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Prediction of flow stress of Ti15-3 alloy with artificial neural network
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[ Abstract] Hot compression experiments were conducted on Tt 153 alloy specimens using Gleeble 1500 T hermal Simu-

lator. T hese tests were focused to obtain the flow stress data under various conditions of strain, strain rate and temperature.

On the basis of these data, the predicting model for the nonlinear relation between flow stress and deformation strain,

strain rate and temperature for Tr 153 alloy was developed with a back propagation artificial neural network method. Re

sults show that the neural network can reproduce the flow stress in the sampled data and predict the nonsampled data well.

Thus the neural network method has been verified to be used to tackle hot deformation problems of Tt 153 alloy.
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1 INTRODUCTION

T+ 153 alloy is a new metastable Btype titant
um characterized by improved forge ability and cold
formability. It has been used extensively in aerospace
industry because of its high specific strength
(strength-to-mass rate) which is maintained at ele-
vated temperature. In order to optimize the hot-forg-
ing processing conditions for Tr15-3 alloy it is neces-
sary to understand its deformation behavior at high-
temperature conditions! .

Recently, the fast development of the computing
technique leads to a wide application of the finite ele-
ment approach to the simulation of metal forming
process. Numerical simulations with the finite ele-
ment method can be truly reliable only if it is possible
to implement in them an eigen-constitution law des
cribing the material correctly. The eigenconstitution
relationship of a material is a foundation in metal
forming theory and technology. In hot deformation,
the eigen-constitution model is a highly nonlinear and
complex mapping. It is quite difficult to establish the

eigerr constitution model using theoretical meth-

ods!?.

Recent studies on the application of neural net-
works have indicated that the neural networks have
been quite promising in offering solutions to problems
w here traditional models have failed or are too compli-
cated to be created. Using a neural network, it is not
necessary to postulate a mathematical model at first or
identify its parameters. The eigen-constitution rela
tionship of a material can be learned by a neural net-
work through adequate training from experimental
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data. It can make decisions based on incomplete and
disorderly information, but can also generalize rules
from those cases on which it was trained and apply
these rules to new stimuli. It has been proven mathe-
matically that a three-layer network can map any
function to any required accuracy”’ M,

In this paper, a threelayer feed-forward net-
work with a back-propagation learning rule is em-
ployed for acquiring the eigenconstitution relation-
ship of Tr15 3 alloy. Temperature, effective strain
and effective strain rate are used as the input vectors
of the network, the output of the neural network is
the flow stress. The learning rate is 0.05 and the
momentum parameter is 0. 15.

2 TESTING METHODS

The compression specimens of Tr153 were of
cylindrical geometry, 8 mm in diameter and 12mm in
height, and were compressed on Gleeble-1500 Ther-
mal Simulator. The tests were carried out at constant
strain rates of 0. 01, 0.1 and 1s™ ' to the reductions
of 40% and 60% in height at temperatures of 750,
800, 850 and 900 C, respectively.

3 ARTIFICIAL NEURAL NETWORK

An artificial neural network simulates biological
nervous systems and is referred to as parallel dis-
tributed processing system. The network consists of a
number of simple processing units known as neurons
which communicate in parallel through weighted con-
nections. It is an intelligent informatiorrtreatment
system with characteristics of adaptive learning and
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treating complex and nonlinear relationships[5~ 7,

Applying neural networks to the metal forming field
is a fairly recent development.

3.1 Feedforward neural networks

Layers of neural networks are organized into a
feed-forward system, in which each neuron within a
layer is connected to every neuron in the subsequent
layer, but there are no connections between neurons
within the same layer. Feed-forward neural networks
consist of an input layer, an output layer and hidden
layers (see Fig. 1).

Hidden layer

Input layer Output layer

Fig. 1 Structure of feedforward neural network

The output of each neuron is a nonlinear function
of the sum of its inputs. The output function has a
sigmoid shape. The explicit function is
: |
}’i:f(xi): 1+ exp(— x;) (1)
where y; is the output of the ith neuron, and x; is
the total inputs of the ith neuron:

xi= g 6 (2)

J

wy is the weight from the jth to the ith
neuron, 0 is the threshold of the ith neuron and x; is

w here
one of the inputs of the ith neuron.

3.2 Configuration and learning algorithm of BP
neural networks

Neural networks need to be trained in a learning
process before they are applied. Back-propagation al-
gorithm is an extremely effective learning tool that
can be applied to a wide variety of problems. First the
network is trained by using a predetermined number
of input variables. Using the weights of connections
between the neurons, the network calculates these re-
sults. The results are compared to the desired outputs
and the error determines a correction factor for all
weights and thresholds which are updated from the
output layer to the input layer® '

Computing the weights and thresholds on the
output layer at first, and then propagating the error
backwards through the network layer by layer to up-
date, the weights and thresholds are

wi(t+ 1) = wy(t)+ N8y +

af wi(t)= wi(t="1]  (3)

O(t+ 1)= 6(t)+ 1§ (4)
where ¢ is the number of weight updates, Tl is a
learning rate(0< Tk 1), ais a momentum parameter
(0< a< 1), and § is the error gradient of the ith
neuron, for the output layer:

= yi(l- yi)(di~ yi) (5)
where d; is the desired output.

For the hidden layer:

&= yi(1- y:) Z@w (6)

The learning rate is changeless in BP learning al-
gorithm. From the error surface of BP networks it
can be found that in smooth zone small learning rate
increases the iterative times and in rough zone big
learning rate increases the error. This is an important
reason for BP networks to converge slowly. Therefore
the method of changing learning rate is adopted as

| ne (P> 1, AE< 1)

= s (B< 1, AE > 1) ()
where @ and B are constants, AE is error function:

AE= Er(t)— Ex(t- 1) (8)

The average squared error between the values of
desired output and actual output is

Br= 5 2yi- di)’ (9)

where n is the amount of the sampled data.
3.3 Neural networks eigemr constitution relatiom
ship

In hot compression process, the eigenconstitu-
tion equation of Tr15 3 alloy can be written as

o= o€ & T)  _ (10
where O is the flow stress, €is the effective strain,
€is the effective strain rate and T is the deformation
temperature.

Therefore, deformation temperature, effective
strain and effective strain rate are used as the input
vector of the neural network, the output of the neural
network is the flow stress. The number of sampled
data is 185 sets. All the data should be normalized be-
fore being applied to the neural network so that they
are confined between 0. 1 and 0.9. The data are nor-
malized according to

d= 0.8 dix_ddmin+ 0.1 (11)
where  dunin and dpa are the minimum and maxi
mum values of the sampled data respectively.

The number of elements in hidden layer is deter-
mined through trial and error. The final network
configuration consists of 1 hidden layer with 10 ele-
ments. After training, the relative errors between the
expected values and the values acquired from the neu-
ral network are within 0. 1% . Fig. 2 shows the flow
stresses acquired from the neural network against
those expected and used as training cases. It is found

that the accuracy of the prediction of the flow stress is
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very high. After the neural network training was
completed it can be used for predicting other sets of
processing data. Fig. 3 shows comparison of the pre-
dicted values acquired from the neural network with
the non-sampled experimental results. The mean rel-
ative error is within 0.2%. It can be observed from
the figure that the predictions of the data which were
not used for training purpose are also much closer to
the experimental data.

4 CONCLUSIONS

Predicting the flow stress of T+ 153 alloy with
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Fig. 2 Comparison of predicted and measured flow
stress of sampled data
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Fig. 3 Comparison of predicted and measured
flow stress of norrsampled data

an artificial neural network method not only helps in
the reduction of the experimentation required to char-
acterize a flow behavior of a material under the same
precision, but also avoids the problems associated
with  empirical/ semrempirical  eigen-constitution
models that involve the evaluation of a large number
of constants. The trained neural network is able to
predict the flow stress very accurately.
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