

Microstructures of L₂₁/L₁₂ multi-phase intermetallics in Co-Ni-Al-Ti system^①

WANG Lijun(王立军), LI Jian-guo(李建国), ZHANG Yong-gang(张永刚), CHEN Chang-qi(陈昌麒)

(Department of Materials Science and Engineering,

Beijing University of Aeronautics and Astronautics, Beijing 100083, P. R. China)

[Abstract] On the basis of the two ternary systems of Co-Al-Ti and Ni-Al-Ti, a series of high-temperature structural intermetallic alloys comprised of L₂₁-type (Co, Ni)₂AlTi and L₁₂-type (Co, Ni)₃(Al, Ti) ordered phases in the Co-Ni-Al-Ti quaternary system were designed and melted to take the advantages of both the high elevated temperature strength of the L₂₁ phase and the intrinsic room temperature ductility of the L₁₂ phase. Analysis of the phase equilibrium, phase structure and microstructures of the as-cast and heat-treated alloys were conducted to gain some clues for the further optimization of the compositions, microstructures and processing.

[Key words] Co-Ni-Al-Ti quaternary system; L₂₁-type (Co, Ni)₂AlTi; L₁₂-type (Co, Ni)₃(Al, Ti); intermetallics

[CLC number] TG 146.2

[Document code] A

1 INTRODUCTION

Intermetallic compounds have the promise of high temperature structural application, while the road ahead is hindered by its low high-temperature creep resistance and poor room-temperature ductility. The previous research suggested that multi-component alloying to produce multi-phase system usually produced exceptional strengthening/toughening effect^[1]. Developing multi-component multi-phase alloy system consisting of phases with higher high-temperature strength and phases with intrinsic room-temperature ductility may be a feasible approach to solve this problem.

Binary ordered structure L₁₂ and ternary ordered structure L₂₁ are two of the most representative structures, and many compounds with these structures exhibit attractive mechanical properties. In 1976, it was notably reported that the ordered Heusler phase Ni₂AlTi with L₂₁ structure has exceptionally high creep resistance, about three times that of NiAl with B2 structure^[2]. Lately, Umakoshi et al^[3, 4] reported that Co₂AlTi, with the same structure as Ni₂AlTi, exhibited higher brittle-to-ductile transition temperature than Ni₂AlTi, i. e. 1170 K for the former and 965 K for the latter. However, research on these phases was discouraged for a time by the extremely poor room-temperature ductility. The mechanical properties of L₂₁-based alloys might be improved by incorporation of another ordered phase with L₁₂ structure. Single crystals of Ni₃Al with L₁₂ structure are ductile, but pure polycrystalline Ni₃Al is very brittle at room temperature because of grain

boundary fracture^[5]. Both single crystal and polycrystalline Co₃Ti with L₁₂ structure compounds are ductile over a wide temperature range because of the intrinsic high grain boundary strength^[6]. The yield strength of Ni₃Al and Co₃Ti presents a positive temperature dependence up to about 1100 K^[7, 8]. In the Co-Ni-Al-Ti quaternary systems, it is expected that not only the two L₂₁ phases, Ni₂AlTi and Co₂AlTi, but also the two L₁₂ phases, Ni₃Al and Co₃Ti, can form continuous solid solutions, which can be denoted as (Co, Ni)₂AlTi and (Co, Ni)₃(Al, Ti), respectively.

In the present work, quaternary alloys comprised of above two phases are designed to pursue both reasonable room-temperature ductility and excellent high-temperature strength. As one of a series of investigations in several multi-component systems aiming for room-temperature ductility, Matano et al^[9, 10] made an attempt in this system, and the preliminary results were encouraging, but comprehensive work did not follow up.

2 EXPERIMENTAL

The experimental alloys were produced using raw materials with high purity elements available, being 99.9% Co, 99.99% Ni, 99.98% Ti and 99.99% Al in purity. Alloy buttons about 40 g each were arc-melted three times on a water-cooled copper hearth under an atmosphere of purified argon. The compositions of the alloys designed in atom percentage are listed in Table 1, and the ratio of Co/(Co+Ni) is kept at 60%. The nominal compositions were adopt-

① [Foundation item] Project (59771006) supported by the National Natural Science Foundation of China

[Received date] 2000-04-17; [Accepted date] 2000-07-24

Table 1 Nominal compositions of alloys designed and phase compositions in as-cast microstructures determined by EDS

Alloy No.	Nominal composition				Dendrite composition				Inter-dendrite composition				mole fraction, %
	Co	Ni	Al	Ti	Co	Ni	Al	Ti	Co	Ni	Al	Ti	
1	40	27	19	14	36.8	26.4	25.3	11.5	47.0	28.4	9.1	15.5	
2	40	27	17	16	35.4	23.7	27.1	13.8	45.0	29.2	9.6	16.2	
3	40	27	15	18	34.2	23.1	25.9	16.8	44.2	30.3	10.1	15.4	
4	40	27	12	21	32.4	22.4	25.1	20.1	41.5	33.1	7.0	18.4	
5	36	24	29	11	34.1	21.4	35.0	9.5	49.6	25.4	10.2	14.8	
6	36	24	26	14	31.0	21.4	35.2	12.4	46.3	29.6	8.6	15.5	
7	36	24	23	17	32.5	20.8	32.1	14.6	45.8	28.9	8.8	16.4	
8	36	24	20	20	32.2	22.4	26.2	19.2	42.7	31.2	8.2	17.9	
9	36	24	17	23	31.8	20.7	25.5	22.0	43.7	31.3	4.7	20.3	

ed because the mass loss is usually less than 0.2%.

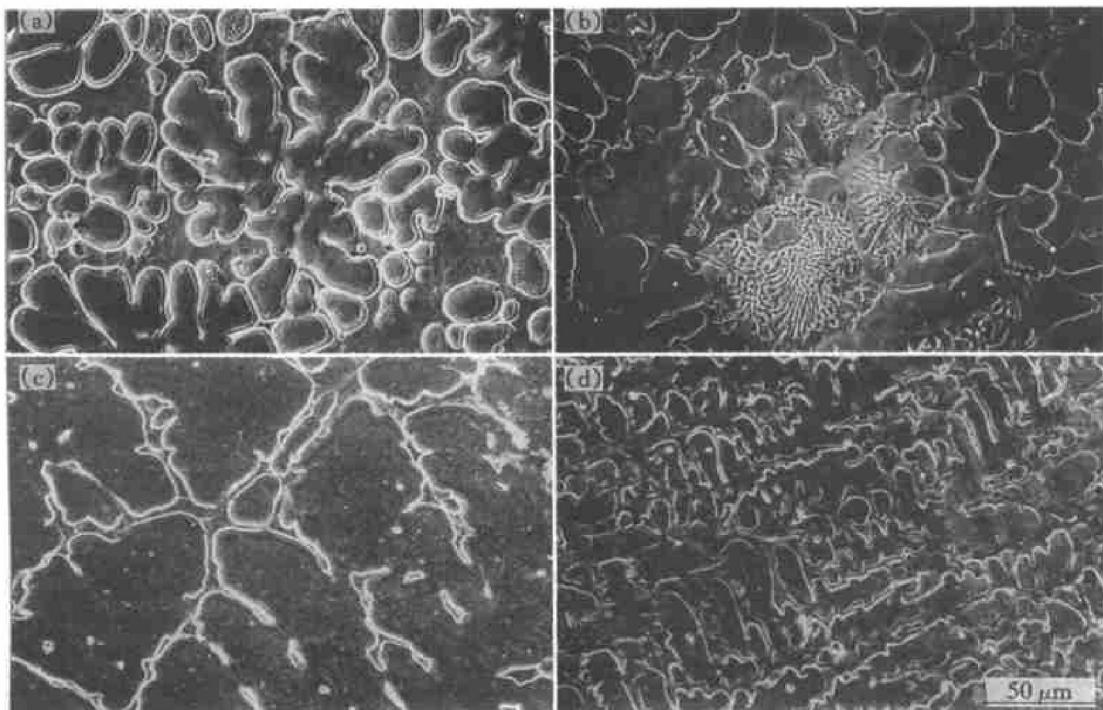
The specimens for heat-treatment were sealed in silica tubes evacuated and back-filled with argon. The homogenization heat-treatment were conducted at 1453 K for 7.3×10^4 s, followed by isothermal treating at 1273 K, for 1.8×10^5 s.

Microstructures of the alloys were examined with a JSM-5800 scanning electron microscope (SEM) and an H-800 transmission electron microscope (TEM). The phase composition measurement was performed by means of the energy dispersive X-ray spectrometer (EDS) equipped on the SEM, and the composition of each phase was measured from three different sites.

3 RESULTS

3.1 Microstructures of as-cast alloys

Typical microstructures of the as-cast alloys are shown in Fig. 1, and the phase compositions at as-cast state determined by EDS are listed in Table 1. It can be seen that some of the as-cast alloys are comprised of two kinds of microstructures, i. e. the dendrite and inter-dendrite matrix (Figs. 1(a), (c) and (d)). Composition analysis shows that the ratio of (Co+Ni):(Al+Ti) of the dendrite phase is close to 1: 1 ~ 2: 1, therefore this phase can be denoted as (Co, Ni)₂AlTi approximately, and the ratio of (Co+Ni):(Al+Ti) of the matrix phase is close to 3: 1, denoted as (Co, Ni)₃(Al+Ti) approximately. Phase composition analysis suggests that the element partition takes place between the two phases, Al atoms prefer to distribute over the L₂₁ phase, while Ti atoms prefer to distribute to the L₁₂ phase.


It is obvious that a peritectic reaction occurs during solidification. The high melting temperature L₂₁ dendrite solidifies first from the melt, followed by the L₁₂ inter-dendrite. Some eutectic microstructures are also observed in Alloys 3 and 4 (Fig. 1(b)) at the Ti-rich side of the two-phase field, but it may be resulted from non-equilibrium solidification under experimental conditions. Because the relation of the large massive L₁₂ phases rather than the eutectic micro-

structures surrounding the L₂₁ phases in Ti-rich alloys keeps unchanged from that in Al-rich alloys, which may rule out the possibility of simple eutectic reaction. It also should be noted that, when the L₂₁ dendrites solidify in low volume fraction, it can be separated effectively by the matrix (Figs. 1(a) and (b)). On the contrary, when the L₂₁ dendrites solidify copiously, they will contact each other, separating the L₁₂ phase into discrete networks (Figs. 1(c) and (d)).

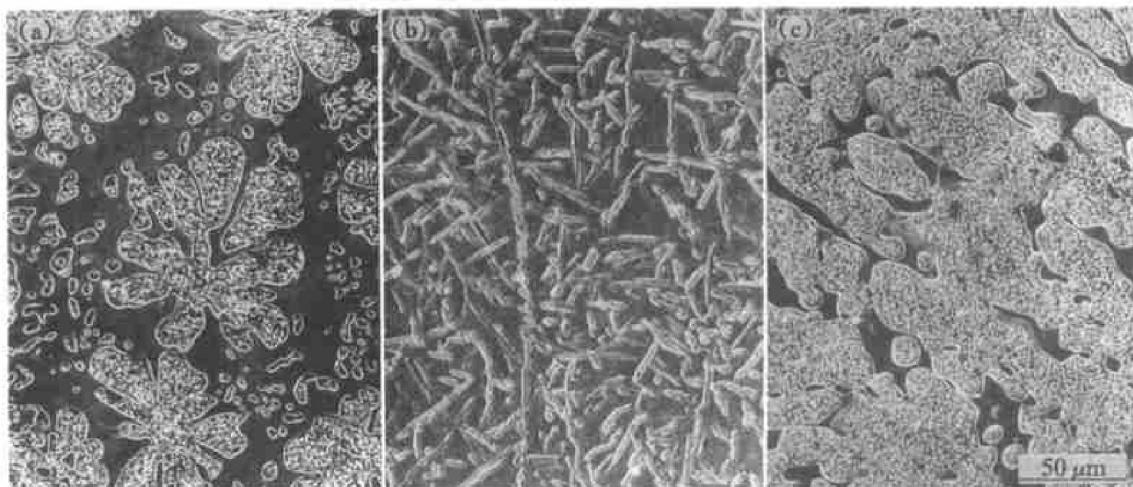

3.2 Microstructures of heat-treated alloys

Fig. 2 shows the typical microstructures of the alloys after homogenization at 1453 K for 7.3×10^4 s, followed by isothermal treatment at 1273 K for 1.8×10^5 s. Almost all the dendrites of the alloys are observed to aggrandize at the expense of the inter-dendrite matrix after homogenization, and rod-like precipitations were decomposed from most of the dendrites during isothermal treatment. Alloys 5 and 6 had transformed into single-phase microstructures after the treatment, and became very brittle and difficult to etch. This means that the composition sites of these alloys in the phase diagram have been covered by the single-phase field at least at temperatures above the isothermal heat-treatment temperature. Though Alloys 1 and 7 also transformed into single phase during homogenization, the secondary precipitates formed during isothermal treatment made the metallographical observation feasible. The phenomena can be understood easily. As the temperature increases, the balanced solubility of the L₂₁ phase widens toward the L₁₂ phase, the dendrites aggrandize at the expense of the matrix. And when the temperature is decreased, the L₂₁ phase becomes supersaturated, the L₁₂ phase will precipitate secondarily from it, provided the kinetics allows.

Among the alloys with identical (Co+Ni) content, the dendrites of the alloys with higher Al contents are likely to aggrandize upon heating and decompose upon cooling. This may be because the solidus slope at Al-rich side changes with the temper-

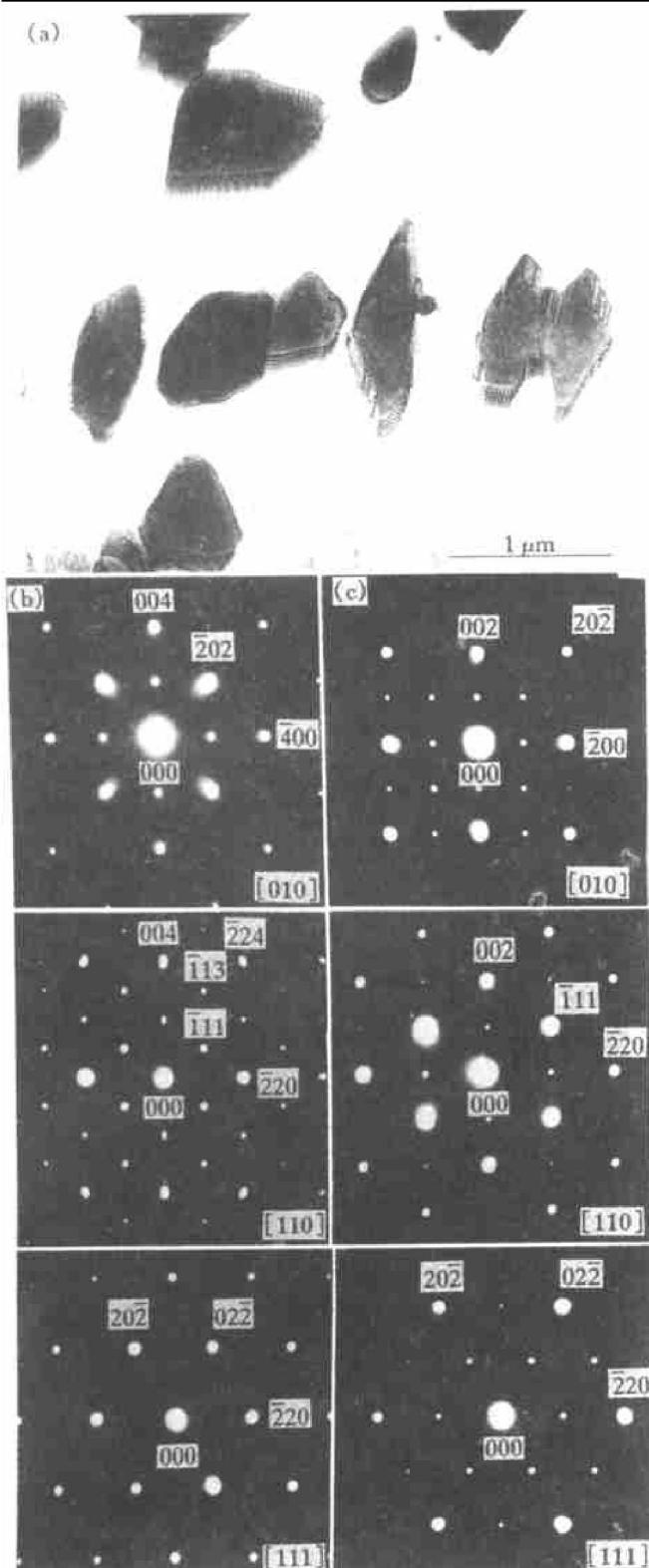
Fig. 1 Typical microstructures of as-cast alloys
(a) —Alloy 1; (b) —Alloy 4; (c) —Alloy 7; (d) —Alloy 9

Fig. 2 Microstructures after homogenization and isothermal heat treatment
(a) —Alloy 4; (b) —Alloy 7; (c) —Alloy 9

ture more dramatically between the two temperatures, or because the lower ordering degree of $(\text{Co, Ni})_2\text{AlTi}$ makes the diffusions of Al and Ti atoms easier.

3.3 Microstructures under TEM

The TEM photographs of Alloy 4 isothermally treated after homogenization are shown in Fig. 3. From the microstructure of the dendrite with rod-like particles precipitated in it, the dislocation networks can be observed at the interface between the particles and the parent phase, which suggests that the interface is semi-coherent in nature. The diffraction patterns of the two phases (see Figs. 3(b) and (c)) con-


firm that the structures of the two phases are L2_1 and L1_2 respectively.

As expected, excellent room-temperature ductility was founded when preparing the specimens for SEM and TEM observations in the alloys that the L2_1 dendrites were separated effectively by the L1_2 interdendrite matrix. On the contrary, when the L2_1 dendrites contact each other, separating the L1_2 phase into discrete networks, the materials were brittle. It has been known that it is the alloy composition site in the two-phase field and the homogenization temperature that control the final morphology of primary L1_2 phase. In addition, the fraction and morphology of L1_2 secondary precipitates affecting the deformability

of the dendrite, are controlled by the isothermal aging temperature and duration.

4 CONCLUSIONS

1) A series of high-temperature structural inter-

Fig. 3 TEM photographs and diffraction patterns of Alloy 4

- (a) —Microstructures of dendrite with particles precipitations;
- (b) —Typical diffraction patterns of parent phase in dendrite;
- (c) —Typical diffraction patterns of particle in dendrite

metallic alloys comprised of L2₁-type (Co, Ni)₂AlTi and L1₂-type (Co, Ni)₃(Al, Ti) ordered phases in the Co-Ni-Al-Ti quaternary system are designed and melted. The as-cast microstructures consisting of L2₁ dendrite and L1₂ inter-dendrite matrix are produced through a peritectic reaction during solidification. In some Ti-rich alloys, eutectic microstructures can be found to distribute among the L2₁ dendrites and the L1₂ inter-dendrite matrixes, which is resulted from non-equilibrium solidification.

2) Upon high-temperature homogenization, the solubility scope widening leads the dendrite to agglomerate at the expense of the matrix. When the heat treatment temperature is lowered from the homogenization temperature, the secondary L1₂ phase precipitates from the supersaturated dendrite.

3) The homogenization temperature, the isothermal heat-treatment temperature and duration for a given alloy are the three important factors affecting mechanical properties through affecting the fraction and morphology of both primary and secondary L1₂ phases.

[REFERENCES]

- [1] LI Jian-guo, WANG Li-jun, ZHANG F X, et al. Phases and microstructures of in situ formed multiphase materials with B, C and Si doped to TiAl-based alloys [A]. Zhou L, Eylon D, Lutjering G, et al. Titanium' 98 [C]. Beijing: Inter Acad Pub, 1998. 1006.
- [2] Strutt P R, Polvani R S and Ingram J C. Creep behavior of the Heusler type structure alloy Ni₂AlTi [J]. Metall Trans, 1976, A7: 23.
- [3] Umakoshi Y, Yamaguchi M and Yamane T. Effects of non stoichiometry on the high-temperature deformation of Ni₂AlTi [J]. Phil Mag, 1985, A52: 357.
- [4] Umakoshi Y, Yamaguchi M and Yamane T. Plastic deformation of Co₂AlTi [J]. Phil Mag, 1986, A53: 221.
- [5] Heredia F E and Pope D P. Effect of boron additions on the ductility and fracture behavior of Ni₃Al single crystals [J]. Acta Metall Mater, 1991, 39: 2017.
- [6] Takasugi T and Izumi O. High temperature strength and ductility of polycrystalline Co₃Ti [J]. Acta Metall, 1985, 33: 39.
- [7] Heredia F E and Pope D P. The plastic flow of binary Ni₃Al single crystals [J]. Acta Metall Mater, 1991, 39: 2027.
- [8] Takasugi T, Hirakawa S, Izumi O, et al. Plastic flow of Co₃Ti single crystals [J]. Acta Metall, 1987, 35: 2015.
- [9] Mishima Y. Design of multiphase intermetallic alloys [J]. Acta Metall Sinica (English letters), 1995, 8: 339.
- [10] Matano T, Kimura Y, Miura S, et al. Microstructure and mechanical properties of the L1₂/L2₁ two-phase alloys in the quaternary Co-Al-Ni-Ti system [J]. Mat Res Soc Symp Proc, 1995, 364: 1377.

(Edited by PENG Chao-qun)