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Abstract: Two-dimensional cellular automaton(CA) simulations of phase transformations of binary alloys during solidification were
reported. The modelling incorporates local concentration and heat changes into a nucleation or growth function, which is utilized by
the automaton in a probabilistic fashion. These simulations may provide an efficient method of discovering how the physical
processes involved in solidification processes dynamically progress and how they interact with each other during solidification. The
simulated results show that the final morphology during solidification is related with the cooling conditions. The established model
can be used to evaluate the phase transformation of binary alloys during solidification.
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1 Introduction

During solidification of cast metallic materials,
simulations of microstructural evolution, which track
kinetics in a local fashion, are of interest for two reasons.
First, from a fundamental point of view, it is desirable to
better understand the dynamics and the topology of
microstructures that arise from the interaction of large
number of lattice defects. Second, from a practical point
of view, it is necessary to predict microstructure
parameters such as grain size or texture which determine
the mechanical and physical properties of as-solidified
materials subjected to industrial processes[1]. During the
past decades, the modelling of solidifying systems has
been an active and engrossing field of study. A number of
excellent models for discretely simulating dendrite
growth have been suggested. They can be grouped as
phase field models[2,3], Monte Carlo models[4,5] and
cellular automaton models[6—10].

Complementary to these approaches, a cellular
automation(CA) model is introduced to simulate the
structural evolution of solidifying grains during phase
transformations of binary alloys. During the phase
transformation of the above chosen binary alloys,
nucleation, growth of nucleated grains and mass-heat

transfer in solid and liquid phases are involved in the
model. In modelling the phase transformation, the
diffusion kinetics is calculated using an explicit finite
volume technique[11], and the local concentration and
heat changes are incorporated into a nucleation or growth
function which is utilized by the automaton in a
probabilistic fashion.

2 Model algorithm

2.1 Basic assumptions

The model involves the following assumptions.
First, homogeneous nucleation takes place in liquid.
Second, the effect of convection on the changes of solute
and temperature fields is not taken into account. Third,
the modelling does not account for the transformation
from solid to liquid. Fourth, for the binary alloy with a
certain concentration, the transformation temperature
from liquid to solid is the temperature on the liquidus of
the phase diagram of the binary alloy corresponding to
this concentration.

2.2 Mathematical formulation

The phase transformation by cooling can be
described as Liquid—Liquid+a, where Liquid denotes
the liquid phase and a the solid phase. Precipitation of
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the second solid phase f from the first solid phase a, a—
a+p, will be arisen by cooling below the f solves as
shown in Fig.1.
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Fig.1 Schematic phase diagram of Sn-Pb binary alloy (Liquid
represetns liquid phase, a is first solid phase, and £ is second

solid phase)

A continuous nucleation distribution dn/d(A7") at an
undercooling A7"' can be written in
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where AT, is the mean undercooling, A7, standard
deviation, ny,, total area[6], and f; is the fraction of solid
already formed.

The diffusion processes of both mass (solute) and

heat can be described by
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where ¢ is time, C, is a solute concentration in phase

v (liquid 1 or solid s), D, is the associated diffusion
constant, and D, is a temperature field diffusion constant.
u characterizes a dimensionless temperature field[12],
which is the thermal supersaturation and can be
expressed by the relation

u=(T-T,)/L/c,) 5)

where L is the latent heat of fusion, ¢, is a heat capacity
of liquid and T, is the temperature of the CA lattice
corresponding to each temperature point of a cooling
procedure.

Growth of either columnar or equiaxed grains can
be calculated with the aid of the LGK model[13]:
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where Pe is the solute Péclet number of the dendrite tip,
k=C,/C} 1s a solute partition coefficient at the interface,
E(Pe) is a exponential integral, Cyis the composition of
the modelled alloy, R is the radius of dendrite tip, v is the
instantaneous velocity of dendritic tip, I” is the
Gibbs-Thomson coefficient, m is the slope of the liquidus
(it can be determined by calculating the tangent slope
along the liquidus at the different solute concentrations),
G is the thermal gradient, ¢, is a function of the Péclet
number, P, is the thermal Péclet number of the dendrite
tip, and G, is the associated solute gradient in liquid at
the tip.

3 Cellular automaton modeling

A cellular automaton is a dynamical system, in
which space, time, and states of the system are discrete.
Each cell in the regular spatial lattice can be in any one
of a finite number of states. The rules of transition,
which determine the evolution of a given cell during one
time step, are defined according to the states of its
neighbor cells[14].

Fig.2 is a schematic representation of this CA lattice
with a two-dimensional 200 X 200 square enmeshment of
cells. Hence, the simulated results could be interpreted as
what happens in a cross-section of the simulated grains.
The neighbors of one cell are defined as the Moore
neighborhood as shown in Fig3. Two boundary
conditions are presented in this modelling. First, as a
schematic network of cells in a regular lattice
arrangement shown in Fig.4, the bottom of the network is
assumed to be next to the mould. The network is cut
properly by two planes perpendicular to the mould
surface and periodic conditions are set on these two
boundary planes (the dot lines shown in Fig.4). The
network is symmetric about its top. Second, periodic
boundary condition at each boundary face is also used in
the simulation.

The state attributes of each cell are characterized by
the following parameters: the state identifier (solid,
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liquid/solid interface or L/S interface, and liquid as
shown in Fig.2), the cell index (0 for liquid and each of
1-100 for a possible grain crystallographic orientation),
the growth length, solute mass fraction (taking its real
value of 0.0-1.0), and temperature field. The CA lattice
is undercooled at a given cooling rate 7 .
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Fig.2 Schematic illustration of ‘S/L interface’ cells which
separate S and L. domains corresponding to three states (“S/L
interface’, Solid and Liquid) of cells in CA lattice
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Fig.3 Cell lattice used in model(Labels 1-8 are neighbor cells
of cell C)
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Fig.4 Schematics for cellular automaton in a volume

At the beginning of the simulation, each cell is set
to liquid with the same initial solute content, i.e. the
composition of the alloy C,, and the same initial
temperature 7, which is a little higher than the liquidus
Tt of the simulated alloy on its phase diagram,
corresponding to the composition of the specimen. The
decreasing of the temperature 7, of the CA lattice is
written as T,,—~T,— T -7 , where 7 is a time step, and the
temperature of each cell is given by the following
Eqn.(19) after local temperature changes are evaluated.
When the temperature is decreased to below the
transformed temperature of f§ phase, the left liquid phase

cells are transformed into f phase.

3.1 Nucleation

According to Eqn.(2), the density increase, dn, or
on,, of new nuclei nucleated within the volume of the
melt or on the mould surface at the undercooling
temperature increases by an amount O(AT)[S(AT)>0]
during one time step t, is given by
_ [AT+3(AT) dn

v/s _ ’
m(l SA(AT™) (12)

on,, =
v/s AT

where f; takes the following value

1 solid
1, =3(C) =OyIC) -Cy solid/liquid (13)
0 liquid

C; and C; denote the solute concentrations which
can be determined by the liquidus and solidus of the
studied alloy as shown in Fig.l. The nucleation
probability, p, or p,, during solidification is given by

p~=on,]" or p=dnS (14)

where J” represents the volume of one cell, and S the
surface area of one mold cell. In the simulation, each
untransformed cell to solid with a generated random
number #(<r<1) in the volume or on the surface of the
specimen is scanned. If »<<p, or r<p, to the
untransformed cell, this cell will nucleate.

3.2 Solute and temperature redistribution
For a solidified cell (i, j), the increase of the
temperature field is given by

ug Uyt L (15)

where [, 1s a dimensionless latent heat.
For a liquid cell (m, p) near the solidified cells like
the cell (i, j), the increased amount of solute is expressed

as
C(m,p)ﬁc(m,p)—‘rcrej ect (l 6)

Creject = (Z:)(C(l]) - CS,(LJ') ) (17)
i,j

where Ci,, 1s the solute concentration of the liquid
cell (m, p) before receiving the rejected solutes from its
neighbor solidified cells, Cigeer 18 the total amount of
rejected solute concentration from all the solidified cells
near the cell (m, p), hence (C(,— C:)(i)j) ) is the
concentration difference of the cell (i, j) before and after
solidification. The summation covers all kinds of
solidified cells contributing to the cell (m, p). Once the
liquid cell (m, p) receives solutes from the solidified cells,
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the “S/L interface’ cell is produced, which is located
between any solid and liquid cells. Hence, solutes are
enriched in this “S/L interface’ cell. When there is
enough time of solute diffusion, the enriched solutes can
be diffused into neighboring cells, and crystal can grow
steadily. However, if crystal grows very quickly, these
enriched solutes have no time to diffuse, and the growing
interface of crystal will become unsteady.

In the diffusion calculations including solute and the
temperature field, the central differentials of Eqn.(3) and
Eqn.(4) take the following forms to reduce the influence
of diffusion anisotropy from the cubic cell lattice chosen
in the model. The change of temperature field of one cell
(i, j), as shown in Fig.5, during one time step 7 due to
diffusion can be calculated in the following way:

) [1-4- Dur/foz] + 25;_”; ’ [u(i+l,j) Flhgap T
350

T
Ug gyt ]t %g: 7 [ oy Tt o +
0

Uiy T Ui -] DU 5 (18)

i-1,j-1] i j-1 [i+1,j-1
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Fig,5 Discretized diffusion operator of cell (7j) with its

nearest (1-8) neighbors

where &, is the distance between two adjacent grid

points. Then, the temperature of the cell (i, j) after 7 can
be given as follows:

T =Tt Loug,/Cy (19)

The calculation of solute diffusion is rather more
complex than that of temperature field diffusion:

2t
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Case A: If the cell (i, j) with its one neighbor cell
‘nei’ is in the same phase v,
i iy =X =D 21

where  yuei, ;) 15 used to represent the coefficient from
Xaj-» 10 X141y In Eqn.(21) corresponding respectively to
the eight neighbors of the cell (7, j), as shown in Fig.5.

Case B: If the cell (i, j) belongs to the phase v,
whereas its one neighbor cell ‘nei’ belongs to the
interface,

X nei (i, ) :Du 'Cu,nei,(i,j) /Cnei,(i,j) and X(iJ):DD (22)

Case C: If both the cell (7, j) and its one neighbor
cell ‘nei’ belongs to the interface,

Xnei (i, j) = [f-stCs*,nei,(i,j) +{l = f-s )chfnei,(i,j) VCoeii

and 6 =[fsDsCagy + A= FIDCra 1/ Cor
(23)

Ts T Ssneii)

with 7. s = ) fs(i,j) or fs,nei,(i,j) s
calculated by
P Crin ~Cay
s.(i.j) T % *
Crin ~Csan
Cl*nei(i' ~Csinis
,nei,(7,7) nei,(i,7)
or s,nei,(i,7) = * (24)

Cl,nei,(i,j) - Cs,nei,(i,j)

where Cy; 5 or Cgy oy (Clueiyy O Copeigipy) 1S
the concentration of the cell (i, j) (its one neighbor cell)
on the liquidus or solidus of the phase diagram at the

temperature T7; ;) (Thei, ;. )-

3.3 Grain growth

After a cell has been solidified at a certain time ¢,
the cell grows towards its neighbor S/L interface’ cells.
The growing length ¢, (¥) is calculated by an integral over
the time of growth for the dendrite tip. Here, d=1-8,
presents respectively the eight directions from one cell
(i, j) towards its neighbors as shown in Fig.3, and & (¥)
can be written as

a(0)= vy dt

l

(25)

where v, indicates an instantaneous growth velocity to
the dth neighbor of eight neighbors from the cell (7, ;).
The capture probability p, to the neighbor “S/L interface’
cell along the dth direction of this solid cell can be given
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by

_sal®)
P ‘.

(26)
Hence, to a °‘S/L interface’ cell ‘nei’, if its
temperature 7" is lower than its 7%, corresponding to its
solute concentration, and its generated ‘transformed’
probability 7y, (0<<ry,<<1) i1s smaller than a ‘capture’
probability p, of its neighbor solid cell (7, j) towards the
cell ‘nei1’, the cell ‘nei” will become solid.
3.5 Time step
The time step 7 is one key measure in the modelling
because the state of each cell is changed rhythmically
with its mcrease, and 1t could be defined as

S S0 g0 g
vmax,Du,Dl,D

7= lmin(

) @7

S

where v . 1S the maximum growth velocity among the
erowth velocities for all solid cells and ‘min’ means the
minimum value of four items in the round bracket.

4 Results and discussion

The microstructural evolution of small specimens
with the size of 2 mm X2 mm is simulated by the present
CA model. Fig.6 and Fig.7 adopt the boundary condition
as shown in Fig4, and Fig.8 shows the periodic
boundary condition. In these simulated pictures, liquid
cells and other different grains are represented by
different grey scales.

Fig.6 shows the morphologies of a Ni-20%Cu(mass
fraction) alloy from the beginning temperature of 1 410
C to 1406 °C at various cooling rates, in which (a) 1s
for the cooling rate of 0.1 “C/s, (b) for 0.05 ‘C/s, and (c)
for 0.01 °C/s. In these figures, nucleation is caused only
on the mould surface but not in the bulk for the higher

£

probability on the mould surface than that in the bulk.
Growth of the columnar grains originated from the
mould wall towards the bulk depends obviously on the
cooling rates, and it is an example of diffusion-controlled
growth. If the cooling rate is reasonably small (for
example, 0.01 °C/s in Fig.6(c)), the time interval needed
to reach the temperature of 1 406 C 1is properly long.
Hence there is more time to make the diffusion processes
of solute and temperature fully go on, and a solute (and
temperature) distribution preferable to growth of grains
could be produced. Therefore, the final columnar grains
with 1 406 ‘C become longer for a properly smaller
cooling rate such as 0.01 C/s in Fig.6(c) than for a
quicker one such as 0.1 ‘C/sin Fig.6(a).

Fig.7 shows the simulated microstructures of
Ni-20%Cu(mass fraction) alloy respectively at ¢ =0.08
‘C/s in Fig.7(a) and Fig.7(b) and at #=0.03 ‘C/s in
Fig.7(c) and Fig.7(d) with the temperatures 6,=1 383 C
and 6;=1 340 C . The comparison between two
structures at the same temperature but different cooling
rates gives an insight into how the cooling conditions
affect the grain morphologies. The transition from
columnar grains to equiaxed grains(TCE) could take
place if the difference between the temperature (6;, or 6,)
and the melting point is higher than A7, It can be
seen from Fig.7 that the equiaxed grains can form before
the columnar grains extend to larger region, and the trend
is more pronounced when the cooling rate is larger
(6=0.08 “C/s as shown in Fig.7(a)).

This phenomenon can be explained as follows. As
described above, each liquid cell in the melt bulk and on
the mould with an undercooling temperature is a
potential nucleation site. By cooling, the nucleation
probability becomes large for each potential nucleation
site, and it means that those cells may nucleate.
Nevertheless, the nucleated cells will push an amount of
solutes into their neighbor liquid cells and release certain
latent heat. Then, the concentrations of the liquid cells

Fig.6 Grain growth of Ni-Cu20% alloy at different cooling rates to final temperature =1 406 ‘C from beginning temperature of

1410 C:(a) 0=0.1 C/s;(b) 6=0.05 Cls;(c) 6=0.02 C/s
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neighboring to the solidified grains become enriched,
and their temperatures become high resulting from the
temperature field diffusion. These lead to the fact that the
undercooling temperatures (A7=Tg.—7) of these cells
vary from their starting values and their nucleation
probability will vary. In addition, the diffusion
procedures of solute and temperature will start from
other liquid cells not those neighboring to the solid cells,
and they will also lead to the variances of undercooling
temperatures to these liquid cells. Therefore, nucleation
of liquid cells both neighboring and not neighboring to
solid cells is controlled by diffusion. Growth of those
solid cells will be caused if there exist undercooling
temperatures in their neighboring untransformed cells
and concentration and temperature differences between a
solid cell and its neighboring untransformed cells, and it
is also a diffusion-controlled procedure. Thus, on one
hand, the nucleation probability or number of liquid cells
is smaller for a lower cooling rate than that for a quicker
one. On the other hand, at such a low cooling rate,
because the diffusion can continue for a longer time, or

¢ od 9
{ A
] §

Fig.7 Microstructures with 8,=1 383 ‘C and 6;=1 340 ‘C respectively: (a) and (b) at 0=0.08 ‘C/s; (c)and (d)at €=0.03 C/s

more sufficient performance can be obtained, than at a
quicker one, it yields a more uniform distribution of
solute and temperature around each solidified cell, and
leads to a larger equiaxed grains being generated as
shown in Fig.7(d) for 6=1 340 °C.

Figs.8(a) and (b) demonstrate the evolution of
metallurgical structure for a low composition eutectic
alloy of Pb-5%Sn(mass different
temperatures for 6,=320°C, and 6,=80 °C respectively
at the cooling rate #=0.15 “C/s. In the beginning, a few

fraction) at

grains nucleate in the liquid bulk. Then, as the
temperature decreases, the nucleated grains begin to
grow and more and more grains nucleate (as shown in
Fig.8(a)). Finally, Fig.8(b) displays the morphology with
many large and small grains. Fig.8(b) attracts one’s
attention to fine spread f phases which precipitate from
the bulk phases a as dots or stripes. It could come from
that a little of liquid is left and embedded in them. When
the temperature of the alloy is decreased below the
solidus of S phase, the precipitation of f phases occurs
immediately.
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Fig.8 Evolution of metallurgical structure and phase
transformations of low concentration eutectic alloy Pb-5%Sn
with different temperatures for ,=320 ‘C(a) and 6,=80 ‘C(b)
at cooling rate 0=0.15 C/s (Precipitation phase f# spreads in

bulk phase a as dots and stripes ( in white squares 0))
5 Conclusions

1) Nucleation of grains is mainly determined by two
factors. First, there are undercooling temperatures on
those potential nucleation sites; second, on those sites,
nucleation probabilities must be large.

2) The phase transformation from liquid to solid
owing to growth of grains is determined by the following
factors. First, there are undercooling temperatures on
those liquid cells; second, they are neighboring upon
solid cells; third, probabilities that those solid cells
‘capture’ those neighboring liquid cells must be large.

3) For the same initial composition of alloy, the
final morphology during solidification, for example the
average size of grains, is related to the cooling rate
chosen. Reasonably cooling rate is useful to acquire a
desired morphology of alloy.
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