang-qun LI) 


